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SUMMARY
The impact of gestational diabetesmellitus (GDM) onmaternal or infantmicrobiome trajectory remains poorly
understood. Utilizing large-scale longitudinal fecal samples from 264mother-baby dyads, we present the gut
microbiome trajectory of the mothers throughout pregnancy and infants during the first year of life. GDM
mothers had a distinct microbiome diversity and composition during the gestation period. GDM leaves fin-
gerprints on the infant’s gut microbiome, which are confounded by delivery mode. Further, Clostridium spe-
cies positively correlate with a larger head circumference at month 12 in male offspring but not females. The
gut microbiome of GDM mothers with male fetuses displays depleted gut-brain modules, including acetate
synthesis I and degradation and glutamate synthesis II. The gut microbiome of female infants of GDM
mothers has higher histamine degradation and dopamine degradation. Together, our integrative analysis in-
dicates that GDM affects maternal and infant gut composition, which is associated with sexually dimorphic
infant head growth.
INTRODUCTION

The gut microbiome is known to be essential in the perinatal

health of mother and infant, which supports the developmental

origins of the health and disease hypothesis. During pregnancy,

host factors, such as changes in hormone levels, remodel the gut

microbiome.1–3 Third-trimester stool is associated with greater

inflammation and energy content, and the host metabolism is

similar to that in metabolic syndrome.1 Nevertheless, it is still un-

der debate whether and how pregnancy alters the gut micro-

biome trajectory.4,5

Gestational diabetes mellitus (GDM), defined as hyperglyce-

mia during pregnancy, is the leading complication during preg-
1192 Cell Host & Microbe 32, 1192–1206, July 10, 2024 ª 2024 The A
This is an open access article under the CC BY-NC-ND license
nancy worldwide.6 Notably, previous studies proved the causal

role of the gut microbiome in the pathogenesis of GDM through

human-to-mouse fecal transplant study,7 which indicated the

indispensable role of the gut microbiome in GDM early predic-

tion, diagnosis, and stratification.7,8 However, given the low res-

olution of the GDMgut microbiome’s dynamic change during the

whole pregnancy, it is necessary to uncover the roles of the

maternal gut microbiome in GDM from a prospective longitudinal

cohort.

GDM could increase the risk of long-term complications in

children, including cardiometabolic risk,9–11 metabolic syn-

drome,12,13 and neurodevelopmental disorder.14,15 In mouse

models, chemical-induced GDM could induce offspring behavior
uthors. Published by Elsevier Inc.
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Longitudinal metagenomic profiles

of 264 mother-baby dyads from the first

gestational periods of mothers to the first

year of life of infants in the MOMmy cohort

(A) Study design: 269 pregnant women recruited for

the study collected a stool sample and clinical and

obstetric history at each gestational period. After

delivery, 266 babies were followed up with serial

stool samples, extensive exposure metadata, and

growth measurement at each time point. See also

Table 1.

(B and C) Microbial alpha diversity: (A) richness and

(B) phylogenetic diversity at MG1 and MG2 were

lower in mothers diagnosed with GDM later. p values

were evaluated by the Wilcoxon test. Data are rep-

resented as median ± interquartile range (IQR). *

indicated p < 0.05, ** indicated p < 0.01, *** indicated

p < 0.001, **** indicated p < 0.0001. See also

Figures S1A–S1E.

(D) Maternal microbial beta diversity: species-level

PCoA analysis revealed a significantly different

profile between GDM and normal mothers after

adjusted age and BMI before pregnancy. See also

Figures S1F–S1H.

(E) Infant microbial beta diversity: species-level

PCoA analysis revealed that delivery mode affected

gut microbiome composition after considering the

GDM group and antibiotic use. CS, C-section.
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disorder, especially in males.16 Retrospective studies demon-

strated the correlation between early-life accelerated head

circumference growth and infants later diagnosed with autism

spectrum disorder (ASD).17–19 Specifically, one study showed

the abnormally accelerated head circumference during the first

year of life in male ASD infants but not in female ASD infants.17

Therefore, abnormal head growth in the first year of life may be

useful as a minimally invasive parameter for the early detection

of neurodevelopmental disorders.17

The gut microbiome of the mother and infant may impact in-

fant neurodevelopment20,21 via the gut-brain axis. GDM has

been reported to affect the meconium microbiome composi-
Cell Host &
tion,13,22–24 but whether it is affected via

vertical transmission,25–27 and how it is

confounded by clinical covariates, are

less explored. Moreover, whether GDM

impacts the developmental trajectory of

the infant microbiome during the critical

window of the first year of life,28 and sub-

sequently influences postnatal growth

health in a sex-dependent manner, re-

mains unknown.

To address these knowledge gaps, we

analyzed a large set of metagenomic data-

sets with detailed clinical metadata to eluci-

date the maternal microbiome trajectory

and assess the relationship between GDM

and the maternal gut microbiome. Further-

more, we evaluated the effect of GDM on

the offspring’s gut microbiome and growth

index during the first year of life and uncov-

ered the linkage between the microbiome
and the infant’s head circumference growth in a sex-dependent

manner.

RESULTS

Study population characteristics
TheMOMmy (mother-infantmicrobiota transmission and its link to

long-term health of baby) study is a prospective, longitudinal birth

cohort from Hong Kong, China. GDM was diagnosed in 90 of 981

women from the MOMmy cohort. In total, 535 participants,

comprising 269 pregnant women (90 with GDM, 179 normal)

and 266 babies (90 born tomotherswithGDM, 176 born to normal
Microbe 32, 1192–1206, July 10, 2024 1193



Table 1. Demographic and clinical characteristics of mothers and infants

Characteristic Normal mothera (N = 179) Mother with GDMa (N = 90) p valueb

Age at recruitment (year) 32.0 (29.0, 35.0) 34.0 (31.0, 37.0) <0.001

Region (Hong Kong) 176 (98%) 88 (98%) 0.500

Marital status (married) 162 (91%) 88 (98%) 0.048

Number of children in house (n = 0) 118 (66%) 49 (54%) 0.028

Education - - 0.100

High school or below 58 (32%) 31 (34%) -

Bachelor’s degree 110 (61%) 47 (52%) -

Master’s or above 11 (6.1%) 12 (13%) -

Working status - - 0.400

Full-time 138 (77%) 66 (73%) -

Housewife 31 (17%) 14 (16%) -

Part-time 6 (3.4%) 7 (7.8%) -

Others 4 (2.2%) 3 (3.3%) -

Baseline any disease 0 (0%) 17 (19%) -

Digest 0 (0%) 2 (2.2%) -

Immune 0 (0%) 2 (2.2%) -

Allergy 0 (0%) 1 (1.1%) -

Hypertension 0 (0%) 1 (1.1%) -

Hyperlipidemia 0 (0%) 1 (1.1%) -

Psychological disorders 0 (0%) 2 (2.2%) -

Pre-pregnancy overweight or obesity

(BMI > 23 kg/m2)

31 (19%) 36 (42%) <0.001

Other maternal complications - - -

Gestational hypertension 0 (0%) 5 (5.6%) -

Gestational sepsis 0 (0%) 1 (1.1%) -

Characteristic

Infants born to normal

mothersa (N = 176)

