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Abstract

Humans experience many influenza infections over their lives, resulting in complex and var-

ied immunological histories. Although experimental and quantitative analyses have

improved our understanding of the immunological processes defining an individual’s anti-

body repertoire, how these within-host processes are linked to population-level influenza

epidemiology in humans remains unclear. Here, we used a multilevel mathematical model

to jointly infer antibody dynamics and individual-level lifetime influenza A/H3N2 infection his-

tories for 1,130 individuals in Guangzhou, China, using 67,683 haemagglutination inhibition

(HI) assay measurements against 20 A/H3N2 strains from repeat serum samples collected

between 2009 and 2015. These estimated infection histories allowed us to reconstruct his-

torical seasonal influenza patterns in humans and to investigate how influenza incidence

varies over time, space, and age in this population. We estimated median annual influenza

infection rates to be approximately 19% from 1968 to 2015, but with substantial variation

between years; 88% of individuals were estimated to have been infected at least once dur-

ing the study period (2009 to 2015), and 20% were estimated to have 3 or more infections in
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that time. We inferred decreasing infection rates with increasing age, and found that annual

attack rates were highly correlated across all locations, regardless of their distance, sug-

gesting that age has a stronger impact than fine-scale spatial effects in determining an indi-

vidual’s antibody profile. Finally, we reconstructed each individual’s expected antibody

profile over their lifetime and inferred an age-stratified relationship between probability of

infection and HI titre. Our analyses show how multi-strain serological panels provide rich

information on long-term epidemiological trends, within-host processes, and immunity when

analysed using appropriate inference methods, and adds to our understanding of the life

course epidemiology of influenza A/H3N2.

Introduction

Patterns of influenza infections in humans are highly varied across time, space, and demogra-

phy [1,2]. Recurrent epidemics occur because influenza viruses undergo an evolutionary pro-

cess of antigenic drift, whereby new strains escape preexisting host immunity through the

accumulation of mutations in immunodominant surface glycoproteins leading to rapid turn-

over of lineages, with specific strains persisting for 1 to 2 years [3,4]. Because individuals are

alive at different times and locations, they are exposed to different strains and thus each indi-

vidual has a distinct immunological history [5,6]. As a result, serological data suggest that

humans are infected with a new A/H3N2 influenza strain approximately every 5 years, with

less frequent infections, or at least less frequent detectable antibody boosts, as individuals enter

middle age [7,8].

A better understanding of who, where, and when influenza infections are likely to occur

would aid in public health planning, nowcasting, and forecasting [9,10]. However, it is not just

antigenic variation and evolution that contributes to variation in influenza incidence, but a

combination of individual and population level factors [11,12]. Birth cohorts [13–15], contact

and movement patterns [16–18], climatic variation [19,20], school terms [21,22], city structure

[23,24], and household structure [25,26] have all been shown to be associated with variation in

influenza incidence. However, variation in surveillance quality and consistency across locations

and over time makes it difficult to identify individual-level or population-specific effects over a

longer time period using routine influenza-like illness (ILI) surveillance data [27,28]. These lim-

itations may be overcome by using serological data, where unobserved past infections and vacci-

nations leave a signature in an individual’s measurable antibody profile [29–31].

For influenza, measured antibody levels are the result of complex interactions of immuno-

logical responses from all past exposures [6,32]. Hence, accurate inferences of individual infec-

tion histories require models of antibody kinetics to determine the number and timing of past

exposures to multiple influenza strains [8,13,33–35]. These models can be complicated, as

immunological interactions of antigenic drift with immune memory occur through imprinting

effects, whereby the set and order of strains in an individual’s previous exposure history influ-

ences which epitopes are targeted and the magnitude of their antibody response to subsequent

exposures [6,32]. Estimating influenza infection histories from serological data therefore pres-

ents a decoding problem, as the space of possible exposure histories which could lead to an

observed antibody landscape is large, and observed antibody titres are highly variable due to

within-host and laboratory-level effects. Although inferences which account for these mecha-

nisms have provided rich insights into individual-level life course immune profiles, most

attempts have been in relatively small cohorts or using small panels of influenza strains,
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limiting the conclusions which can be drawn about population-level influenza epidemiology 
[13,36,37].

Here, we applied an infection history inference method to data from a large serosurvey to 
reconstruct lifetime individual infection histories and population-level incidence of A/H3N2 
influenza in Guangzhou, China [35,36,38]. Infection histories were inferred based on individ-

ual-level antibody profiles to a panel of 20 influenza A/H3N2 strains representing viruses that 
first circulated from 1968 onward. The study population comes from a range of age groups, 
social backgrounds, and geographical areas, thereby providing an ideal dataset to investigate 
predictors of influenza infection and small-scale spatial variation. In fitting the model, we also 
obtained parameter estimates for the underlying antibody kinetics model which allows us to 
elucidate long- and short-term antibody dynamics. Together, these results provide detailed 
spatiotemporal insights into the historical epidemiological and immunological dynamics of 
influenza A/H3N2.

Results

Description of participant data

We measured 67,683 HI titres against 20 A/H3N2 strains isolated between 1968 and 2014 at 2 
to 3 year intervals from serum samples collected between 2009-12-22 and 2015-06-02 (S1 Fig) 
as part of the Fluscape cohort study (1,130 individuals, 2 samples each) (S2 and S3 Figs). Sam-

pling was done over 4 study rounds, with a mean time between serum sample collection of 
3.87 years (standard deviation: 0.780; 95% quantiles: 1.68 to 4.74 years). This cohort covered 
40 unique locations and 651 unique households in a 60 kilometre transect from Guangzhou, 
China. Participant ages at the most recent sampling round ranged from 6 years to 97 years, 
with a median of 50 years. Vaccination rates were low in this cohort (S1 Table), consistent 
with low reported vaccine coverage rates in mainland China, particularly in older individuals 
[39,40]. We refer to an individual’s set of antibody titres against all strains in the panel as their 
antibody profile. All individual antibody profiles and observed changes in titre are shown in 
S20 and S21 Figs. Summary statistics of these profiles and full study details have been described 
elsewhere [38,41].

Antibody titres vary by age and in space

We saw 5 broad patterns of seropositivity (HI titre > = 1:40) when stratifying the antibody 
data by age group and strain (Fig 1). First, individuals had mostly low or undetectable titres 
against strains that circulated before they were born (cells below the black lines in Fig 1), 
though many individuals were seropositive against the strain which circulated in the years 
immediately prior to birth. Second, in the youngest age group (0 to 10 years old), many indi-

viduals were also seropositive to pre-birth strains that circulated further back in time (A/Cali-

fornia/2004, A/Fujian/2002, A/Fujian/2000, and A/Victoria/1998), indicating the presence of 
cross-reactive antibodies as these individuals could not have been exposed to those strains

(Fig 1C). Third, seroprevalence tended to be high among individuals who were young when a 
strain was first isolated (cells just above the black line in Fig 1) compared to individuals who 
were older at the time that the strain was first isolated. Fourth, the total proportion of individu-

als who seroconverted between sample collection dates was high against recent strains at nearly 
50% across all age groups. Finally, some strains exhibited systematically higher titres than oth-

ers, for example, titres against A/Fujian/2002 and A/Mississippi/1985 were higher than all 
other strains and particularly high for individuals who were under 10 years old at the time of 
their first circulation.
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Fig 1. Proportion of individuals seropositive and seroconverted to 20 A/H3N2 strains circulating from 1968 to 2014 stratified by age. Solid

black line divides age groups that were alive or not at the time of strain circulation. Seropositivity was defined as having an HI titre of�1:40 (a

log titre of 3). (A) First serum sample. (B) Second serum sample. (C) Seroconversion between samples, defined as a�4-fold increase in HI titre.

The data underlying this figure can be found at https://doi.org/10.5281/zenodo.12795911.

https://doi.org/10.1371/journal.pbio.3002864.g001
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Inferring antibody kinetics and individual infection histories from

antibody profiles

To infer the set of A/H3N2 influenza strains each individual was infected with, we further

developed and used the serosolver R-package to fit an infection history and antibody kinetics

model to all individual-level antibody profiles [35]. Briefly, the method finds the combination

of influenza strains which an individual is most likely to have encountered conditional on

their antibody profile, accounting for cross-reactive, transient antibody boosting, and anti-

genic seniority arising from repeated exposures to antigenically related strains (see Materials

and methods). Individuals can be infected with the strain assumed to be circulating in each

time period provided they were alive at the time of circulation. Individuals have distinct infec-

tion histories, but the parameters governing post-infection antibody kinetics were assumed to

be universal, and individual infection probabilities were assumed to arise from a single popula-

tion-level infection probability parameter per time period, regardless of location. A crucial

component of the model is the observation level, which accounts for the fact that some strains

elicit systematically higher or lower titres than others in the HI assay (see S1 Text).

We routinely fitted the same model to both the Fluscape cohort data and to previously pub-

lished antibody profile data from a cohort of 69 individuals in Ha Nam, Viet Nam (see Materi-

als and methods and [37]), and compared the inferred antibody kinetics and epidemic

dynamics. Posterior distributions for the model predicted titres and infection histories com-

pared to observed titres are shown for 5 randomly selected individuals from the Fluscape

cohort in S4 Fig, and from the Ha Nam, Viet Nam cohort in S5 Fig. Overall, we imputed a

total of 10,558 (posterior median; 95% credible interval (CrI): 10,394 to 10,750) distinct infec-

tions (see Post-processing of infection history posteriors in Materials and methods) across all

individuals and times from the Fluscape data and 547 (posterior median; 95% CrI: 519 to 574)

infections from the Ha Nam, Viet Nam data. We also ran varied scenario analyses using simu-

lated data closely resembling the Fluscape data, demonstrating that our inference system was

able to accurately recover infection histories, attack rates, and antibody kinetics parameters

under a range of assumptions and model misspecifications (S2 Text).

Although there were no virologically confirmed infections reported in the Fluscape study

with which to validate our infection history estimates, individuals did self-report influenza vac-

cination at each study visit, but only within a window of time rather than on a specific date

(e.g., in the preceding calendar year; see Materials and methods). We estimated antibody

boosting events (infections) with>25% posterior probability for 68.9% of time windows in

which individuals self-reported influenza vaccination (62 of 90 windows from 77 individuals;

S22 and S23 Figs), compared to 43.1% (mean of null simulations; 95% quantiles: 32.8% to

51.7%) of randomly selected time windows of the same duration from randomly selected indi-

viduals, suggesting that our model was more likely to infer antibody boosting events that coin-

cided with self-reported vaccination than in randomly selected time periods. Vaccination

windows in which no vaccination/infection was inferred tended to either have antibody boosts

identified soon after the reported vaccination, suggesting either delayed boosting or recall

error, or very low antibody titres to recent influenza strains, suggesting either inaccurate recall

or no vaccine-induced antibody boosting (S23 Fig).

Antibody kinetics parameters

We obtained estimates for the antibody kinetics model parameters assumed to underlie the

generation of observed influenza antibody titres. We estimated parameter values consistent

with an initial, broadly reactive antibody response that decays within approximately 1 year to

leave an antigenically narrow, persistent antibody response. These estimates are in line with
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previous estimates using a similar method applied to a smaller pilot serosurvey from the Flus-

cape cohort [36], as well as from model fits to the Ha Nam, Viet Nam cohort data (Table 1).