Infants born to mothers

with GDMa (N = 90) p valueb

Sex (male) 77 (43%) 54 (60%) 0.012

Gestational age (weeks) 39.14 (38.29, 40.00) 38.43 (38, 39.14) <0.001

Preterm birth 0 (0%) 8 (8.9%) -

Delivered by C-section 43 (24%) 33 (37%) 0.037

Intrapartum antibiotic prophylaxis use 91 (52%) 59 (66%) 0.031

Birth weight (g) 3,075 (2,825, 3,325) 3,162 (2,930, 3,408) 0.140

Neonatal complications 58 (33%) 49 (54%) <0.001

Hypoglycemia 5 (2.8%) 23 (26%) <0.001

Neonatal infection 11 (6.2%) 6 (6.7%) 0.900

Meconium aspiration syndrome 1 (0.6%) 0 (0%) >0.900

Jaundice 30 (17%) 21 (23%) 0.200

Neonatal respiratory distress syndrome 0 (0%) 2 (2.2%) 0.110

Other neonatal complications 28 (16%) 19 (21%) 0.300

Neonatal SBCU/NICU admission 56 (32%) 49 (54%) <0.001

Exclusive breastfeeding before discharge 89 (51%) 18 (20%) <0.001
aMedian (IQR); n (%).
bWilcoxon rank sum test; Fisher’s exact test; Pearson’s chi-squared test.SCBU/NICU, special care baby unit or neonatal intensive care unit.
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mothers) were included in this study (Figure 1A). We sequenced

1,566 stool samples from 264mother-baby pairs, with an average

sequence depth of 5.74 Gb per sample after removing the host

and contamination-matched reads (Table S1A).

The characteristics of study participants are shown in Table 1.

MotherswithGDMweremore likely tobeat amoreadvancedage
1194 Cell Host & Microbe 32, 1192–1206, July 10, 2024
at childbearing (p < 0.001) and overweight or obese (OWOB)

before pregnancy (p < 0.001). A higher proportion of males (p =

0.009), higher cesarean rates (p = 0.037), and intrapartum anti-

biotic prophylaxis (IAP) usage (p=0.031)wereobserved inbabies

born to GDMmothers. Also, babies born to GDMmothers had a

lower breastfeeding rate before hospital discharge.



Figure 2. Partial convergence of gut micro-

biome during pregnancy relates to adaption

to hormonal changes

(A) Differential species between MG2/MG3 and

MG1 in normal pregnant women. FDR < 0.25. Coef

value < 0 indicated the species enriched in MG1,

and coef value > 0 indicated the species enriched in

MG2/MG3. See also Figures S2C–S2E. Coef: the

model cofficient value (effect size).

(B) Microbial predicted gestational weeks versus

gestational age in normal pregnancy. R and p values

were calculated based on Spearman correlation

analysis. See also Figure S2F.

(C and D) The relative abundance of two gut hy-

droxysteroid dehydrogenase changes during three

gestational periods. The Friedman test was used to

calculate the overall p values and p values in each

group. Wilcoxon test was used for post hoc anal-

ysis. * indicated p < 0.05. Data are represented as

median ± IQR.
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Altered microbial diversity and composition in women
with GDM and their offspring
Compared with normal women, women with GDM had signifi-

cantly lower richness and phylogenetic diversity in their gut mi-

crobiota in mother gestational period (MG)1 and 2, but not 3

(Figures 1B and 1C). These differences were not confounded

by sequence depth (Table S1B). This result could be explained

by the increasing richness and phylogenetic diversity in the

GDM at MG3 but not in the normal group when compared with

MG2 or MG1 (Figures S1A and S1B).

Further, older agewas implicated with lower bacterial richness

and phylogenetic diversity after adjusting the pre-pregnancy

overweight in all 269 subjects or the 179 normal women alone

(Figure S1C). Mediation analysis confirmed that gut microbiome

richness at MG1 was involved in the association between

advanced age at childbearing and GDM development (Fig-

ure S1D). Further, a sensitivity analysis that excluded the sub-

jects with the lowest quartile age found that higher gut bacterial

richness and phylogenetic diversity play a protective role in GDM

development in mothers older than 30 (Figure S1E). Surprisingly,
Cell Host &
infants born to mothers with GDM demon-

strated higher richness and phylogenetic

diversity, with a difference in age from

baby month (BM)2 to BM12 (p < 0.05,

Figures 1B and 1C; Table S1C).

For bacterial composition, species-level

principal coordinate analysis (PCoA) re-

vealed an altered overall gut microbiota

configuration in GDM compared with

normal mothers, after adjusting age and

BMI before pregnancy and stratifying by

3 gestation periods (R = 0.006, p = 0.001,

Figure 1D), especially in MG2

(Figures S1F–S1H). There was no differ-

ence in beta diversity of gut microbiome

between infants born to GDM mothers

and control in the first year after adjusting

delivery mode and antibiotic use. Delivery

mode, one of the modifiers of the GDM in-
fant gut microbiome born via C-section, significantly affected the

infant’s gut microbiome during the first year of life (R = 0.006, p =

0.001, Figure 1E).

Partial convergence of gut microbiome during
pregnancy relates to adaption to hormonal changes
Possibly reflecting changes in hormones, the gutmicrobiomesim-

ilarity of MG3-MG2was higher than that ofMG3-MG1 in the same

subjects, and the MG2-MG2 or MG3-MG3 similarity was higher

than that of MG1-MG1 in two unrelated females (Figures S2A

andS2B,p<0.001), either in the normal pregnancyorGDMgroup.

Differential speciesweredetectedacross the threegestationpe-

riods in thenormalgroup (Figure2A).The relativeabundanceof two

butyrate producers (Flavonifractor plautii and Lawsonibacter sac-

charolytic),29 one bile-tolerant bacteria (Bilophila wadsworthia),30

and Clostridium citroniae were consistently increased during

MG2andMG3comparedwithMG1 (FiguresS2C–S2E). Inamicro-

bial gestational agemodel, the gestational age (weeks) of the sam-

ples collected positively correlated with the predicted microbial

gestational age (Figure 2B, R = 0.96, p < 0.001). Bilophila
Microbe 32, 1192–1206, July 10, 2024 1195



Figure 3. The impact of GDM on females’ gut

microbiome and its association with host

glucose status during pregnancy

(A) Longitudinal differential species between GDM

and normal pregnant women during the gestational

period. FDR < 0.25. See also Table S2A.

(B) The associations between GDM-related species

with OGTT at each gestational period. * represented

p < 0.05 based on Spearman correlation analysis.

The box color indicates the Rho value.

(C) Volcano plot of the longitudinal differential gut

metabolic modules (GMMs) of GDM and normal

pregnant women during pregnancy. FDR < 0.25.

See also Table S2B.

(D) Boxplot showed the AUC scores for GDM pre-

diction based on three vectors in the training set.

Data are represented as median ± IQR. p values

were evaluated by the Wilcoxon test.
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wadsworthia and Flavonifractor plautii were both included in the

top 20 important variables in this model (Figure S2F).

Pregnant women experience dramatic increases in estrogen

and progesterone, and hydroxysteroid dehydrogenase (HSD)

has been reported to be involved in hormone metabolism.2,31

Here, we found that the key enzyme involved in bile acid

metabolism, 7-alpha- HSD, was increased during either

normal or GDM pregnancy (Figure 2C), which was consistent

with the increase of bile-tolerant bacteria (Bilophila wadswor-

thi).30 Moreover, 3-oxo-5-alpha-steroid 4-dehydrogenase

(acceptor), which is able to convert progesterone into its

corresponding 5-alpha-3-oxosteroids, tended to increase in

MG2 compared with MG1 (Figure 2D). These results sug-

gested partial convergence of the gut microbiome during

late pregnancy, which may relate to adaption to hormonal

changes.