However, there were some differences in the estimated magnitude of the antibody response

between the Fluscape and Ha Nam data sets. Estimates from the Fluscape data suggested that

infection elicited an antigenically narrow, long-term antibody boost of 1.42 log HI units (pos-

terior median; 95% CrI: 1.39 to 1.44) compared to 1.96 log HI units (posterior median; 95%

CrI: 1.89 to 2.03) from the Ha Nam data set, and an additional antigenically broad, short-term

boost of 2.06 log HI units (posterior median; 95% CrI: 1.99 to 2.14) compared to 2.65 log HI

units (posterior median; 95% CrI: 2.43 to 2.92). The estimated waning rate of the short-term

response was similar from the 2 data sets, suggesting that the short-term response took 0.995

years (posterior median; 95% CrI: 0.963 to 1.03) to fully subside based on the Fluscape data

and 1.33 years (posterior median; 95% CrI: 1.22 to 1.45) based on the Ha Nam data. Finally,

the observation error standard deviation was estimated to be larger for the Ha Nam data set at

1.29 (posterior median; 95% CrI: 1.27 to 1.31) versus 0.636 (posterior median; 95% CrI: 0.631

to 0.641) (posterior medians and 95% CrI), though this is likely attributable to the different

assumed observation model and measurement of more influenza strains in the latter data set.

Inferred historical and contemporary attack rates

By combining all individual-level inferred infection histories, we obtained A/H3N2 incidence

estimates in the Fluscape cohort for each 3-month window since 1968 (Fig 2A). The estimated

median quarterly sample attack rate was 3.54% (median across all posterior samples; 95% CrI:

3.08% to 4.01%). This corresponded to a median annual attack rate of 19.1% (posterior

median; 95% CrI: 17.2% to 20.9%), defined as the proportion of alive individuals who experi-

enced at least 1 infection within a calendar year. This was comparable to estimates from the

Ha Nam, Viet Nam data set, which gave an estimated median annual attack rate of 18.6% (pos-

terior median; 95% CrI: 14.5% to 22.9%).

Quarterly A/H3N2 attack rate estimates in the Fluscape cohort varied over time, ranging

from a minimum of 0.459% (posterior median; 95% CrI: 0.00% to 2.53%) in Q1-1977 (during

the re-emergence of A/H1N1) to a maximum of 64.8% in Q1-1968 (posterior median; 95%

CrI: 54.2% to 71.3%) (at the beginning of the A/H3N2 pandemic). The attack rate estimate for

Q1-1985 was unusually high (51.8% posterior median; 95% CrI: 0.207% to 63.8%), suggesting

that there might be residual bias from systematically higher titres for the A/Mississippi/1985

virus not captured by the antibody kinetics and measurement models. Periods of high and low

Table 1. Estimated antibody kinetics parameters. The data underlying this table can be found at https://doi.org/10.5281/zenodo.12795911.

Parameter Description Units Estimates from Fluscape data

(posterior median; 95% CrI)

Estimates from Ha Nam, Viet Nam data

(posterior median; 95% CrI)

μl Long-term antibody boosting log HI units 1.42 (1.39–1.44) 1.96 (1.89–2.03)

μs Short-term antibody boosting log HI units 2.06 (1.99–2.14) 2.65 (2.43–2.92)

σl Long-term cross reactivity Proportion decrease in boost per

unit of antigenic distance

0.0743 (0.0738–0.0749) 0.115 (0.112–0.118)

σs Short-term cross reactivity Proportion decrease in boost per

unit of antigenic distance

0.000122 (2.79e-06–0.000543) 0.0267 (0.0222–0.0301)

τ Suppression Proportion decrease in boost per

successive infection

0.0311 (0.0287–0.0328) 0.0427 (0.0391–0.047)

ωμs Waning rate of the short-term

response

log HI units lost per year 2.08 (1.97–2.22) 2.01 (1.74–2.27)

ε Standard deviation of the

observation error distribution

log HI units 0.636 (0.631–0.641) 1.29 (1.27–1.31)

https://doi.org/10.1371/journal.pbio.3002864.t001
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attack rates were reasonably well synchronised between the Fluscape and Ha Nam data sets,

though attack rates were estimated to be significantly higher in Ha Nam from 2000 to 2003,

and significantly higher in the Fluscape cohort from 2010 to 2012 (S6 Fig). For example, both

data sets gave very high attack rates for 1968, 1989, and 2009, and similar attack rates from

1970 to 1985 (though with substantial uncertainty in the Ha Nam estimates due to the much

smaller sample size). There were also periods with clear differences—attack rate estimates

were much lower in the Fluscape cohort in the early 2000s, and higher during 2010 to 2012.

Fig 2. Quarterly incidence and individual infection histories from the Fluscape data set. (A) Model predicted per-capita incidence per quarter. Attack rates

were estimated by dividing the number of inferred infections by the number alive in each 3-month period. Red line shows the posterior median estimate from

1,000 posterior samples. Dark and light red shaded regions show 50% and 95% credible intervals respectively from 1,000 posterior samples. Grey shaded

box shows duration of the Fluscape study—the improved precision is due to the inclusion of sera bracketing this time period. Asterisks mark times from which

a strain included in the HI panel was first isolated. (B) Inferred infection histories for each individual. Each row represents an individual ordered by increasing

age in years. Each column represents the time of a potential infection. Cells are shaded based on the proportion of posterior samples with an infection at that

time. The grey areas show time periods prior to each individual’s birth. The data underlying this figure can be found at https://doi.org/10.5281/zenodo.

12795911.

https://doi.org/10.1371/journal.pbio.3002864.g002
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Quarterly attack rate estimates were substantially higher in the Fluscape cohort after the

first serum sample in Q4-2009 than the overall average, with the median quarterly attack rate

since Q4-2009 estimated to be 7.79% (median of posterior samples for median per-quarter

attack rate; 95% CrI: 3.46% to 21.7%) versus 2.98% before (95% CrI: 0.748% to 13.7%). Annual

attack rates (defined as the proportion of individuals who were inferred to have been infected

at least once per year) fluctuated, with lower attack rates in 2010, 2012, and 2013, and high

attack rates in 2011 and 2014 (Table 2). These attack rate estimates were of a similar magnitude

to the proportion of individuals that seroconverted between study visits against strains that cir-

culated during that time. Surveillance data collected from the Guangdong Provincial Centre

for Disease Control and Prevention influenza surveillance system during the same time period

reported slightly different dynamics, with an increased number of A/H3N2 virus isolates in

Q2/Q3-2009, Q3-2010, Q4-2011, and Q1/Q2-2012, as well as a higher proportion of A/H3N2

isolates in 2011 and 2012 [42]. However, direct comparison to our estimated attack rates is dif-

ficult, as the influenza surveillance network only collects nasopharyngeal swab samples from

patients presenting to sentinel hospitals with ILI, whereas our estimates relate to all exposure

events regardless of symptoms.

A substantial proportion of people were estimated to have been reinfected within a single

year, with higher reinfection rates in years with higher overall attack rates; 33.9% (posterior

median; 95% CrI: 27.0% to 41.0%) of all reinfections between 1968 and 2015 occurred since

2008, whereas only 14.9% of possible infection events were in this time frame, suggesting that

reinfections were disproportionately more likely in recent time periods. Annual reinfection

rates, defined as having been infected at least once in a year for multiple years, were also high

for recent years (Table 3).

Attack rates varied in space but were not clearly associated with proximity

Previous analyses from this cohort found that antibody titres varied significantly between

study locations after accounting for differences in demographics, suggesting that there may be

differences in influenza A/H3N2 epidemiological dynamics between locations [1]. We

grouped the posterior draws for the Fluscape infection histories by study location to investigate

spatial patterns in attack rates. Attack rates exhibited variation between locations and over

Table 2. Estimated attack rates and infection patterns 2010–2014. Percentages shown are posterior median and 95% credible intervals. “Attack rate” was defined as the

proportion of individuals who were infected at least once in that year. “Seroconverted” gives the percentage of individuals that seroconverted to the measured strain, with

ranges showing 95% binomial confidence intervals. “Reinfected” gives the percentage of people that were infected more than once in a year. The data underlying this table

can be found at https://doi.org/10.5281/zenodo.12795911.

Year Measured strain Seroconverted (%) N = 1,127 Estimated attack rate (%) Reinfected within same year (%)

2010 A/Perth/2009 47.7% (44.8%–50.6%) 28.4% (24.8%–32.3%) 1.68% (0.885%–2.65%))

2011 - - 41.2% (37.6%–44.4%) 4.37% (2.85%–5.79%)

2012 A/Texas/2012 50.7% (47.8%–53.6%) 24.2% (20.3%–28.0%) 1.53% (0.632%–2.62%)

2013 - - 20.8% (16.4%–25.4%) 1.21% (0.466%–2.23%)

2014 A/Hong Kong/2014 42.6% (39.7%–45.5%) 60.8% (57.9%–63.8%) 5.33% (3.55%–7.27%)

https://doi.org/10.1371/journal.pbio.3002864.t002

Table 3. Percentage of individuals who were infected at least once per year in 0, 1, 2, 3, 4 or 5 years between 2010 and 2014 inclusive. The data underlying this

Table can be found at https://doi.org/10.5281/zenodo.12795911.

Number of years with at least one infection between

2010 and 2014 inclusive

0 1 2 3 4 5

Percentage 12.4% (11.4%-

13.5%)

33.5% (31.4%-

35.7%)

34.0% (31.9%-

36.1%)

15.9% (14.1%-

18.0%)

3.81% (2.83%-

4.87%)

0.265% (0.000%-

0.6228%)

https://doi.org/10.1371/journal.pbio.3002864.t003
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time (S7 Fig), though the timing of high attack rate periods was synchronised. S8 Fig shows

snapshots from a video of attack rates over time across the study region, demonstrating that

the periods of high influenza incidence are similar across the study locations, but that there is

some variation in the timing and magnitude of incidence (full video in S1 Video). The overall

coefficient of variation (CoV) for per-quarter attack rates across all locations and times was

1.12 (posterior median; 95% CrI: 1.04 to 1.19). This was reduced to 0.493 (posterior median;

95% CrI: 0.458 to 0.535) after aggregating the infection histories into per-year attack rates,

defined as the proportion of individuals infected at least once in a calendar year. There was a

strong negative correlation between the estimated posterior median CoV and per-quarter

attack rate (Pearson correlation coefficient of −0.829).

To understand if this variation reflects epidemiological differences between locations or

simply sampling variation, we generated a comparable null simulation where no significant

spatial variation in incidence would be expected (see Spatial correlation in inferred attack rates

in Materials and methods). The mean CoV for these simulations was 0.300 (95% quantiles:

0.0307 to 1.22). Given the overlapping uncertainty intervals of the model estimates with the

simulations, we cannot exclude the possibility that the estimated attack rates from the Fluscape

data exhibited no more variation overall than would be expected by chance if all attack rates

were drawn from the same binomial distribution. S9 Fig demonstrates that this pattern is

maintained across time, though with higher variation in time periods with low infection rates.

Fitting a spatial nonparametric correlation function—a model describing correlation of differ-

ent spatial units over time as a function of their distance to each other—revealed high correla-

tion in attack rates between locations which showed no clear association with increasing

distance from one another (S9D Fig). This consistent correlation across space was also

observed when subsetting attack rates by recent (from Q1-2009 onward) or historical times

(from Q1-1968 to Q1-2009), when considering either per-quarter or per-year attack rates, and

also when considering the proportion of individuals in a population who seroconverted

against all or only recent strains.

Age-specific infection patterns

Periods of high infection probability were largely synchronised across all individuals regardless

of age, though individuals typically experienced more frequent infections in the years immedi-

ately following birth (S10 Fig). Two age-specific patterns emerged. First, almost all individuals

who were alive in 1968 were almost certainly infected in or around 1968, demonstrated by the

high posterior probability of infection across all individuals alive at that time. Second, the pos-

terior probability that an individual was infected soon after birth was consistently high, dem-

onstrated by the lower edge of the heatmap in Figs 2B and S10. The posterior mean, median,

and 95% CrI on the age of first infection was 1.36, 0.75, and 0.00–6.00 years, respectively (esti-

mates using 1,000 posterior samples for all individuals born since 1968). We note that although

these augmented infection histories suggest most individuals were infected soon after birth,

our model requires a number of assumptions regarding cross-reactivity to pre-birth strains

and antigenic distance between strains which limits our ability to draw this conclusion, partic-

ularly given contrasting previous findings from longitudinal serological studies in children

[43].

We calculated each individual’s age at the time of each infection and found that the number

of infections per 10 year period decreased through childhood and became stable in adulthood

(Figs 3C and S11). Overall, individuals were estimated to be infected 2.12 times per 10 year

period (posterior median; 95% CrI: 1.06 to 7.86), in line with previous estimates (Fig 3D) [36].

Infection frequency patterns and trends with respect to age were similar under different
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assumptions for the infection history model, suggesting that these findings were driven by fea-

tures of the data and not an artifact of the model structure (S12 Fig; [35]).

Relationship between titre and probability of infection

Our model fits estimated not only infection histories, but also each individual’s expected HI

titre against all strains at each point in time, and thus we were able to estimate the relationship

Fig 3. Age-specific patterns of infection. (A) Pointrange plot shows posterior median and 95% CrI on the total number of lifetime infections for each individual

in the Fluscape cohort, ordered by increasing age at time of sampling. (B) Distribution of the total number of infections across all individuals based on the

posterior median total number of infections. (C) Posterior median number of infections per 10 year period stratified by age group at the time of infection,

excluding individuals who spent less than 2 years in that age group and including only time periods prior to the first serum sample in Q4-2009 (see S11 Fig for

explanation and comparison using all time periods). Text shows sample size within each age group—note this does not sum to the number of individuals in the

sample, as individuals contribute to multiple age groups during their lifetime. (D) Distribution of individual posterior median number of infections per 10 years

alive. The data underlying this figure can be found at https://doi.org/10.5281/zenodo.12795911.

https://doi.org/10.1371/journal.pbio.3002864.g003
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between probability of infection and model-predicted latent HI titre (Fig 4). For each sample

from the posterior, we found the proportion of time periods (across all times and individuals)

where infection was estimated to have occurred, stratified by log HI titre against the circulating

strain in that time period. There was a clear pattern of decreasing relative risk of infection as a

function of increasing titre (Fig 5). An HI titre of 1:40 (log titre of 3) corresponded to a risk of

infection of 0.559 (posterior median; 95% CrI: 0.514 to 0.605) relative to individuals with no

detectable titre, consistent with prior evidence from deliberate infection experiments [44].

This pattern appeared to vary with age. An HI titre of 1:40 gave a relative risk of infection of

0.374 (posterior median; 95% CrI: 0.312 to 0.427) in the 0 to 10 age group, but only 0.789 (pos-

terior median; 95% CrI: 0.638 to 0.955) in the 60+ age group.

Discussion

Influenza A/H3N2 infection histories and attack rates exhibited substantial variation across

time and locations in a cohort of 1,130 individuals around Guangzhou, China. We considered

Fig 4. Model predicted titres against circulating strains since birth. Each subplot shows one randomly selected individual. X-axis shows time since birth.

Blue line and shaded region show model-predicted, true latent titre against the strain assumed to be circulating at each time period (posterior median and 95%

CrI). Note that titres are continuous and represent latent, true values, not observations. Orange lines indicate times of high posterior probability of infection.

Grey regions show times before birth and after the last serum sample. The data underlying this figure can be found at https://doi.org/10.5281/zenodo.12795911.

https://doi.org/10.1371/journal.pbio.3002864.g004
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that variation in influenza antibody titres may be generated in 3 ways: (i) exposure to different

combinations of viruses at different times; (ii) time-dependent antibody kinetics observed at

different times relative to an exposure; (iii) random and strain-specific, systematic variation in

the HI assay. We showed that accounting for these mechanisms in a modelling framework

allowed for the reconstruction of each individual’s complete A/H3N2 infection history since

birth conditional on their antibody profile. We reconstructed population-wide and location-

specific historical infection, or, more precisely, seroincidence rates from these infection

Fig 5. Estimated relationship between HI titre and probability of infection. Top left panel shows the relative risk of infection at all time points stratified by

model-predicted HI titre against the circulating strain just before infection for all age groups. Remaining plots show the same relationship but stratified by age

group in 10-year bands at the time of infection. Solid lines and shaded regions show posterior median and 95% CrI. Note that the uncertainty intervals reflect

uncertainty in the imputed infection states and latent antibody titres; the relationships shown here are empirically calculated from the serosolver estimates.

Wide uncertainty intervals at higher titres reflect limited data as few individuals reach such high titres; the posterior median for number of individuals with HI

titre of 1:640 or greater at the time of infection was less than 10 for all but the youngest age group. Vertical dashed line shows HI titre 1:40. Horizontal grey

dashed line shows 50% protective titre. The data underlying this figure can be found at https://doi.org/10.5281/zenodo.12795911.

https://doi.org/10.1371/journal.pbio.3002864.g005
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histories, finding that influenza infection incidence may be higher than suggested by routine

surveillance. Also, estimates of each individual’s true antibody titre against circulating strains

for each 3-month period since birth were generated, showing that elevated antibody titres

were associated with a substantial reduction in infection risk that became less effective with

increasing age.

We estimated that the incidence of influenza A/H3N2 infections, or at least detectable sero-

logical responses, in both the Fluscape cohort and a smaller data set from Ha Nam, Viet Nam

was around 19% on average per calendar year since 1968. Results from urban and rural South

African communities (the PHIRST cohort) demonstrated similarly high influenza incidence

rates under routine RT-PCR testing for influenza A or B [45]. Similarly high incidence rates

based on either anti-haemagglutinin or anti-neuraminidase seroconversion were also detected

in New Zealand (the SHIVERS cohort) [46]. Our results and those from the PHIRST and

SHIVERS studies are at the higher end of annual influenza incidence rate estimates [46–48]

and suggest that some individuals may be infected with the same subtype multiple times within

a year. Our annual seroincidence rate estimates were particularly high during the Fluscape

study period in 2010 to 2014, ranging from 20% to 61% of individuals infected at least once

per year, though the cutoff of an influenza season is not as clearly defined for this region as it is

for temperate regions [2,49]. These values are higher than previous estimates based on serolog-

ical data from Hong Kong for the same time period at 7% to 19% [34,50,51]. This increased

incidence during recent time periods could reflect the changing antigenic diversity of influenza

A/H3N2 during this time, with the emergence of multiple antigenically distinct clades provid-

ing an increased force of infection from strains with varying levels of immune escape leading

to more frequent infections [52–54]. Our model is limited in capturing this changing epidemi-

ology, as it cannot account for co-circulation of competing strains at the same time, and our

HI panel did not have strains representing these multiple clades. However, if individuals in

this cohort were infected with strains that were not measured in the HI panel it is likely the

model would underestimate infection incidence; antigenic mismatch between the infection

strain and the measured strain would lead to lower observed titres, which will lead to a lower

posterior probability of infection in the model.

The estimated annual attack rates were similar between the 2 cohorts, but not for all years.

A possible driver of these differences is climate, despite these 2 locations being relatively close:

Ha Nam, Viet Nam has a tropical climate with no clear influenza seasons [55], whereas Guang-

dong, China has a subtropical climate with clear peaks of influenza typically during the sum-

mer months, though with peaks in winter/spring in recent years [56–58]. It is possible that

differences in climate and behaviour partly explain differences in seasonal dynamics between

the 2 locations [59–61], though past studies have been unable to reliably compare overall dis-

ease burden between locations due to differences in influenza case detection and reporting

without further modelling [62]. Differences in influenza epidemiology between Ha Na, Viet

Nam and Guangdong, China could be due to a combination of multiple factors including con-

tact rates, climate effects on virus survival and behaviour, immunological history, and domi-

nance of different A/H3N2 strains over time.

Reconstruction of lifetime infection histories from this large study population covering all

age groups revealed that the frequency of influenza A/H3N2 serological responses is initially

high and decreases with age and then remains stable at around 2 infections per decade through

most of adult life. The pattern is consistent with previous findings from age-stratified epidemi-

ological data [8,34,45,46,48,63], regression analyses of randomized control trial data [64], theo-

retical models incorporating age-specific differences in social behaviour [65,66], and data from

the Fluscape pilot study [7]. Reassuringly, the clear age patterns we find here were maintained

under different assumptions for the infection history model, suggesting that these patterns
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emerge from information in the data rather than through the model structure. However, it is

important to note that we have estimated the incidence of detectable antibody responses and

not necessarily clinically relevant infections—not all infections lead to seroconversions and

not all antibody boosts reflect detectable virus shedding [67,68]. Similarly, although our infer-

ence method did not distinguish between vaccination and infection, vaccination coverage in

this cohort was very low and thus this assumption is unlikely to bias our infection history esti-

mates substantially.

In lieu of virologically confirmed influenza infections with which to validate our model, we

used self-reported vaccination to approximate true antibody boosting events, finding that our

model was more likely to impute antibody boosts during self-reported vaccination windows

than in randomly selected time periods with no reported vaccination. Although this provides

some support for the validity of our approach, self-reported vaccination status is not always an

accurate measure of true vaccination status due to recall bias, and our model does not account

for different antibody kinetics following infection and vaccination. Indeed, for most of the

self-reported vaccinations where our model found limited evidence for an antibody boosting

event showed limited antibody responses against recent strains; both of these limitations make

it difficult to evaluate the validity of our approach based on vaccination data alone.

Although the spatial dynamics of influenza at a large scale are fairly well understood

through the use of molecular data, explaining spatial dynamics at smaller scales has revealed

contrasting results and remains the focus of ongoing work [12,18,22,69]. Comparable spatio-

temporal analyses of seasonal ILI incidence surveillance data in Norway, Sweden, Denmark,

and the USA—regions with clearer ILI seasons than Guangdong—showed high spatial correla-

tion in epidemic phase timing and amplitude between locations thousands of kilometres apart

that declined with distance [70]. Our estimates show a high correlation of attack rates in space

that did not change as a function of distance at a small spatial scale (less than 60 km), suggest-

ing that an individual’s life-course of seasonal influenza A/H3N2 infections is largely deter-

mined by when they were born and the epidemiology of their wider region, rather than

precisely where they live. However, our results are limited as we do not account for the fact

that individuals move over their lives, and thus their location recorded at the time their serum

sample collected may not match their location earlier in life.