GDM dampens the maternal gut microbiome trajectory
We next compared the longitudinal differential species between

GDM and the normal group during pregnancy, and 21 species

were identified (Figures 3A and S3A; Table S2A, false discovery

rate [FDR] < 0.25). Sensitivity analysis using Analysis of Compo-

sitions of Microbiomes with Bias Correction (ANCOM-BC) was

further performed. The relative abundance of species depleted

in GDM, including Akkermansia muciniphila, Coprococcus eu-

tactus, and Enterorhabdus caecimuris at MG1, as well as Dialis-
1196 Cell Host & Microbe 32, 1192–1206, July 10, 2024
ter sp CAG 357 at MG3, negatively corre-

lated with the 2 h oral glucose tolerance

test (OGTT) levels (Figure 3B).

Furthermore, seven gut metabolic mod-

ules (GMMs) longitudinally increased and

three depleted in the guts of GDM subjects

(Figure 3C, FDR < 0.25). Notably, two en-

riched energymetabolismGMMs, including

MF0071 pentose phosphate pathway (non-

oxidative branch) andMF0065Bifidobacte-

rium shunt at MG1, were positively corre-

lated with 2 h OGTT (R = 0.313, R = 0.318,

respectively, FDR < 0.25, Table S2B),

perhaps due to excessive energy extraction
by the gut microbiome. Together, dysbiosis in the gut microbiome

correlates with glucose intolerance and affects maternal meta-

bolic health during pregnancy.

Furthermore, Figure 3D showed that a combined prediction

model based on all gut bacterial species and host risk factors

at MG1 could differentiate GDM onset in later pregnancy, with

an area under the receiver operating characteristic curve (AUC)

of 0.70. Specifically, females diagnosed with GDMwere charac-

terized by a lower relative abundance of two equol producers,

Adlercreutzia equolifacien and Asaccharobacter celatus, and a

higher relative abundance of the pathogen Parabacteroides dis-

tasonis (Figure S3B) at MG1. Briefly, a combination of GDM risk

factors and gut microbial factors could provide a higher early-

discrimination ability for GDM risk stratification.

GDM affected the taxonomy and network of the infant
gut microbiome and strain transmission
The gut microbiome of infants born to GDM mothers demon-

strated higher richness and phylogenetic diversity than its coun-

terparts from BM2 to 12, especially within the Firmicutes phylum

(Figure 4A; Table S1C). In the univariate analysis, three species

(Rothia mucilaginosa, Collinsella stercoris, and Collinsella massi-

liensis) were significantly decreased and one was enriched

(Enterococcus faecalis) in the GDM mother and baby gut micro-

biome with the same trend (Table S3A), which displayed that the

taxonomic differences between infants born to GDM mothers



Figure 4. GDM affected the taxonomy and

network of the infant gut microbiome

(A) The phylogenetic diversity of Firmicutes phylum

of the infant microbial community within samples

during the first year of life and compared between

babies born to GDM and normal mothers. Data are

represented as median ± IQR. See also Table S1C.

(B) Longitudinal differential taxa between infants

born to GDM and normal mothers during the first

year of life. The color indicated the phylum of

different bacterial features. FDR < 0.25. Coef: the

model coefficient value (effect size).

(C) GDM influences dynamic changes of the

genus-level microbial network in early life. Pair-

wise, Spearman’s rank correlations were applied at

each time point for two groups (R > 0.40, p < 0.05).

(D) The centralities (closeness) of nodes in the in-

fant microbial networks between the GDM and the

normal group. Each column represents a genus

that appeared in the corresponding microbial

network.

(E) The centralities (closeness) of four differential

genera within each microbial network.

(F) The number of unique and shared edges in the

infant microbial networks between GDM and

normal group.

(G) Proportion of four differential genera-related

edges within each microbial network.

(H) The sum relative abundance of the genus

negatively correlated with the Clostridium genus in

the infant’s gut at BM6 and BM12. Data are rep-

resented as median ± IQR.

* indicated p < 0.05, ** indicated p < 0.01, *** indi-

cated p < 0.001.
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and controls reflected differences in the maternal microbiome.

As mentioned previously, GDM infants were characterized by

higher C-section rates and less breastfeeding before discharge,

which were important factors associated with the infant gut mi-

crobiome.32 The impact of GDMon the offspring gut microbiome

was partially confounded by the delivery mode and feeding

modes (p < 0.05, Figures S4A and S4B). After adjusting for po-

tential confounders, GDMwas still deeply fingerprinted on the in-

fant’s gut microbiome at BM2 and 12 but was not at other time

points especially enriched two potential pathogenic bacteria,

including Streptococcus pneumonoiae and Klebsiella quasip-

neumoniae at BM12 (FDR < 0.25, Figure S4C). Similarly, in the

longitudinal analysis, 15 infant bacteria features were associated

with GDM (FDR < 0.25), especially the enriched Clostridium and

Lactobacillus genus from Firmicutes phylum in the gut of infants

born to GDM mothers (Figure 4B; Table S3B).
Cell Host &
To reveal the microbial co-occurrence

network of GDM and control infants, we

assessed bacterial genus ecological inter-

actions (Figure 4C). First, the closeness

centrality of genera was distinct between

the two groups (Figure 4D). Three en-

riched genera (Clostridium, Gemella, and

Lactobacillus) in the GDM infants’ gut

community had higher closeness

centrality in the microbial network of
the GDM infants’ gut, which indicates the importance of

these taxa. The GDM-depleted genus (Rothia) had higher

closeness centrality in the microbial network of normal infants,

especially meconium and BM1 (Figure 4E; Table S3C). Second,

hundreds of edges were specific to normal or GDM infants, with

few overlaps (Figure 4F). Further, the interactions between four

differential genera (between GDM and normal infants) and other

genera were checked. More GDM infant differential genera-

related edges could be detected in GDM infant gut compared

with the control, especially three enriched genera (Figure 4G;

Table S3D). Of note, Gemella and Clostridium positively corre-

lated with each other in the meconium of the GDM infants’

network (Table S3D). Also, Clostridium positively correlated

with Klebsiella in the meconium of infants born to normal

mothers. In addition,Clostridium negatively correlated with three

genera (including Bifidobacterium, Bacteroides, and Collinsella
Microbe 32, 1192–1206, July 10, 2024 1197



Figure 5. Gut microbiome associated with the impact of GDM on the infant growth index during the first year of life

(A) Impact of GDM on infant growth indexes during the first year of life. See also Figures S6A–S6D and Table S5A.

(B) Impact of GDM on infant zhc indexes during the first year of life after sub-grouping sex of the baby. Statistical significance was assessed usingWilcoxon rank-

sum tests at each time point. Data are represented as median ± IQR.

(legend continued on next page)
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at BM1 or BM2) (Table S3D), and the sum abundance of these

three potentially beneficial genera was significantly lower in the

GDM group at BM6 and BM12 (Figure 4H). The above ecological

network results indicated that GDM not only affects taxa in the

infant gut microbiome but also impacts gut microbial interaction.

Considering that the maternal gut microbiome is the major

source of the infant’s gut microbiome, we analyzed strain-level

transmission between MG3 and infants. C-section and IAP us-

age could significantly disturb the mother-baby strain transmis-

sion rate (Figures S5A and S5B), especially within the Actinobac-

teria and Bacteroidetes phyla (Figures S5C and S5D; Table S4A).