We inferred a negative correlation between log HI titre at the time of exposure and proba-

bility of seroresponse in line with the historic deliberate infection data of 50% protection for

an HI titre of 1:40 [44,71–73]. We found that this relationship became weaker with age, consis-

tent with recent work showing that although HI titre is a good correlate of protection in chil-

dren, it is less robust in adults [8]. Non-HI-mediated protection, such as non-haemagglutinin

head targeted antibodies or cellular responses, are likely to explain a greater amount of vari-

ability in immunity as individuals age [46,74]. The magnitude of our estimates do contrast

with other work, which has found that the 50% protective titre threshold may be higher than

1:40 in young children [75,76]. As stated by Hobson and colleagues in 1972, care must be

taken in assigning causality to the titre-mediated infection risk estimated here. In the present

model, titres necessarily decreased over time following infection due to antigenic drift and

short-term waning. If protection is governed by non-HI immunity that wanes at a similar rate,

then the same association between titre and relative risk could be observed. Non-HI protection

may also explain the findings of decreased infection frequency at older age despite decreasing

titre-mediated protection, for example, via non-haemagglutinin head targeted antibodies or

cellular responses [46,74]. We note that our estimates are only of relative rather than absolute

risk of infection; predicting the future probability of infection for an individual would addi-

tionally require knowing the force of infection (probability of exposure) as well as knowing

which strain will circulate.
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Finally, we generated estimates for post-exposure antibody kinetics from 2 serological data

sets. There were a number of similarities and differences in the estimated antibody kinetics

parameters based on the Fluscape and Ha Nam cohort data sets. Although differences in tested

strains and between-lab protocols limits direct comparison [77], both data sets gave qualita-

tively similar estimates suggesting a transient, antigenically broad antibody boost that waned

within 2 years following exposure to leave a persistent, antigenically narrow antibody boost.

The antigenic breadth of the short-term boost was broader in the Fluscape estimates, though

this may be due to the inclusion of fewer recent strains and more older individuals than in the

Ha Nam cohort, requiring the model to give greater weighting to boosting of historical strains

(back-boosting) [37]. We estimated that the transient arm of the seroresponse waned within 1

year based on the Fluscape data compared to 1.33 years based on the Ha Nam cohort data,

which is broadly in line with previous observations of antibody titres waning to near baseline

approximately 1 year post vaccination [37,78–80]. Overall, this supports previous work sug-

gesting that accounting for sub 4-fold rises in titre, issues arising from non-bracketed sera, and

measurement effects may lead to greater sensitivity in identifying infections from paired titres

[33,81,82].

Our study has a number of limitations. A key challenge underpinning almost all efforts to

analyse quantitative antibody titre data is the variation in titres arising from laboratory pro-

cesses rather than underlying epidemiology and immunology [77]. Although we adjusted our

observation model to account for systematically lower or higher observed titres to particular

strains, which may lead to under- or overestimation of attack rates, unaccounted for biases

may still remain. External validation or estimation of the offset terms would be useful, but is

difficult to do across studies given variability in laboratory protocols and serum potency [77].

We performed paired tests of the serum samples from the 2 study visits to minimise batch

effects, though it is possible that the increase in titres and broader reactivity between study

rounds (S2 and S3 Figs) might reflect systematic measurement bias rather than increased

recent infections as inferred by our model. For example, the delay between sample collection

and testing for visit 1 samples might have led to some decline in antibody concentration within

the samples. Also, our data were limited in their strain coverage, as we measured titres to only

1 strain for each approximately 2-year period and assumed that that A/H3N2 antigenic evolu-

tion followed a smooth rather than punctuated trajectory through antigenic space, and thus we

may infer infections with antigenic variants that an individual has never been exposed to [3].

As a sensitivity analysis (not shown), we did attempt to fit the serosolver model instead assum-

ing punctuated changes through antigenic space, but we were unable to produce converged

model fits due to the discretization of the parameter space and thus we do not present these

results. However, we did explore the impact of this potential model misspecification using sim-

ulation-recovery experiments, and found that fitting a model assuming continuous antigenic

changes over time when data were generated under a punctuated antigenic evolution model

did not substantially bias antibody kinetics parameter or attack rate estimates, with the excep-

tion of slightly overestimating the short-term antibody waning rate (S2 Text). These assump-

tions about antigenic evolution, in addition to our simple way of modelling cross-reactive

antibody boosting, might explain why our estimates for the age at first infection were much

younger than found in serological data from longitudinal cohort studies of children, which are

more reliable for estimating the precise timing of these early childhood infections [43]. They

may also partially explain why the inferred seroresponse rates did not strictly align with tim-

ings of high incidence based on viral isolate data in Guangdong and Hong Kong for the same

time period [42,50].

Another limitation is the simplification of the antibody kinetics model used here. The

assumption of a fixed-effect term on boosting and waning for all individuals and infection
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events masks a substantial amount of individual-level and strain-level variation in kinetics

which would be better described by random-effects terms. This is a necessary simplification to

ensure identifiability of the post-exposure kinetics parameters while simultaneously inferring

hundreds of thousands of latent infection states. Similarly, there are a number of immunologi-

cal mechanisms, such as titre-dependent boosting and titre ceiling effects which we did not

include in the model due to identifiability issues [37,83]. Our model is also limited in explain-

ing back-boosting, as we assumed that cross-reactivity extends linearly across antigenic space.

In the short-term antibody boosting arm, cross-reactivity was found to boost the entirety of

antigenic space regardless of an individual’s age to account for the clear back-boosting of titres

against strains encountered early in life. However, this model may be inappropriate for youn-

ger individuals, whose immune systems may not have encountered any of these historical anti-

gens and would therefore have no targeted memory B-cells to stimulate. A model that

distinguishes boosting of heterologous antibodies through back-boosting of the memory

response as opposed to cross-reactive antibodies from a de novo response through targeting

shared epitopes would provide a more realistic model of the observed, antigenically broad

short-term boost. Finally, we did not model the kinetics of maternal antibodies, which typically

wane within the first year of life [84]. The youngest individual in our dataset was 6 years old at

the time of sampling, and thus all maternal antibodies would have waned by the time of obser-

vation and therefore did not contribute towards the observed antibody titres.

Antibody landscapes based on traditional HI assays, as well as multiplex antigen arrays and

deep mutational scanning data, are useful tools for understanding how immunity develops fol-

lowing repeated infection and vaccination to antigenically related viruses [85–90]. The

approach and results shown here demonstrate how these antibody profiles can be used to

reconstruct lifetime infection histories at a fine spatial scale, providing a new source of aug-

mented data with which to understand long-term epidemiological trends for influenza and

other antigenically variable pathogens such as SARS-CoV-2 [91–93].

Materials and methods

Ethics statement

Study protocols and instruments were approved by the following institutional review boards:

Johns Hopkins Bloomberg School of Public Health, University of Hong Kong, Guangzhou No.

12 Hospital, and Shantou University. Written informed consent was obtained from all partici-

pants over 12 years old, and verbal assent was obtained from participants 12 years old or youn-

ger. Written permission of a legally authorised representative was obtained for all participants

under 18 years old.

Cohort description—Fluscape

Influenza haemagglutination inhibition (HI) titres were obtained from a previously described

cohort in Guangzhou, China, called the Fluscape study (described in detail in a cohort profile

[38]) [41]. The Fluscape study is a serological, contact, and demographic survey in and near

Guangzhou, China. The study covers 40 locations randomly selected from a 60 km cone-

shaped transect extending from Guangzhou city center into the surrounding rural area. Lati-

tudes and longitudes of each study location were assigned based on a central place (e.g., a street

or village committee center). A total of 60 households within 1 km of each chosen location

were randomly selected and contacted one-by-one until 20 households with at least 1 member

willing to provide a blood sample and answer the survey questionnaire were contacted. The

majority of locations were classified as rural (30/40), were between 20 and 80 min travel time

from Guangzhou city center, and had a population density between 256 and 367,346 persons
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per 9 km grid cell. All household members aged 2 or above were eligible to participate, and 5

ml of blood was taken for each blood sample from each visit. Here, we used data from a subset

of serum samples, capturing 1,130 individuals who had 2 serum samples taken and analysed

from 2 different rounds of sampling between 2009 and 2015 inclusive. The month of sampling,

age of participant, vaccination history, and other socioeconomic covariates were available for

all individuals.

Serological data

HI assays were performed for each sample to measure antibody titres against 20 A/H3N2

strains that circulated between 1968 and 2014 inclusive with approximately 2 year spacing

between circulation years (A/Hong Kong/1968, A/England/1972, A/Victoria/1975, A/Texas/

1977, A/Bangkok/1979, A/Philippines/1982, A/Mississippi/1985,A/Sichuan/1987, A/Beijing/

1989, A/Beijing/1992, A/Wuhan/1995, A/Victoria/1998, A/Fujian/2000, A/Fujian/2002, A/

California/2004, A/Brisbane/2007, A/Perth/2009, A/Victoria/2009, A/Texas/2012, A/Hong

Kong/2014). The 50% tissue culture infectious dose (TCID50) for each virus was determined

using Madin-Darby canine kidney (MDCK) cells, calculated using the Reed–Muench method

[94]. Blood samples were kept at 4˚C on the day of collection until extracted sera was frozen at

−80˚C until testing. Sera were thawed and treated with receptor-destroying enzyme (RDE)

derived from Vibrio cholerae to remove nonspecific inhibitors prior to incubation at 56˚C for

30 min, and then absorbed with Turkey red blood cells to remove substances which might lead

to nonspecific agglutination. HI assays were conducted in 96-well microtiter plates with 0.5%

turkey erythrocytes using 4 haemagglutination units. Sera from each individual’s first and sec-

ond sample were tested side-by-side on the same plate. Repeat titres were generated for all of

the strains tested from the second serum sample on a separate plate (23,686 repeat measure-

ments in total), but were not run for the first sample due to insufficient sample volume. Titres

were tested in serial 2-fold dilutions from 1:10 to 1:1,280, with the reciprocal of the highest

dilution at which haemagglutination was inhibited recorded as the titre, and undetectable

titres recorded as<1:10. The full laboratory protocol is described in [95].

For all analyses, titres were transformed to a log2 scale (i.e., 2-fold dilutions), where

y = log2(D/5), giving log titres between 0 and 8 (undetectable titres were treated as a 0 log

titre). Seroconversion between study visits was defined as a 4-fold rise in titre, equivalent to a

�2 unit increase on the log scale. Seropositivity was defined as having a titre of�1:40 (log titre

�3). Further details on laboratory testing have been described previously [41].

Summary of model

The overall inference task is to obtain estimates for the joint posterior distribution of antibody

kinetics parameters (Θ), infection histories (Z) for all n individuals, and the attack rate within

each of m possible discrete infection periods conditional on the set of observed HI titres (Y).

Crucially, only Y is observed, so we must infer (or augment) the values of Z as latent features.

Throughout the remainder of the methods, we use capital letters to represent random variables

and bold letters to represent vectors of random variables. A detailed description of the infer-

ence problem and approach is described in [35], but can be summarised as sampling from the

posterior distribution:

PðZ; θjYÞ / ð
Yn

i¼1

Ytmax;i

t¼t1;i

PðYi;tjZi;1;Zi;2; . . . ;Zi;j�t; θÞÞPðZÞPðθÞ

where θ is the vector of antibody kinetics parameters that describes the link between Z and Y.
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The set of times t1,i to tmax,i gives the time periods when a serum sample was obtained from

individual i. P(Y |Z, θ) is defined by the antibody kinetics and observation model, and PðZÞ ¼
Qn

i¼1

Qm
j¼1

PðZi;jÞ is the infection history prior, described below.

An individual’s entire infection history is given as a vector of unobserved binary variables,

Zi = [Zi,1, Zi,2, Zi,j]. Each infection event, Zi,j, is the outcome of a single Bernoulli trial, where

Zi,j = 1 indicates that individual i was infected with the strain circulating in discrete time

period j, Zi,j = 0 indicates that they were not. The entire infection history matrix Z for all n
individuals across all m time windows was therefore represented by an n by m binary matrix.

We estimated infection histories at a 3-monthly resolution, such that each individual had an

unobserved infection state for each 3-month period j since birth. Individuals could be infected

from the first quarter after they were born. We did not attempt to impute infection states

occurring after an individual’s last serum sample. The attack rate is then given as

P
i
Zi;j

Nj
, where

Nj gives the number of individuals alive in time period j.
Infections lead to the production of antibodies (“seroresponses”) that undergo longitudinal

and cross-reactive kinetics. The vector of true, latent antibody titres across all time periods is

given as Ai = [Ai,1, Ai,2,. . ., Ai,j], which is generated from an antibody kinetics process with

parameters θ described below. The process generating measured titres from the latent anti-

body titres is modelled through an observation level. The vector of observations is given as Yi

= [Yi,1, Yi,2,. . ., Yi,t]. Note that the time index for Yi is different to Ai and Zi, as observations

are only made at a subset of t times, whereas latent infection states and antibody titres must be

represented at all j times. Yi,t is also itself a vector, as it contains HI titres against all strains

measured from that serum sample. A schematic of the full model is shown in S13 Fig and an

example simulated antibody landscape over time is shown in S14 Fig.

Note that the estimated attack rates and infection histories incorporate uncertainty in

whether elevated titres against a particular strain result from infection with that strain and/or

from cross-reactive antibodies from infection with a different, antigenically related strain. For

example, a high titre measurement might be explained by a single infection with that strain

(leading to a large boost) or by multiple infections with other, antigenically distant strains

(leading to multiple small boosts). The antibody kinetics model accounts for both possibilities

by including a homologous antibody boosting parameter and a model for cross-reactive anti-

body boosting as a function of antigenic distance (see below). This structure also allows us to

estimate infection states during years from which we do not have a representative influenza

strain in the HI panel. For example, in the time period 2010 to 2014 (Table 2), the model sam-

ples possible infection histories for that time period where elevated titres against A/Perth/

2009, A/Victoria/2009, A/Texas/2012, and A/Hong Kong/2014 could reflect strain-specific

antibody boosting from infections in 2010, 2012, and 2014, or cross-reactive antibodies from

infection in 2011 and 2013. Hence, we do not present a single estimate for the most plausible

infection history, but rather incorporate this uncertainty into the attack rate estimates by using

multiple samples from the posterior for each individual’s infection history.

Antibody kinetics, antigenic map, and observation model

We used an existing deterministic model to describe the generation of observed antibody titres

following exposure to an influenza strain [35,36]. The model has 3 components: (i) the anti-

body kinetics model; (ii) the antigenic map; and (iii) the observation model. The antibody

kinetics model describes linear short- (μs) and long-term (μl) antibody boosting on the log

scale immediately following infection. The short-term boost wanes over time such that the

remaining short-term boost j − k time periods after infection at time k is given by μsw(k,j) =

PLOS BIOLOGY Reconstructed influenza A/H3N2 infections reveal variation in incidence and antibody dynamics

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002864 November 7, 2024 18 / 37

https://doi.org/10.1371/journal.pbio.3002864


μsmax{0, 1 − ω(j-k)}. Long-term boosting is persistent. In addition to boosting antibodies

against the infecting strain, infection also elicits the production of cross-reactive antibodies

against antigenically related strains. Cross-reactivity is assumed to decrease linearly with anti-

genic distance by a factor of dl(k, j) = max(0, 1 − σδk,j), where δk,j represents the antigenic dis-

tance between the infecting strain k and the measured strain j. The short- and long-term boost

for a given strain is therefore given by μldl(k, j) = max{0, μl(1 − σlδk,j)} and μsds(k, j) = max{0,

μs(1 − σsδk,j)}, respectively. Finally, antigenic seniority by suppression was included, wherein

the full amount of boosting decreased linearly by a proportion τ for every infection following

the first. Boosting was scaled by s(Zi,j, j) = max{0,(1 − τ(Nj − 1))} after each infection, where Nj

− 1 is the number of previous infections before strain j. The full model, f(A|Z,θ) (where θ = {μs,
μl, ω, σl, σs, τ}), for expected titre for individual i measured at time t against strain j, Ai,j,t, is

given by:

Ai;j;t ¼
X

k2Zi

Zi;ksðZi;k; kÞðmldlðk; jÞ þ mlwðk; jÞdsðk; jÞÞ

A key component of the model is the antigenic map specifying the antigenic distance

between A/H3N2 strains and thus their cross-reactivity measured by the HI assay. That is,

infection with strain A generates cross-reactive antibodies which also recognise epitopes on

strain B, where the degree of cross-reactivity can be modelled as the antigenic distance between

the 2 strains. In the serosolver model, antigenic distance between strain k and strain j, δk,j, was

given by the Euclidean distance between them on the antigenic map. In theory, we might

jointly estimate the antigenic map alongside the other model parameters, but at present this is

computationally infeasible and thus we assume a fixed antigenic map for model fitting.

We used the antigenic coordinates of the 20 strains measured in the Fluscape study to rep-

resent the strains circulating in each time period (S15 Fig). We fit a cubic smoothing spline

with low amounts of smoothing (smoothing parameter = 0.3) through the coordinates to pro-

vide a comparable model to previous analyses and to smooth over large jumps in the posterior

surface, which greatly aids in model convergence by smoothing over multiple posterior modes

(see S2 Text) [36]. We also attempted to fit a version of the model assuming punctuated rather

than continuous evolution through antigenic space, placing strains into clusters based on pre-

vious analyses of A/H3N2 strains in China [96]. Although this punctuated version of the cross-

reactivity model may be more realistic [13], the posterior distribution under this model was

multimodal and thus we were unable to produce reliably converged model fits.

We assumed that log HI titres observed at time t were normally distributed with mean Ai,j,t

and variance ε as in [35,36], with censoring to account for the upper and lower bounds of the

assay. The probability of observing an empirical titre at time t within the limits of a particular

assay Yi,j,t 2 {0,. . ., qmax} given expected titre Ai,j,t is given by:

PðYi;j;tjZi; yÞ ¼ f ðYi;j;tjAi;j;tÞ ¼

R Yi;j;tþ1

Yi;j;t
gðsÞds if Yi;j;t 2 f1; qmax � 1g

R 1

� 1
gðsÞds if Yi;j;t ¼ 0

R1
qmax

gðsÞds if Yi;j;t ¼ qmax

8
>>><

>>>:

where qmax = 8 and g qð Þ ¼ 1ffiffiffiffiffi
2p�
p e�

ðq� yi;jÞ
2

2� , the probability density function of the normal distribu-

tion and ε is the standard deviation.

Fitting the model as described so far to the HI titre data led to systematic under- or overesti-

mation of titres to certain strains (S16 and S17 Figs). We therefore introduced fixed, strain-

specific measurement offsets similar to [97]. The procedure for estimating these offsets is
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described in S1 Text. In short, we added fixed offsets to each predicted titre as:

Y 0i;j;t ¼ Yi;j;t þ wj, where χj is the measurement offset for strain j. These additional offset param-

eters aim to capture the residual observation error not explained by the estimated infection

histories, antibody kinetics, and normally distributed observation error.

Infection history prior

The choice of prior for the infection history matrix Z is discussed in detail in [35]. The crux of

the problem is that the choice of prior P(Z) determines not only P(Zi,j = 1), but also the prior

distribution of total number of lifetime infections, attack rate in a given time period, and time

between infections. As we are interested here in reconstructing historical attack rates, we

chose to place a Beta prior on the probability of infection in a given time window (prior ver-

sion 2 in serosolver). The infection history matrix Z is then a Beta-Bernoulli distributed vari-

able such that:

P Zð Þ ¼
Ym

j¼1

Z 1

0

ð
Yn

i¼1

PðZi;jjFj ¼ �ÞÞPðFj ¼ �Þd� ¼
Ym

j¼1

Bðkj þ a; bþ nj þ kjÞ
Bða;bÞ

where B is the Beta function; kj = ∑iZi,j is the total number of infections across all individuals

during time period j, and nj is the number of individuals that could be infected during time

period j. Values for α and β can then be set to give known priors and variance on the total

number of infections as E kj
� �

¼ n a

aþb
and Var kj

� �
¼ n ab

ðaþbÞ2
1þ ðn � 1Þ 1

aþbþ1

h i
. When α =

β, the attack rate prior has an expectation of 0.5n, and the variance may be decreased by

increasing α and β. Here, we set α = β = 1. This choice of prior also implicitly assumes that the

total number of lifetime infections for an individual is binomially distributed with success

probability p = α/(α+β) and N =mi, where mi is the number of time periods that individual i
could be infected.

Inference using Markov chain Monte Carlo

All models were fitted using the Markov chain Monte Carlo (MCMC) algorithm implemented

in the serosolver R package. This is a custom, adaptive Metropolis–Hastings algorithm with

alternating univariate normal proposals for the model parameters θ and custom proposals Z
for the infection history states. Step sizes for all antibody kinetics parameter proposals were

also scaled automatically during the burn in to achieve an acceptance rate of 0.44 for all param-

eters. Uniform priors were placed on all antibody kinetics parameters θ shown in S4 Table.

Infection history state proposals were randomly chosen between one of 2 options: (i) select 2

potential infection times 12 time periods apart and swap infection states for all individuals that

could have been infected at these times; (ii) randomly select 20% of individuals and for each

individual, with 50% probability, either sample new infection state values for all possible infec-

tion times, or choose 2 potential infection times 12 time units apart and swap their values.