Although the GDM group was characterized by a higher

C-section rate and IAP usage, GDM did not affect the strain

transmission rate (Figure S4D). Only the number of transmission

strains within the Firmicutes at month 6 was marginally higher in

GDM mother-baby pairs than normal pairs (p = 0.050, FDR =

0.259) (Table S4A). Importantly, GDM infants tended to have

higher transmissibility of a potential pathogen, Klebsiella quasip-

neumoniae, at BM6 (p = 0.067, FDR = 0.259, Table S4B). As

shown in Figure S5E, 6 out of 7 of the transmitted species de-

tected only in the GDM group were from the Firmicutes phylum,

including potential pathogens Clostridium sp CAG 242 and

Enterococcus gallinarum. Furthermore, the transmission of Fu-

sobacterium mortiferum, which had a higher abundance in

mothers with GDM during gestation, was only detected in

GDMmother-baby pairs. To sum up, marginal evidence was de-

tected about the effects of GDMon gutmicrobiome transmission

between mother-baby pairs in our cohort.

We additionally evaluated carbohydrate-active enzymes in in-

fants’ gut microbiomes, potentially reflecting the utilization of

carbohydrates within breast milk. One human milk oligosaccha-

ride, (HMOs)-relevant glycoside hydrolases (GHs) 2,28 was

depleted in the gut microbiome of infants born to GDM mothers

compared with the control at BM2 (Figure S5F, FDR < 0.25),

which might reflect lower HMO levels in the breastmilk of GDM

mothers and is consistent with one recent study.33

Gut microbiome associated with the impact of GDM on
infants’ growth index during the first year of life
The early-life gut microbiome could affect the child’s growth and

development and, thus, we were interested in differential bacte-

rial species that lead to different growth in GDM infants. Here,

GDM-exposed infants were characterized by larger head-

circumference-for-age Z score (zhc), BMI Z score (zbmi), and

weight-for-length Z score (zwfl) than control at BM12 (Figure 5A).

The head circumference growth rate (calculated between BM1

and BM12) was significantly higher in infants born to GDM

mothers (Figures S6A–S6D, p < 0.05), suggesting that GDM in-

fants had accelerated head growth within the first year of life.

In the univariable analysis, only GDM and maternal OWOB

before pregnancy were related to BM12 growth outcomes

(p < 0.05) (Table S5A); in particular, infants born to mothers

with OWOB and GDM have higher zwfl, zbmi, and zhc.
(C and D) Longitudinal differential taxa (C) and functional pathways (D) between

grouping sex of the baby. FDR < 0.25. Coef > 0 indicated the enriched taxa or p

(E) The correlation between differential bacterial features in GDM infants and grow

p < 0.05, and dot represented p < 0.1 based on Spearman correlation analysis.
After sub-grouping according to baby’s sex, only GDM-

exposed male infants were characterized with larger zhc than

control at BM12 (Figure 5B), implying a sex-dependent effect.

Likewise, GDMhad a distinct longitudinal impact on themale off-

spring’s gut microbiome (Figure 5C; Table S3B) and pathway

(Figure 5D). Males born to GDM mothers were characterized

by increased Clostridium paraputrificum (Firmicutes phylum),

whereas females born to GDM mothers were characterized by

enriched Actinomyces sp S6 Spd3 from the Actinobacteria (Fig-

ure 5C). Such a sexual dimorphism of the gut microbiome was

validated in two cohorts from America34 and Europe.35 GDM

had a distinct fingerprint in the male offspring’s gut microbiome

after adjusting for potential confounders (Figure S6E). Specif-

ically, we found that male infants born to GDM mothers were

characterized by depletedBifidobacterium bifidum and enriched

species from the Firmicutes and Proteobacteria phyla. Further,

the beta diversity between theMOMmy cohort and the validation

cohorts showed that gut microbiome composition was different

even in the healthy group (Figure S6F), which indicated that

different markers might be due to cohort differences.

To better understand whether the gut microbiota affects the

association between GDM and child growth, we analyzed the

relationship between differential bacterial features in GDM in-

fants and growth Z scores at BM12, either in all infants or sub-

groups of the babies. The Micrococcaceae order depleted in

GDM male infants was negatively correlated with the zhc at

BM12. Remarkably, the relative abundance of Clostridium sp

CAG 242, one bacterial species whose strain transmission was

detected only in the GDM group, was positively correlated with

the zhc of male infants at BM12 but not females. A similar trend

was found in the richness of Chao 1 of Firmicutes in the infant’s

gut at BM2. Moreover, Clostridium paraputrificum at BM12 was

significantly positively associated with three higher infant growth

indexes at BM12 in all infants and only-male infants datasets

(Figure 5E) but not the female infant population. Further, 23

metagenome-assembled genomes (MAGs) of Clostridium para-

putrificumwere recovered via assembly and binning. Consistent

with the Metaphla3-based abundance result, GDM infants had a

higher recovered rate of Clostridium paraputrificum MAGs than

did control infants (GDM:14/90, control: 9/167, OR = 3.40,

p < 0.01, Fisher test). Male GDM infants had higher Clostridium

paraputrificum MAG recovered rates than control male infants

(GDM male: 9/54, control male: 4/77, OR = 3.613, p = 0.039,

Fisher test), but this was not significant in GDM infant females

(GDM female: 5/36, control female: 5/99, OR = 3.003, p =

0.1304, Fisher test). We checked the KEGGOrthology (KO) over-

lap between the MAGs recovered from four groups of infants

(Figure S6G). A total of 1,328 KOs were shared among four

groups of infants (Table S5B). Among them, six resistant genes

(K15973, MarR family transcriptional regulator, 2-MHQ, and

catechol-resistance regulon repressor; K18218, tetracycline

resistance efflux pump; K18220, ribosomal protection tetracy-

cline resistance protein; K18346, vancomycin resistance protein
infants born to GDM and normal mothers during the first year of life after sub-

athways in GDM infants. Coef: the model coefficient value (effect size).

th Z scores at BM12 in all infants, only male, or only female infants. *represented

FDR < 0.25. The color indicates the correlation Rho value.
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Figure 6. Associations of gut microbiota neuroactive potential with head growth of GDM offspring in a sex-dependent manner

(A) Volcano plot of the longitudinal differential KO involving gut-brain modules (GBMs) in GDM and normal mothers during pregnancy or infants during the first

year of life separately. FDR < 0.25.

(B) Longitudinal differential GBMs in GDM and normal mothers during pregnancy or infants during the first year of life separately. FDR < 0.25. Coef: the model

coefficient value (effect size).

(legend continued on next page)
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VanW; K21744, MerR family transcriptional regulator, thiopep-

tide resistance regulator; and K23775, MarR family transcrip-

tional regulator, organic hydroperoxide resistance regulator)

were identified, which reflected the pathogenic features of this

species. A total of 59 KOs were only detected in MAGs of

GDM males. Notably, K00382 (dihydrolipoyl dehydrogenase

[EC:1.8.1.4]) is involved in the isovaleric acid synthesis I (KADH

pathway), one of the gut-brain modules (GBMs).

Additionally, four differential KOs were shared between

GDM mother-baby pairs, including 2 protein families: genetic

information processing KOs (K02518 and K21907) enriched

GDM mothers and infants compared with their counterparts

(Table S6). Interestingly, the abundance of K21907 at meco-

nium was positively correlated with zhc at month 12 in male

infants but not females (Figure S6H). To sum up, GDM im-

pacts infant head growth in a sex-dependent manner, which

is associated with the gut microbiome.