For the main model results, 5 chains were run for 50,000,000 iterations, with the first

20,000,000 discarded as burn-in, to achieve an effective sample size of>200 for all inferred

parameters. Convergence was assessed visually and using the Gelman-Rubin diagnostic crite-

ria (R̂) with the coda R-package [98]. Note that the huge number of iterations is due to the

need to impute nearly 4*N*T = 4*1130*190 = 858,800 latent binary variables in Z (i.e., the

infection state for each individual in each 3-month window since 1968, slightly less as individ-

uals could not be infected prior to birth). The ability for the model to recover ground-truth

parameters was explored through simulation-recovery, described in S2 Text.
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Post-processing of infection history posteriors

When fitting to the Fluscape data set, the serosolver model occasionally imputed continuous

runs of repeated infections in adjacent 3-month windows (e.g., imputing infections in Q1-

1968, Q2-1968, and Q3-1968), reflecting either genuine repeat infections or the model explain-

ing titres that were higher than a single antibody boost could explain. These infection runs

were relatively rare, but were most common for infection in young children and occasionally

for recent time periods (S18 and S19 Figs). Runs of repeat infections were not estimated when

fitting to simulated data, suggesting that their occurrence in the Fluscape data represents either

genuine repeat infections early in life or the model explaining titres that were higher than a

single antibody boost could explain. Although these reinfections may be real, particularly

among children [99,100], this may be a limitation of the model, which sometimes explains

high antibody titres through multiple infections rather than from a single infection eliciting a

large boost. Our pipeline therefore included a post-processing step to count these runs as sin-

gle infection events starting on the date of the first infection in the run. This reduced the total

number of distinct infection events from 11,544 infections (posterior median; 95% CrI: 11,358

to 11,736) to 10,558 (posterior median; 95% CrI: 10,394 to 10,750). The attack rate estimates

and reinfection rates from the posterior samples prior to removing the runs of consecutive

infections are shown in S2 Table, showing that although the post-processing step only slightly

reduced overall attack rate estimates, it substantially reduced the reinfection rate estimates,

which were as high as 8% in 2013 prior to removing consecutive infections.

We also carried out an additional data augmentation step when calculating annual attack

rates for more recent time periods, as we are unable to infer infection states after the latest

serum sample for each individual. For example, if an individual’s final serum sample is in Q3-

2014 and they have been estimated to have no infections in Q1 or Q2, it is not known if the

individual should contribute to the numerator and/or denominator when calculating the

annual attack rate for 2014. However, because the model assumes that the per-time infection

probability is Beta-distributed, it is straightforward to sample new infection states from the

model prior to seeing any antibody data using the probability of infection given by (described

in [35]):

P Zi;j ¼ 1jZ� i;j; a; b
� �

¼
kj þ a

nj þ aþ b

Where Z−i,j gives the infection states of all individuals other than i at time j, α, and β are

parameters of the Beta prior (assumed to both be 1), kj is the number of infections in Z-i,j and

n is the number of alive individuals at time point j. For every individual with an unknown

infection state following their final serum sample, we resample a new infection state using the

above formula for each posterior draw.

Fitting to longitudinal HI titre data from Ha Nam, Viet Nam

To provide a comparison for the model fits to the Fluscape data, we fit the same model to a

publicly available data set from Ha Nam, Viet Nam. This data set consisted of 69 participants,

each with between 1 and 6 (inclusive) serum samples taken annually from 2007 to 2012 as

described previously [37]. In this cohort, HI assays were performed against a panel of up to 57

A/H3N2 strains isolated between 1968 and 2008, with greater sampling of titres against more

recent strains. This represents a comparable data set with different dimensions: a much smaller

sample size, but far more titres and samples tested per individual. Unlike the Fluscape data, we

only had access to the year of sample collection, and thus we could only estimate infection
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histories at an annual resolution. Furthermore, we did not have dates of birth available for the

individuals, and thus we assumed that all individuals were born prior to 1968, noting that age

signals will still be detected based on the individual’s antibody profile. For this analysis, we did

not include the strain-specific measurement offsets in the observation model, as there were

multiple strains tested for each time period. We ran the MCMC algorithm for 5 chains each

for 1,500,000 iterations and discarded the first 500,000 iterations as burn-in, which was suffi-

cient to achieve effective sample sizes of>200 and upper 95% confidence intervals of the R̂ val-

ues of less than 1.1 for all estimated parameters.

Spatial correlation in inferred attack rates

To test for patterns of influenza incidence in space, nonparametric correlation as a function of

distance was tested using the Sncf function from the ncf R-package [101], where observations

were the quarterly attack rate estimates stratified by location ID (40 locations, 190 observations

per location). We fit these spline correlograms to 100 samples from the posterior distribution

of attack rates, resampling the 40 locations with replacement for each sample to generate pos-

terior medians and 95% CrIs. This analysis was repeated using estimated attack rates since

1968, since 2009, and pre-2009. To provide a comparable null simulation where no significant

spatial variation would be expected, we simulated 40 draws from a binomial distribution with

n = 25 (i.e., 1,000 individuals across 40 locations) and success probability drawn from a uni-

form distribution between 0 and 1, and repeated this process 10,000 times to calculate the

mean and 95% quantiles of the resulting coefficients of variation.

Relationship between titre and probability of infection

For the analyses investigating the relationship between titre at time of infection and probability

of infection, we drew samples from the estimated posterior distribution of antibody kinetics

parameters and infection histories, and calculated model-predicted preinfection latent anti-

body titres against the circulating strain for each individual at each possible infection time.

Predicted titres were converted to integers, with titres�8 assumed to be 8 to match the obser-

vation process. We then calculated the proportion of time periods where infection occurred

(Zi,j = 1) (the overall probability of infection) stratified by log titre at the time of infection rela-

tive to the overall probability of infection with a log titre of 0. As discussed above, some of the

inferred infection histories had runs of infections in consecutive time periods (e.g., Zi = [0, 0,

0, 1, 1, 1, 0, 0]). We removed these consecutive infections from the probability of infection sta-

tistics (e.g., [0, 0, 0, 1, 1, 1, 0, 0] becomes [0, 0, 0, 1, 0, 0, 0, 0]). We repeated this process for

1,000 posterior samples to generate median and 95% CrI estimates on the relationship between

titre and relative risk of infection.

Validation using self-reported vaccination

We validated our inference approach by comparing the model-predicted probability of infec-

tion to self-reported influenza vaccination. Vaccination coverage was low in this cohort (S1

Table), and self-reported vaccination status is not a perfect reflection of true vaccination status.

Furthermore, vaccination status was reported only within a window of time rather than on a

specific date: individuals were asked if they had ever received an influenza vaccination and

could give one of 6 answers: never vaccinated; in the same calendar year; in the preceding cal-

endar year; 2 to 5 years ago; 5+ years ago; or unsure. Individuals were also asked if they had

been vaccinated since their last study visit. Where an individual reported vaccination in one of

these time periods, we define the covered time period as the “vaccination window.”
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To assess the accuracy of our inference approach, we defined sensitivity as the proportion

of vaccination windows +/− 3 months which contained at least 1 inferred infection with more

than 25% posterior probability (i.e., we expect vaccination windows to contain inferred infec-

tions if our inference is accurate). However, a complication is that these windows are wide—

an individual reporting vaccination 2 to 5 years ago has a 3-year wide vaccination window,

and thus the individual is likely to have been infected during that time regardless of vaccina-

tion. Therefore to provide a comparable null simulation, we took each of the windows of time

with reported vaccination and reassigned them to randomly chosen individuals at random

times (e.g., if individual 1 reported vaccination between Q1-2013 and Q1-2015; the null simu-

lation reassignment might move the window to individual 2 in Q2-1980 to Q2-1982, regardless

of individual 2’s vaccination status). We repeated this process 100 times to generate 95%

uncertainty intervals for the null simulation. We then compared the proportion of vaccination

windows which contained inferred infections based on reported vaccination to the null simu-

lations. If the upper 95% uncertainty interval of the null simulation was lower than the propor-

tion of vaccination windows with inferred infections using the real data, we took this as

evidence that our model was more likely to infer antibody boosting events that coincided with

self-reported vaccination than in randomly selected time periods.

Supporting information

S1 Fig. Distribution of serum sampling times from the Fluscape cohort. First and second

visits refer to an individual’s serum sample order, which may differ from the sample collection

round of the overall study. The data underlying this figure can be found at https://doi.org/10.

5281/zenodo.12795911.

(TIF)

S2 Fig. Distribution of log HI titres by study location at first serum sample. Each cell repre-

sents the log HI titre for 1 individual measured against 1 strain, shown on the x-axis. Locations

were grouped into quintiles based on increasing distance from Guangzhou city center (bottom

panels). Individuals were grouped by age and plotted with increasing age. Colours to the left of

each subplot show age group. The data underlying this figure can be found at https://doi.org/

10.5281/zenodo.12795911.

(TIF)

S3 Fig. Distribution of log HI titres by study location at second serum sample. Each cell

represents the log HI titre for 1 individual measured against 1 strain, shown on the x-axis.

Locations were grouped into quintiles based on increasing distance from Guangzhou city cen-

ter (bottom panels). Individuals were grouped by age and plotted with increasing age. Colours

to the left of each subplot show age group. The data underlying this figure can be found at

https://doi.org/10.5281/zenodo.12795911.

(TIF)

S4 Fig. Example inferred latent antibody titres and infection histories. (A) Model-predicted

titres compared to observed HI titres at each sampling time for 5 randomly selected individu-

als. Rows represent individuals. Subplots show antibody titres based on serum samples taken

at that time. X-axis represents a position along the antigenic summary path. Black diamonds

show observed titres. Black line and green shaded regions show posterior median and 95%

credible intervals (CrIs) on model-predicted latent titres (dark green) and 95% prediction

intervals (light green). Orange bars show posterior probability of infection in that 3-month

window. Grey rectangles denote the limit of detection of the HI assay. Purple rectangles show

time periods before birth. (B) Posterior median and 95% CrI for the cumulative number of
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infections over time from birth (purple dashed line). The data underlying this figure can be

found at https://doi.org/10.5281/zenodo.12795911.

(TIF)

S5 Fig. Model fit to data from Ha Nam, Viet Nam. (A) Model-predicted titres compared to

observed HI titres at each sampling time for 5 randomly selected individuals, as in S4 Fig. Dia-

monds show titre measurements; green shaded region shows 95% CrI and 95% prediction

intervals; dashed line shows posterior median; orange bars show posterior probability of infec-

tion in a given time window. (B) Posterior median and 95% credible intervals (CrI) for the

cumulative number of infections over time from birth (orange). Note that date of birth infor-

mation was not available for these individuals. The data underlying this figure can be found at

https://doi.org/10.5281/zenodo.12795911.

(TIF)

S6 Fig. Comparison of annual attack rates using data from Ha Nam, Viet Nam and the

Fluscape study in Guangzhou, China. Annual attack rates were defined here as the propor-

tion of individuals who experienced at least 1 infection per year. Yellow shaded regions show

time periods where >95% or <5% of posterior samples suggested a greater attack rate in the

Fluscape cohort than Ha Nam, whereas green shaded regions show time periods where

between 25% and 75% of posterior draws suggested a greater attack rate in the Fluscape cohort.

Some time periods showed high uncertainty for the Ha Nam data set, as few individuals in the

sample were alive during that time (e.g., 1969–1980). Attack rate estimates were estimated to

be higher in the Fluscape cohort from 2000 to 2003 inclusive with more than 95% posterior

probability. This might reflect a genuine different in A/H3N2 epidemiology during that time,

but may also be partially driven by systematic biases in titre measurements to strains isolated

during that time period—the fits to the Fluscape data include a positive offset term for titres

against A/Fujian/2002, which leads to lower attack rate estimates in that time period, whereas

fits to the Ha Nam data do not. The time period from 2010 to 2012 also shows higher attack

rates in the Fluscape cohort but with similar relative patterns. The data underlying this figure

can be found at https://doi.org/10.5281/zenodo.12795911.

(TIF)

S7 Fig. Quarterly attack rates across the 40 Fluscape study locations. Each row represents 1

study location ordered by increasing distance from Guangzhou city center. Each column rep-

resents a 3-month period. Cells are shaded by (A) the posterior median inferred attack rate or

(B) the coefficient of variation of the posterior quarterly attack rate estimate for each location.

The data underlying this figure can be found at https://doi.org/10.5281/zenodo.12795911.

(TIF)

S8 Fig. Distribution of quarterly attack rates by location over time. Each panel is one frame

from a full animation available in S1 Video. Each coloured point shows the inferred attack rate

in each of the 40 locations, with size and shading reflecting the posterior median attack rate.

Underlying the plot is a map of the study area, with each grid cell shaded by its log10 population

density. The data underlying this figure can be found at https://doi.org/10.5281/zenodo.

12795911.

(TIF)

S9 Fig. Spatial variation in annual attack rate estimates over time and correlation between

nearby locations. (A) Coefficient of variation, (B) overall mean, and (C) standard deviation of

posterior median annual attack rate estimates from the 40 study locations. Solid lines and

shaded regions show posterior medians and 95% credible intervals. In (A), the solid horizontal
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line shows the overall mean coefficient of variation across all time. Dashed horizontal lines

show 95% quantiles of simulated coefficients of variation under the assumption that attack

rates are the same across space. (D) Fitted spline correlograms showing spatiotemporal corre-

lation in attack rates and proportion seroconverted with increasing distance. The first 3 plots

show the spline correlogram calculated using the Scnf function from the ncf R-package for

each of 100 posterior samples for the 40 location-specific attack rates. Solid lines and shaded

regions show median and 95% quantiles of the predicted covariance function for these 100

samples, coloured by the level of aggregation used to calculate the attack rates. Each subplot

shows the same calculation using either attack rates from all times, prior to Q1-2009 or Q1-

2009 onwards. For the final plot (“Seroconversion”), we calculated the spatial correlation in

the proportion seroconverted in each of the 40 study locations, treating strain isolation time as

the time variable. Solid lines and shaded regions show median and 95% quantiles of 1,000

bootstrapped observations. We repeated the analysis using either seroconversion to all strains,

or only A/Victoria/2009, A/Perth/2009, A/Texas/2012, and A/HongKong/2014. The data

underlying this figure can be found at https://doi.org/10.5281/zenodo.12795911.

(TIF)

S10 Fig. Quarterly attack rates by birth cohort. Model predicted per-capita incidence per

quarter stratified into 5 birth cohorts. Attack rates were estimated by dividing the number of

inferred infections by the number alive in each birth cohort in each 3-month period. Solid

lines show the posterior median estimate from 1,000 posterior samples. Shaded regions show

95% credible intervals from 1,000 posterior samples. Grey shaded box shows duration of the

Fluscape study. The data underlying this figure can be found at https://doi.org/10.5281/

zenodo.12795911.

(TIF)

S11 Fig. Posterior median number of infections per 10-year period stratified by age group

at the time of infection, including either all time periods (blue), time periods during the

Fluscape study period (Q4-2009 onward; orange) or only time periods prior to the Flus-

cape study (prior to Q4-2009; grey). Excludes infection states for individuals who spent less

than 2 years in that age group. We present infection rate estimates using only infections from

time periods prior to the first serum sample in Q4-2009 in Fig 3C. This is because there are

many individuals representing the oldest age group at time of infection for time periods post

Q4-2009, but relatively few from pre Q4-2009 (as individuals who were very old in historical

time periods are no longer alive). In contrast, younger age groups are better represented across

historical time periods (as those individuals are still alive at the time of sampling). Combining

this biased representation of older individuals with much higher estimated incidence rates in

recent time periods weighs the infection rate estimates for the older age groups much higher

simply because most of their infections come from this time period. Therefore, we present

age-stratified infection rate estimates using only pre Q4-2009 infections in the main text. The

data underlying this figure can be found at https://doi.org/10.5281/zenodo.12795911.

(TIF)

S12 Fig. Age-specific patterns of infection under an alternative infection history model

using estimates from the model version described in S1 Text. Results shown are identical to

those in Fig 3, but assuming that (i) individuals can only be infected once per year (i.e., annual

resolution infection histories rather than quarterly); (ii) the infection history model is placed

upon an individual’s total number of lifetime infections and not their per-time probability of

infection (see [35] for further detail on implications of different prior assumptions); (iii) we

did not remove runs of continuous infections from the posteriors. (A) Pointrange plot shows
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median and 95% CrI on the total number of lifetime infections for each individual, ordered by

increasing age. (B) Distribution of the total number of infections across all individuals based

on the posterior median total number of infections. (C) Posterior median number of infections

per 10-year period stratified by age group at the time of infection, excluding individuals who

spent less than 2 years in that age group, and including only time periods prior to Q4-2009.

Text shows sample size within each age group—note this does not sum to the number of indi-

viduals in the sample, as individuals contribute to multiple age groups during their lifetime.

(D) Posterior median number of infections per 10 years alive across all individuals. Under this

prior, we estimated that individuals are infected 2.08 times per 10-year period (posterior

median; 95% CrI: 1.04–7.62). The data underlying this figure can be found at https://doi.org/

10.5281/zenodo.12795911.

(TIF)

S13 Fig. Schematic of the full serosolver model representing a single individual infected

with 2 strains, B and H, over a 10-year time period. (A) Example, randomly generated popu-

lation-level infection probabilities. At the population level, the model describes a per-time-

period probability of infection applied to the whole population. These probabilities are used to

simulate a vector of latent binary infection states, Zi, for each individual as a series of indepen-

dent Bernoulli trials (shown as a vector of 1s and 0s). (B) The antigenic relatedness of A/H3N2

strains is given by an antigenic map, where the degree of cross reactivity between any 2 strains

is given by their Euclidean distance on the map. (C) Antibody levels against the infecting strain

(strain B) are boosted and wane, given by the summation of transient short-term boosting and

persistent long-term boosting. (D) Infection with strain B also induces cross-reactive antibod-

ies against all other strains, here showing antibody levels to strain H. The degree of cross-reac-

tivity is proportional to the antigenic distance between the infecting and measured strain.

Later on, the individual is infected again, this time with strain H, inducing further antibody

boosting and waning. An antigenic seniority parameter, τ, reduces each successive boost as a

function of the number of previous infections, N. Snapshots of these underlying antibody

kinetics are observed through serum samples (blood vials; (E) and (F)) distributed according

to a truncated, discretized normal distribution with standard deviation parameter ε.

(TIF)

S14 Fig. Simulated antibody landscapes and infection histories over time for one individ-

ual using the antibody kinetics model. Each subplot shows the antibody landscape for that

time period. The blue region gives the antibody landscape in that time period, whereas the red

region gives the antibody landscape in the preceding time period. The x-axis of each subplot

gives the identity of the strain assumed to be circulating in that year. The grey region shows

the time period and thus strains that circulated before the individual was born. Vertical dashed

lines give the timing/strains the individual was infected with.

(TIF)

S15 Fig. Antigenic coordinates of measured strains and strains assumed to be circulating

in each time period. Each coloured point shows the location of the labelled strain on the anti-

genic map given in [37]. Strains which are further apart are less antigenically similar, and

therefore exhibit less cross-reactivity following a seroresponse. The smoothing spline shows

the inferred coordinates of each strain j assumed to have circulated in each 3-month time

period, where each black point shows the assumed location in successive time periods. First, a

cubic smoothing spline was fitted to the locations of the measured strain with smoothing

parameter 0.3. Second, a linear model was fitted to predict the x-coordinate as a function of

the strain isolation time. Finally, we generated predicted x-coordinates for each possible j
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given the circulation time from the linear model, and then used the predicted x-coordinate to

predict the y-coordinate from the fitted smoothing spline. The antigenic distance between

each pair of strains k and j was then calculated based on their Euclidean distance. The data

underlying this figure can be found at https://doi.org/10.5281/zenodo.12795911.

(TIF)

S16 Fig. Quarterly incidence and individual infection histories from the Fluscape data set

without strain-specific measurement offsets. Identical to Fig 2, but without the inclusion of

strain-specific measurement offsets in the observation model. (A) Model predicted per-capita

incidence per quarter. Attack rates were estimated by dividing the number of inferred infec-

tions by the number alive in each 3-month period. Red line shows the posterior median esti-

mate from 1,000 posterior samples. Dark and light red shaded regions show 50% and 95%

credible intervals respectively from 1,000 posterior samples. Grey shaded box shows duration

of the Fluscape study. Asterisks mark times from which a sample circulating strain was tested.

(B) Inferred infection histories for each individual. Each row represents an individual ordered

by increasing age in years. Each column represents the time of a potential infection. Cells are

shaded based on the number of the posterior samples with an infection at that time divided by

the total number of posterior samples for that infection state. The data underlying this figure

can be found at https://doi.org/10.5281/zenodo.12795911.

(TIF)

S17 Fig. Distribution of antibody titre prediction errors (observed—model predicted)

when fitting the serosolver model ignoring strain-specific measurement offsets. (A) Distri-

bution of titre prediction errors stratified by tested A/H3N2 strain. (B) Overall distribution of

titre prediction errors across all measured viruses. Vertical red line shows x = 0; buckets to the

right of the red line suggest underestimation of titres; histograms to the left of the red line

buckets suggest overestimation of titres. The data underlying this figure can be found at

https://doi.org/10.5281/zenodo.12795911.

(TIF)

S18 Fig. Runs of repeated infections are disproportionately more likely to occur early in

life. (A) Proportion of infection episodes which are estimated as runs of consecutive infections

by age at start of infection run, using either all infection episodes or only those from individu-

als born after 1985. (B) Number of inferred infection episodes which are estimated as runs of

consecutive infections stratified by the infection order in each individual’s infection history.

For example, if the run is the first infection an individual has experienced, this is given an

infection number of one. Of the 10,558 distinct infection episodes, 757 (posterior median; 95%

CrI: 676–861) were runs of 2 consecutive infections, 79 (posterior median; 95% CrI: 62–97)

were runs of 3 consecutive infections and 19 (posterior median; 95% CrI: 13–27) were runs of

4 or more. The data underlying this figure can be found at https://doi.org/10.5281/zenodo.

12795911.