Associations of gut microbiota neuroactive potential
with head growth of GDM offspring in a sex-dependent
manner
Further, the GBMs framework36 was applied to determine

whether neuroactive compound metabolism36 is associated

with head development in a sex-dependent manner. Of note,

several differential KOs (10 depleted and two enriched) (Fig-

ure 6A, FDR < 0.25) and GBMs (four depleted and two enriched)

(Figure 6B, FDR < 0.25) were detected in GDMmothers carrying

male fetuses compared with their normal counterparts, after ad-

justing for potential confounders (Table S7). Specifically,

MGB043 (acetate synthesis I), MGB047 (acetate degradation),

and MGB007 (glutamate synthesis II) were depleted in the

GDMmothers with male infants (Figure 6B). Consistently, the to-

tal relative abundance of species that contributed to MGB047

(acetate degradation) was lower in GDM mothers with male fe-

tuses and, ranked 2nd, Eubacterium siraeumwas also a depleted

species in GDM mothers (Figures 6C and 6D). Only 1 KO

(K00137) involved in GABA synthesis II was enriched in the gut

microbiome of GDMmothers carrying female fetuses compared

with their normal counterparts (Figure 6A, FDR < 0.25). Briefly,

these results indicated that male fetuses of GDMmothers expe-

rienced distinct prenatal gut-brain axes.

In the gut microbiome of GDM male infants, K01658 related to

tryptophan synthesis was depleted, and its abundance in the

meconium sample negatively correlated with zhc at BM12 only in

male offspring but not females (Figure 6E). In contrast, K10806

involved in isovaleric acid synthesis I (KADH pathway) was en-

riched inGDMmaleoffspring incomparisonwith their correspond-

ing control infants (Figure 6A), and its abundance in themeconium

samplepositively correlatedwith zhc atmonth 12 inmale offspring

but not female (Figure 6E). In female infants, the richness of GBMs

washigher inGDMthan incontrol atBM6andBM12 (Figure6F).Of
(C) Bacterial species contributing to MGB047 in the maternal gut, using species-

species collapsed into a single group.

(D) The sum abundance of species contributing to MGB047 in the maternal gut a

(E) The correlation between differential GBM features in the GDM group and infa

p < 0.05 based on Spearman correlation analysis. The box color indicates the R

(F) The richness of GBMs in infant gut microbiome after sub-group sex of the ba

< 0.01.
note, histamine degradation, dopamine degradation, and K00276

(primary-amine oxidase, a key enzyme involved in histamine

degradation and dopamine degradation) increased in the gut mi-

crobiome of female infants born to GDM mothers compared with

the female control group (Figures 6A, 6B, and S7A), and was

also enriched in the infants born toGDMmothers when compared

with healthy ones in the validation cohorts (Figures S7B and S7C).

This might indicate increased availability of the corresponding

neuroactive molecules in the gut. Also, GDM female offspring

showed a significant positive association with KOs in GBMs,

such as K09471 (gamma-glutamyl putrescine oxidase), which is

a key component in GABA synthesis I. Interestingly, gut abun-

dance of these two GBMs and their related K00276 at BM2 or

BM1 in male infants was negatively correlated with zhc at BM12

(Figure 6E) separately. Briefly, female offspring of GDM mothers

have a distinguishable gut microbiomewith neuroactive potential.

Taken together, these results indicated that GDM affects their off-

spring’s gut microbiome with neuroactive potential.

DISCUSSION

In this study, we investigated the gut microbiome profiles of

mothers during pregnancy and infants during the first year of

life from a large-scale longitudinal cohort of 264 mother-baby

dyads with 1,566 total metagenomic sequence stool data in

Hong Kong. We identified several maternal bacteria features

associated with GDM status and glycemia levels during whole

gestational periods. To our knowledge, this is a pioneer study

in identifying that GDM is deeply fingerprinted on the gut micro-

biomes of male offspring up to 12 months of age. GDM affects

the offspring’s head circumference growth in a sex-dependent

manner, which, in the prenatal and infancy gut microbiome, is

implicated with neuroactive potential.

Here, GDMaffected the offspring’s microbiome during the first

year of life, after adjusting for potential confounders. The micro-

biome changes were reflected by enrichment inClostridium from

Firmicutes phylum and the potential pathogen Klebsiella quasip-

neumoniae from Proteobacteria. It is potentially possible that

GDM increased the likelihood of C-section birth and IAP usage,

which disrupted the transmission strain within the Actinobacteria

and Bacteroides phylum and thus left a niche25–27 for the non-

common transmitted strain belonging to Firmicutes37 in GDM

mother-baby pairs. However, only marginal evidence was de-

tected about the effects of GDMon gutmicrobiome transmission

between mother-baby pairs in our cohort, which may be due to

the strain detection requiring sufficient marker genes for each

species in each metagenomic sample and thus losing part of

the samples involved in the phylogenetic tree construction for

transmission analysis.

It is essential to understand the impact of GDM on infant

growth. Here, the richness of Chao 1 of Firmicutes in the infant’s
stratified data. The top contributing species were shown separately, and other

fter sub-group sex of the baby.

nt zhc at BM12 in all infants, only male, or only female infants. * represented

ho value. FDR < 0.25.

by. Data are represented as median ± IQR. * indicated p < 0.05, ** indicated p
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gut at BM2 positively correlated with zbmi and zwfl at BM12,

which also accords with an earlier observation in which gut mi-

crobiome and delivery mode mediated intergenerational over-

weight and obesity from mother to offspring.38 Besides the

obesity risk, GDM-exposed male infants tended to have larger

zhc than control at BM12. Head circumference is the earliest vali-

dated marker for neurodevelopment,21 and abnormal acceler-

ated growth of it has been linked with ASD.17–19 Furthermore,

neurodevelopment was significantly delayed up to 4 years of

age among boys born to GDMmothers in the Japanese epidemi-

ology cohort,39 but whether the gut microbiome modulates brain

development of GDM infants is poorly understood.

Thematernal prenatal gut microbiomewas relevant to the chil-

dren’s neurodevelopment in the first year of life.40 For example,

acetate synthesis or degradation was depleted in the GDM

mothers with males. Maternal and placental metabolome could

be affected by maternal gut microbiota (i.e., acetate),41 and ac-

etate can cross the blood-brain barrier and play a role in the

GABA metabolic and neuronal-glial cycle of glutamate-gluta-

minemetabolic coupling in the hypothalamus.42 In addition, tryp-

tophan plays a significant role in regulating the growth and devel-

opment of the fetus. Here, the enriched tryptophan synthesis in

the gut of GDMmothers with male fetuses may be a compensa-

tory result to maintain normoglycemia43 because the metabo-

lites of L-tryptophan could increase beta-cell function during in-

sulin-resistant status.44 To sum up, male infants born to mothers

with GDM may have distinct neurodevelopment due to their

exposure to the disordered prenatal gut microbiome with neuro-

active potential.

It is well-recognized that a mother’s physiology can impact

fetal metabolism. However, increasing studies have shown that

the fetus can influence maternal physiology in several potential

perspectives. First, women carrying a male fetus have a higher

likelihood of developing GDM,45 and one possible mechanism

is that the male fetus may impact the placentally derived hor-

mones or proteins involved in b-cell compensation45 and insulin

resistance.46 Additionally, pregnancy-related hormonal changes

could modulate gut microbiota.2 Thus, variations in hormone

levels between pregnancies with male and female fetuses may

contribute to differences in the maternal gut microbiome’s func-

tional potential. Second, a possible contributory factor involves

the Y chromosome carried by the male fetus; thus, maternal im-

mune response are divergent based on fetal sex. Specifically,

women carrying a male fetus were characterized by increases

in levels of proinflammatory cytokines and proangiogenic growth

factors, while women carrying a female fetus were characterized

by increases in the expression of regulatory cytokines.47 The

low-grade inflammation at intestinal mucosal surfaces of preg-

nant women could lead to changes in the gut microbiome.1

Our study builds upon previous observations by demonstrating,

in a more specific manner, that gut microbiome GBMs varied

among GDM mothers with male fetuses compared with their

control counterparts. However, further research is needed to

better understand the changingmaternal gut microbiome in rela-

tion to fetal sex.

Sex-specific microbiome fingerprints are also reflected in

growth variation.Clostridia species have been linked with autism

via the production of clostridial toxins, whichmay have patholog-

ical effects on the central nervous system.48 Six resistant genes
1202 Cell Host & Microbe 32, 1192–1206, July 10, 2024
could be commonly detected in the MAGs of Clostridium para-

putrificum. The gutmicrobiota of children with ASDwas reported

by an increase in antibiotic resistance genes in the resistome,

which could serve as possible predictors of ASD.49 K00382 is

involved in isovaleric acid synthesis I (KADH pathway), and

higher fecal levels of isovaleric acids have been detected in chil-

dren with ASD.50 Further, the microbial network showed that the

Clostridium genus negatively correlated with potentially benefi-

cial genera (including Bacteroides). Bacteroides have been

linked with enhanced neurodevelopment,21 which further re-

flects the harmful effect of the enriched Clostridium genus.

Lastly, one enzyme, K21907, enriched in GDM mother-baby

pairs and positively correlated with the zhc of males, was mainly

encoded by potential pathogens, including Escherichia coli and

Klebsiella pneumoniae, which may be because the glutamate-

dependent acid resistance system helps the pathogens over-

come the extreme gastric acidic condition.

The impact of GDM on offspring neurodevelopmental sex dif-

ferences should be considered not only for brain damage but

also for brain protection.39 Dopamine and histamine are essen-

tial neurotransmitters. Gut microbiota contains intrinsic enzy-

matic activity highly involved in dopamine metabolism, facili-

tating dopamine synthesis and its metabolite breakdown.51

Dysfunction of dopaminergic signaling may lead to a series of

developmental disorders.52 These GBMs might protect females

born to GDMmothers from abnormal zhc at BM12. Further work

is warranted to follow up on the cognitive and brain development

of children born toGDMmothers and validatewhether themicro-

biome mediates it in sexual dimorphism.

Hosts remodel the gut microbiome during pregnancy,1,2,4 and

we found a converged trend in the gut microbiome during late

pregnancy related to bile acid and hormone-related enzymes.

Recently, another paper also indicated dramatically increased

steroids and steroid derivatives (such as gonadal hormone me-

tabolites and intermediates of primary bile acid biosynthesis) at

delivery.30 Further studies are warranted to quantify gut metab-

olite changes during pregnancy and investigate their relationship

to gut microbiota.

Several studies7,8,53 using the gut microbiome before diag-

nosis predicted GDM development. Likewise, we built a predic-

tion model suggesting that the gut microbiome was a useful tool

for early GDM risk stratification. Interestingly, two equol (nonste-

roidal estrogen) producers, Adlercreutzia equolifacien54 and

Asaccharobacter celatus, were depleted in the GDM subjects.

S-equol has been reported as a potential anti-diabetic agent,55

which could promote glucose-induced insulin secretion from

pancreatic b cells and have a protective effect on streptozoto-

cin-induced hyperglycemia by increasing b cell function in

male mice.56 Therefore, the depletion of two equol producers

in the gut of GDM women may partially account for insulin defi-

ciency and further result in hyperglycemia, which may have the

potential to alleviate GDM.

There are several strengths in our study. First, we screened

healthy, normal pregnant females as a GDM control to rule out

the influence of other baseline diseases or pregnancy complica-

tions on the gutmicrobiome. Second, longitudinal maternal sam-

ples beginning in early pregnancy allowed us to assess maternal

microbiota dynamics leading up to and following birth, providing

strain resolution to detect gut microbiome transmission between
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mother-baby pairs. Third, we systematically investigate the gut

microbiome of GDM-exposed children during the first year of

life and further link it with the growth of children. Our study’s lim-

itations include the limited GDM case sample size at MG1, which

was not big enough for us to build a prediction model with higher

accuracy. In addition, further animal experimental studies are

necessary to establish causality and other mechanisms. Further

study is needed using multiple omics data (placenta for the

epigenetic sequence57 together with metagenomic dataset) to

see whether GDM affects infant development and whether there

are secondary links with gutmicrobiome colonization. Moreover,

MAG reconstruction is complex and challenging via short-read

sequencing technologies.58,59 Genome assemblies from short-

read sequences are highly fragmented,60,61 especially from

diverse communities, which makes it difficult to recover high-

quality MAGs for all species from metagenomic data. Further

studies utilizing long-read sequencing technologies may

improve binning and enable the acquisition of whole-genome

sequencing.62

Conclusions
In conclusion, our study characterized the gut microbiome dys-

biosis of GDM mothers from MG1, before GDM was diagnosed,

compared with the normal group. Further, we confirmed deep

GDM fingerprints on the infant’s gut microbiome till BM12, which

is potentially associated with the head growth of children in a

sex-dependent manner, indicating the importance of the prena-

tal and early-life gut microbiome on long-term child health.

Future research is necessary to understand the long-term

consequence of over-growth in these infants andwhethermicro-

biotal modulation serves as a potential approach to mitigate and

prevent these risks.
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Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Lin Zhang (linzhang@

cuhk.edu.hk).

Materials availability
This study did not generate new reagents.

Data and code availability
Quality-controlled and human DNA-removed sequence data have been deposited into the NCBI Sequence Read Archive database

under BioProjects (PRJNA1049511). This paper does not generate new code. Additional data in this study are available from the lead

contact upon reasonable request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Experimental Design and Cohort Recruitment
Pregnant women and infants (both GDM group and normal control) were selected from the MOMmy (The MOther-infant Microbiota

transmission and its link to long terM health of babY) cohort (NCT04117321). The MOMmy cohort study was approved by the Joint

Chinese University of Hong Kong – New Territories East Cluster Clinical Research Ethics Committee (the Joint CUHK-NTEC CREC

2019.243). Pregnant women presenting to the antenatal clinics of the Prince ofWales Hospital at theChinese University of HongKong

for prenatal care were invited to participate in this study. The cohort of women in the present analysis was enrolled between

September 2019 and July 2021. A group of healthy normal pregnancy females was screened out by excluding pregnant women

with any baseline disease, any pregnancy complications (GDM, gestational hypertension, acute infection, general anesthesia sur-

gery, and gestational sepsis, etc.), and who deliver preterm babies in MOMmy cohort.

GDM was diagnosed at gestation period 2 (24-28 weeks of gestation) when the woman’s fasting plasma glucose (PG) was

5.1-6.9 mmol/l or 2-hour PG after a 75-gram glucose load at OGTT: 8.5-11.0 mmol/l. This is modified from the WHO criteria without

the 1-hour PG being adopted by the Hospital Authority (HA) of Hong Kong. The OGTT information was retrospectively retrieved from

the HA computerized record. Women who have been diagnosed with type 1 or type 2 diabetes mellitus prior to pregnancy were

excluded from this study.

METHOD DETAILS

Clinical information
Measured height (in cm) and self-reported pre-pregnancy weight (in kg) were collected at recruitment by questionnaires and used to

compute the pre-pregnancy BMI (weight [kg]/height [m2]). Variables that are fixed through time (for example, mothers’ height,

mothers’ pre-pregnancy weight, total gestational age, birth mode, and baby sex) are described on the basis of a subject and are

thus constant for all samples from a given mother-infant pair. Other variables were categorized to reflect exposure in relation to

time (for example, antibiotics use, feeding mode, and disease status) and therefore are on a per-sample basis. The growth indexes

(head circumference, weight, and length) of infants were measured at each follow-up time point.

Sample collection
The parents collected their stool samples at home or in the delivery hospital. The nurse collected themeconium sample in the delivery

hospital, and themothers collected the other infant stool samples at home. The samples collected at homewere stored in the house-

hold’s freezer (4�C). The sampleswere then shipped on dry ice to theMOMmybiobank, where the samples were aliquoted and stored

at -80�C until shipping to the lab for further processing. Stool nucleic acid preservatives (Norgen, Cat#28330) were used in this study

to minimize the potential effect of sample storage on the microbiota composition.81

Gestational weeks of sample collection were calculated with the following formula: 280 days (40 weeks) - (Expected date of

delivery - Date of sample collection). We collected three stool samples from each participant during their pregnancy, first at early

gestation, at the time of booking antenatal visit (12.5 ± 0.097 weeks, mean ± SE), second at middle gestation (25.3 ± 0.19 weeks),

and third at late gestation (34.8 ± 0.079 weeks). If the collection dates of two random samples differ by less than three weeks, we

would only keep the one with the most distant time between it and the remaining sample (kept 2 out of 3 instead of all) for the

categorical analyses.82 We used the formula above to identify the time point of sample collection for subjects with missing sam-

ples. All available stool samples were included in continuous gestational weeks analysis. Finally, a total of 646 maternal stool

samples were collected at three gestation periods (mother gestational period 1, MG1; mother gestational period 2, MG2; mother

gestational period 3, MG3), and 920 infants’ stool samples were collected from birth till one-year-old (Day 0, meconium; month1,

BM1; month2, BM2 month 6, BM6; month 12, BM12). We performed shotgun metagenomic sequencing for the fecal bacte-

ria profile.
e2 Cell Host & Microbe 32, 1192–1206.e1–e5, July 10, 2024
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DNA Extraction and Sequencing
DNA Extraction

Stool samples stored in a preservative were weighted 0.28-0.32 g per tube for further DNA extraction. DNA extractions of stool sam-

ples were carried out using the protocol of Qiagen DNeasy PowerSoil Pro Kit (Qiagen, Cat#47016, 250 reactions). Briefly, the power

beads were transferred to a 2mL tube containing a stool sample, and lysis buffer was added. The tube was placed into TissueLyser II

(Qiagen, Cat#85300) for homogenization. CD2 solution was added to remove the PCR inhibitor and then centrifuged. The superna-

tant was transferred to another tube, added solution CD3, and loaded to the MB spin column to bind DNA in the filter membrane.

Other reagents were washed with solution EA and C5. Finally, DNA was eluted into another 2 mL tube. In parallel, positive control

(a microbial community standard (ZYMO, Cat#D6300)) and negative controls (UltraPureTM distilled water (Invitrogen, Cat# 10-

977-015)) were included for each kit as well as each extraction batch. DNA quality will be checked using gel electrophoresis to deter-

mine DNA shearing and using Nanodrop OneC Spectrophotometer to determine DNA quality. Qualified DNA samples were stored at

-80�C for further library construction.

Metagenome Library Construction

Metagenomic DNA concentrations were measured using Qubit (ThermoFisher) with the Qubit dsDNA HS Assay Kit (ThermoFisher).

Illumina sequencing libraries were prepared from 100-250 pg DNA using the Nextera XT DNA Library Preparation kit (Illumina) ac-

cording to the manufacturer’s recommended protocol, with reaction volumes scaled accordingly. Insert sizes and concentrations

for each pooled library were determined using an Agilent Bioanalyzer DNA 1000 kit (Agilent Technologies). WGS libraries were

sequenced on the Illumina Novaseq 6000 platform with 150 bp paired-end reads.

Metagenome Quality Control and Pre-processing

Reads were quality controlled by trimming low-quality bases and removing reads shorter than 60 nucleotides. We identified and

filtered out potential human contamination using the Trimmomatic (v0.39)63 and Kneaddata (v0.10.0) with the hg38 human reference

genome. We got an average of 6.575 Gb of sequence per sample after removing contaminating reads.

Species-Level Profiling and Functional Profiling

Quality-controlled samples were profiled taxonomically using MetaPhlAn3 (v3.0.13)65 following Bowtie2 (v2.4.2)64 alignment to the

MetaPhlAn3 unique marker database. To annotate the function of gut microbiome genes, we applied Humann (3.0.0) to all metage-

nomic samples after filtering out reads mapping to human reference. All bacteria abundance analyses are based on MetaPhlAn3 re-

sults except for transmission analysis with clarity as below. To further identify gut microbiome Carbohydrate-Active enzymes (CAZy),

a file linking CAZy to human UniRef90 results was retrieved from a previous publication (1) (filename ‘‘map_cazy_unir-

ef90.txt.gz’’).65,83,84 Analysis of Gut-Brain Modules (GBMs)36 and Gut-Metabolic Modules (GMMs)85 were performed as previously

described. Briefly, the UniRef gene families that were detected by HUMAnN365 were mapped to KEGG Orthogroups (KOs) using the

humann_regroup_table function, and the abundances of KOswere normalized using the humann_renorm_table function. Further, the

KOs were stratified using the humann_split_stratified_table function. Next, these KOs were further mapped to GBMs and GMMs and

calculated using the Gomixer tool.86

GDM prediction model at MG1

The early gut microbiome prediction model for later GDM onset was established with the random forest. Considering there are well-

known GDM risk factors, we constructed three data frames: 1. Only include demographic risk factors (age, pre-pregnancy BMI

group, sex of baby, number of children in the house, marital status, education, work status, race, smoke, husband smoke, alcohol

intake, diet, dining out frequency daily, stool bristol score); 2. Only included gut bacteria species atMG1 before GDMwas diagnosed;

3. Combined demographic factors and gut bacteria species. Each data frame was separated into a 70% testing set and a 30%

training set. And performed 5 times cross-validation and repeated 10 times in the random forest model. Area Under the Receiver

Operating Characteristic curve (AUC) was calculated to check the performance of each model in distinguishing between GDM

and normal pregnancy atMG1. The top 20 important variables were defined based on the beta-IncNodepurity from the random forest

model (v.4.7-1.1).74

Calculation of gut microbiota gestational age

The relative abundance of all species in training samples (a subgroup of 179 normal pregnant women, total of 422 samples during

pregnancy) was fit against its corresponding gestational weeks using the randomForest package (v 4.7–1.1) in R to build up a gut

microbiota gestational age model, as was reported previously.28,87

Analysis of transmission of the maternal gut microbiome

Strain characterization was performed using StrainPhlan (v.3.0.13)65 based on pre-processed metagenomic to further characterize

the single-nucleotide-variant (SNVs). In detail, StrainPhlAn was runwith the default parameters to extract the consensusmarker gene

for species that could profile in stain level and generate alignments for each sample. Next, a phylogenetic tree was constructed with

RaxML for a specific species. The genetic distance was received with ggtree (v.3.2.1)75 in R, and this distance difference between

paired samples was normalized by dividing the median value of the corresponding tree of each species. transmission between

mother-baby pairs was defined if the normalized genetic distance was below the threshold of 0.1, as used by others.27,32,88 Specif-

ically, a normalized genetic distance smaller than 0.1 represented identical strains (possible transmitted strains), while the others

(value larger than 0.1) represented distinct strains.

Strain transmission rates were calculated as the number of strains transmission between two samples divided by the number of

shared species profiled by StrainPhlAn (number of transmission strains/number of shared species). The same calculationwas used to

assess same-individual strain retention between two time points in longitudinal datasets. Strain acquisition rates by the offspring
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were defined as the proportion of strains profiled in the offspring transmitted frommothers, thus putatively originating from her. Spe-

cies transmissibility was defined as the number of strain transmission events detected for a species divided by the total potential

number of strain transmission events based on the presence of a strain-level profile by StrainPhlAn3.89 We mainly assessed strain

transmission across the following modes: related mother-infant (defined between mothers and their offspring). Unless specified, the

transmission betweenmother-infant pairs was evaluated usingmothers’ stool samples during late pregnancy, which was the closest

to delivery time.

Validation cohort

We used themetaphlan3 profile result of the curatedMetagenomicData R package90 and filtered out two cohorts with healthy infants’

andGDM infants’ gutmetagenomic sequence data. Considering the limited available GDM infant gutmetagenomic sequencing sam-

ple size, we combined the two validation cohorts to check the GDM fingerprint on the gut microbiome in different sexes of babies.

Finally, a total of 591 stool samples (550 samples of healthy control infants and 41 samples of infants born to GDM) collected from the

first year of life were used for validation.We extracted the gene family profile to validate the findings of gut-brainmodules (GBMs). The

gene families were regrouped to KEGG Orthology (KO), used for the calculation of gut-brain modules (GBMs).

Metagenome-assembled genomes (MAGs) of Clostridium paraputrificum
We performed de novo assembly and identified the Clostridium species for downstream analysis. Metapi (v3.0.0) was applied.66

Briefly, the high-quality reads were assembled usingMEGAHIT (v1.2.9)67 with the parameter ‘‘–min-contig 100’’. To facilitate genome

recovery, reads of samples from the same infants collected at multiple time points during the first year of life were co-assembled.

Reads were mapped back to the resulting contigs using minimap (v2.24-r1122)68 with default parameters. Binning of contigs into

metagenome-assembled genomes (MAGs) was done using two automatic binning programs: MetaBAT2 (v2.15)69 and VAMB

(v3.0.9)70 with parameter ‘‘-m 2000 –minfasta 200000’’ based on the coverage matrix with a multi-split binning strategy implemented

in VAMB. High- (completeness > 90% and contamination < 5%) or medium-quality (completeness > 50% and contamination < 10%)

prokaryotic MAGs (pMAGs) were identified by CheckM (v1.2.2),71 consistent with Minimum Information about a Metagenome-

Assembled Genome (MIMAG) standard.91 The taxonomic assignment of these representative bacterial species-level MAGswas per-

formed byGTDBTk (v2.3.2)72 based on theGTDB database (release214).92MAGs ofClostridium paraputrificumwere filtered out, and

the protein profiling was searched against the curated KEGG Ortholog (KO) database using KOfamscan (v1.3.0).73

QUANTIFICATION AND STATISTICAL ANALYSIS

Metaphlan data from metagenomics were imported into R (v 4.1.3). Alpha diversity metrics, richness (number of observed species)

and diversity, were calculated using the phyloseq package (v1.38.0).76 Principal coordinate analysis (PCoA) based on Bray-Curtis

dissimilarities was performed using the vegan package (v2.6-2).77 Associations between gut microbial community composition

and the GDM group were assessed using permutational multivariate analysis of variance (PERMANOVA), in which maternal analysis

considered the GDMgroup, age and BMI before pregnancy and infant analysis considered GDMgroup, delivery mode, and antibiotic

use and stratifying by each time point.

The alpha diversity between different groups was compared using the Wilcoxon rank-sum test or paired Wilcoxon rank-sum test if

applicable.

The association between gut richness species at MG1 and age was evaluated with the glm in the stats package (v 4.1.3),78 adjust-

ing the pre-pregnancy overweight group. Generalized linear models (GLM) for binominal outcomes (normal pregnancy and GDM

development at MG2 or MG3) were applied to determine the odd ratio value of the gut richness at MG1. GLMswere also constructed

to investigate modification effects while adjusting for potential confounders identified in univariable analysis. Further, mediation anal-

ysis was performed with the psych package (v.2.2.5) psych::mediate function.79

The longitudinal joint association was used to explore the differences in species-level taxonomy and functional pathways and

GBMs between normal pregnant women and GDM subjects during the whole gestation period using MaAsLin2 (v.1.8.0),80 including

eachmother subject’s ID as the random effect and adjusting potential confounders, includingmaternal age, gestational age, and pre-

pregnancy BMI. The association between maternal differential bacteria species and OGTT level was explored with Spearman

correlation.

Two approaches were performed to explore the longitudinal associations between infant microbial features (i.e., microbial species

and functional pathways) and host phenotypes (e.g., GDM status, delivery mode, IAP usage, etc.). First, based on a combination of

data collected from five time points during the first year of life, the overall associations were estimated using MaAsLin2 with linear

mixed models (joint association). This model included each infant subject’s ID as the random effect and adjusted for potential cova-

riates, including sex of baby, sample collection day, delivery mode, IAP usage, breastfeeding mode, and antibiotic use within

3 months as fixed effects. Second, the dynamic associations were checked through sub-group infants’ samples at five-time points,

and the other set was similar to the first one. The first joint approach was also applied to explore the longitudinal associations be-

tween infant microbial features (bacteria species, GBMs, and GBMs-related KO) and GDM status through sub-group infants’ sex

and adjust potential covariates except for the sex of the baby.

In the validation cohort, a similar approach was adopted. The analysis included each infant subject’s ID as the random effect and

adjusted for potential covariates, including study, sex of baby, sample collection day, delivery mode, and current antibiotic use as

fixed effects. After sub-grouping infants’ sex, all potential covariates were adjusted except for the sex of the baby.
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The genus level-microbial network was analyzed by pairwise Spearman’s rank correlations at each time point (R > 0.40, p < 0.05,

ggClusterNet 0.1.0). The network metrics of nodes (degree, closeness centrality, and betweenness centrality)93 were checked.

Transmission analysis
The statistical significance of transmission rates between infants born to normal or GDM mothers was assessed using a two-sided

Fisher’s exact or Chi-Square test for each species. Statistical significance of the number of strains transmission within the different

phylum between mother (MG3)-baby pairs stratified by different clinical factors was assessed using a two-sided Fisher’s exact test.

Growth analysis
Participant growth wasmeasured on every scheduled clinic visit (approximately similar to the stool collection schedule). Age-specific

head circumference-for-age z-score, BMI z-score, and weight-for-length z-score were calculated using the anthro R package (v

1.0.0), based on World Health Organization Child Growth Standards. Besides, the relative growth rate of head circumference was

calculated in twoways: (BM12-BM1)/BM1 or (BM12-BM1)/ months. The univariable analysis was performed to check the association

between potential clinical factors (Maternal age, antibiotic use of infants within 3 months, exclusive breastfeeding duration, delivery

mode, exclusive formula feed duration, GDM Group, IAP, feeding status before discharge, maternal BMI group before pregnancy,

maternal smoke status before pregnancy, maternal smoke during pregnancy) and the growth outcomes of infants with the glm in

the stats package (v 4.1.3). The association between infant GDM group differential features (bacteria species, GBMs, and GBMs-

related KO) at specific time points and growth indexes at BM12 was explored with Spearman correlation in three scenarios (all in-

fants, only male, and only female). The p-value was adjusted with Benjamini & Hochberg. P <0.05 and FDR < 0.25 was considered

significant. Only the marker features associated with growth outcomes results in at least one condition (p < 0.05, FDR <0.25) were

used for visualization.
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