(TIF)

S19 Fig. Model fits demonstrating typical profiles where consecutive infection runs were

imputed. Model-predicted titres compared to observed HI titres at each sampling time for 2

individuals, as in S4 Fig. Diamonds show titre measurements; green shaded region shows 95%

CrI and 95% prediction intervals; dashed line shows posterior median; orange bars show pos-

terior probability of infection in a given time window. Purple rectangles show time periods

prior to birth. (A) Example of an individual estimated to have experienced multiple consecu-

tive infections immediately following birth to explain high titres. (B) Example of an individual

estimated to have experienced multiple consecutive infections between the 2 serum sampling

PLOS BIOLOGY Reconstructed influenza A/H3N2 infections reveal variation in incidence and antibody dynamics

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002864 November 7, 2024 27 / 37

https://doi.org/10.5281/zenodo.12795911
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3002864.s016
https://doi.org/10.5281/zenodo.12795911
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3002864.s017
https://doi.org/10.5281/zenodo.12795911
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3002864.s018
https://doi.org/10.5281/zenodo.12795911
https://doi.org/10.5281/zenodo.12795911
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3002864.s019
https://doi.org/10.1371/journal.pbio.3002864


times to explain the drastic increase in titres to recently circulating strains. The data underly-

ing this figure can be found at https://doi.org/10.5281/zenodo.12795911.

(TIF)

S20 Fig. Observed antibody profiles for all individuals in the Fluscape cohort. Each subplot

shows antibody levels measured against each of the 20 H3N2 strains. The x-axis shows the iso-

lation year of the measured strain. The areas are shaded by sample number, showing titre mea-

surements from the first (blue) and second (red) samples. Grey rectangles mark strains which

circulated before that individual was born. The vertical coloured lines show the timing of the

serum samples relative to the strain isolation times. Plots where the red region extends above

the blue region reflect antibody boosting between the first and second serum sample. Where

multiple titres were measured against the same strain from the same serum sample, we plotted

the mean of the log titres. The data underlying this figure can be found at https://doi.org/10.

5281/zenodo.12795911.

(PDF)

S21 Fig. Observed changes in antibody titre for all individuals in the Fluscape cohort. As in

S20 Fig, but showing fold-change in titre against each strain between samples. Each subplot

shows the change in antibody levels measured against each of the 20 H3N2 strains. The x-axis

gives the isolation year of the measured strain. The vertical grey line shows the timing of birth

or 1968, whichever was later. Bars are shaded orange to denote antibody boosting and green to

denote antibody waning. Horizontal dash lines indicate 2-fold boosting or waning. The data

underlying this figure can be found at https://doi.org/10.5281/zenodo.12795911.

(PDF)

S22 Fig. Comparison of observed antibody profiles, model-predicted infection states, and

self-reported vaccination status for accurately detected vaccinations. Left-hand column

shows raw data as in S20 Fig. Right-hand column shows the model-estimated posterior proba-

bility of infection (higher grey area suggested higher probability of infection) compared to self-

reported vaccination states. Orange regions show time periods in which individuals reported

having been vaccinated for influenza. Purple regions show time periods in which individuals

reported no vaccination for influenza. Vertical dashed lines show the time of serum sample

collection. Individuals were included in this plot (rather than S23 Fig) if the posterior probabil-

ity of infection during one of the orange time windows was >25%. The data underlying this

figure can be found at https://doi.org/10.5281/zenodo.12795911.

(PDF)

S23 Fig. Comparison of observed antibody profiles, model-predicted infection states, and

self-reported vaccination status for missed vaccinations. Left-hand column shows raw data

as in S20 Fig. Right-hand column shows the model-estimated posterior probability of infection

(higher grey area suggested higher probability of infection) compared to self-reported vaccina-

tion states. Orange regions show time periods in which individuals reported having been vac-

cinated for influenza. Purple regions show time periods in which individuals reported no

vaccination for influenza. Vertical dashed lines show the time of serum sample collection.

Individuals were included in this plot (rather than S22 Fig) if the posterior probability of infec-

tion during one of the orange time windows was<25%. The data underlying this figure can be

found at https://doi.org/10.5281/zenodo.12795911.

(PDF)

S24 Fig. Comparison of estimated antibody landscapes from the same model fit with and

without strain-specific measurement offsets. Rows represent individuals. Subplots show
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antibody titres based on serum samples taken at that time. X-axis represents a position along

the antigenic summary path. Black diamonds show observed titres. Black line and blue or

green shaded regions show posterior median and 95% credible intervals (CrI) on model-pre-

dicted latent titres (dark blue/green) and 95% prediction intervals (light blue/green). Orange

bars show posterior probability of infection in that 3-month window. Grey rectangles denote

the limit of detection of the HI assay. Purple rectangles show time periods prior to birth. (A)

Model-predicted titres compared to observed HI titres at each sampling time for 3 randomly

selected individuals, as in S5 Fig, but from fitting the model without strain-specific measure-

ment offsets. (B) as in (A), but with the estimated strain-specific measurement offsets

included. The data underlying this figure can be found at https://doi.org/10.5281/zenodo.

12795911.

(TIF)

S25 Fig. Estimated posterior distributions for antibody kinetics parameters (green shaded

region) using the fitted model described in S1 Text compared to true values used in the

simulation (blue line). The data underlying this figure can be found at https://doi.org/10.

5281/zenodo.12795911.

(TIF)

S26 Fig. Estimated posterior distributions for strain-specific measurement offsets (green

shaded region) using the fitted model described in S1 Text compared to true values used in

the simulation (blue line). The data underlying this figure can be found at https://doi.org/10.

5281/zenodo.12795911.

(TIF)

S27 Fig. Assessment of model fitting accuracy based on simulated data. Results shown are

from fitting the full model to simulated infection histories and antibody titres with known

parameters. (A) Model-predicted titres compared to observed HI titres at each sampling time

for three individuals. (B) Posterior median and 95% credible intervals (CrI) for the cumulative

number of infections over time from birth (orange). Blue solid line shows the true, known

cumulative number of infections. Purple dashed line shows the time of birth. (C) Posterior

estimated per-capita per-3-month attack rates. Red line and shaded region shows posterior

median and 95% CrI. Grey line shows the true values used for the simulation. (D) Shaded

regions show posterior distributions of estimated antibody kinetics parameters. Dashed lines

show the true value used for simulation. Note the x-axis range is small relative to the prior

ranges in S5 Table. The data underlying this figure can be found at https://doi.org/10.5281/

zenodo.12795911.

(TIF)

S28 Fig. Assessment of model fitting accuracy based on simulated data when strain-spe-

cific measurement offsets are ignored. Results shown are from fitting the full model to simu-

lated infection histories and antibody titres with known parameters where strain-specific

measurement offsets are used in the simulation, but ignored in the fitted model. (A) Model-

predicted titres compared to observed HI titres at each sampling time for 3 individuals. (B)

Posterior median and 95% credible intervals (CrI) for the cumulative number of infections

over time from birth (orange). Blue solid line shows the true, known cumulative number of

infections. Purple dashed line shows the time of birth. (C) Posterior estimated per-capita per-

3-month attack rates. Red line and shaded region shows posterior median and 95% CrI. Grey

line shows the true values used for the simulation. (D) Shaded regions show posterior distribu-

tions of estimated antibody kinetics parameters. Dashed lines show the true value used for sim-

ulation. Note the x-axis range is small relative to the prior ranges in S5 Table. The data
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underlying this figure can be found at https://doi.org/10.5281/zenodo.12795911.

(TIF)

S29 Fig. Antigenic maps used for the simulation (A) compared to the map produced using

data from Bedford and colleagues (B), and the map which assumes a punctuated path

through antigenic space (C). Axes show arbitrary antigenic dimensions. Coloured points

show the position of individual strains—all labels of the same colour correspond to the same

antigenic cluster. Black line shows the fitted antigenic summary path for each map. Black dots

show the antigenic position of the strain corresponding to each time period; (A) and (B)

assume continuous evolution through antigenic space, whereas (C) assumes that the same

position is used for all strains within a cluster. The data underlying this figure can be found at

https://doi.org/10.5281/zenodo.12795911.

(TIF)

S30 Fig. Assessment of model fitting accuracy when the antigenic map used for model fit-

ting does not match the one used for simulation. Results shown are from fitting the full

model to simulated infection histories and antibody titres with known parameters. (A) Model-

predicted titres compared to observed HI titres at each sampling time for 3 individuals. (B)

Posterior median and 95% credible intervals (CrI) for the cumulative number of infections

over time from birth (orange). Blue solid line shows the true, known cumulative number of

infections. Purple dashed line shows the time of birth. (C) Posterior estimated per-capita per-

3-month attack rates. Red line and shaded region shows posterior median and 95% CrI. Grey

line shows the true values used for the simulation. (D) Shaded regions show posterior distribu-

tions of estimated antibody kinetics parameters. Dashed lines show the true value used for sim-

ulation. Note the x-axis range is small relative to the prior ranges in S5 Table. The data

underlying this figure can be found at https://doi.org/10.5281/zenodo.12795911.

(TIF)

S31 Fig. Assessment of model fitting accuracy based when fitting a model with a smoothed

antigenic map to data simulated using a punctuated antigenic map. (A) Model-predicted

titres compared to observed HI titres at each sampling time for 3 individuals. (B) Posterior

median and 95% credible intervals (CrI) for the cumulative number of infections over time

from birth (orange). Blue solid line shows the true, known cumulative number of infections.

Purple dashed line shows the time of birth. (C) Posterior estimated per-capita per-3-month

attack rates. Red line and shaded region shows posterior median and 95% CrI. Grey line shows

the true values used for the simulation. Purple dashed lines show cluster transitions. (D)

Shaded regions show posterior distributions of estimated antibody kinetics parameters.

Dashed lines show the true value used for simulation. Note the x-axis range is small relative to

the prior ranges in S5 Table. The data underlying this figure can be found at https://doi.org/10.

5281/zenodo.12795911.

(TIF)

S1 Text. Description of methods to estimate strain-specific measurement offsets used in

the main model.

(DOCX)

S2 Text. Description of full simulation-recovery analyses using the serosolver model.

(DOCX)

S1 Video. Distribution of quarterly attack rates by location over time. Each coloured point

shows the inferred attack rate in each of the 40 locations, with size and shading reflecting the

posterior median attack rate. Underlying the plot is a map of the study area, with each grid cell
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shaded by its log10 population density. The data underlying this figure can be found at https://

doi.org/10.5281/zenodo.12795911.

(MP4)

S1 Table. Self-reported vaccination status at time of first study visit (top) and between

study visits (bottom). Percentages exclude individuals who declined to answer, were unsure,

or had missing data. The data underlying this table can be found at https://doi.org/10.5281/

zenodo.12795911.

(XLSX)

S2 Table. Estimated attack rates and infection patterns 2010–2014 prior to removing runs

of consecutive infections. Percentages shown are posterior median and 95% credible inter-

vals. Attack rate was defined as the proportion of individuals who were infected at least once

in that year. “Reinfected” gives the percentage of people that were infected more than once in a

year. Bottom table shows the percentage of individuals that were infected at least once per year

in 0, 1, 2, 3, 4, or 5 years between 2010 and 2014 inclusive. The data underlying this table can

be found at https://doi.org/10.5281/zenodo.12795911.

(XLSX)

S3 Table. Strain-specific measurement offset terms used in the main model fits. Values

shown are maximum posterior probability estimates from a less flexible version of the model

fit to the same data (described in S1 Text). Values shown to 3 significant figures.

(XLSX)

S4 Table. Estimated antibody kinetics parameters under the model without strain-specific

measurement offsets. The data underlying this table can be found at https://doi.org/10.5281/

zenodo.12795911.

(XLSX)

S5 Table. Description of antibody kinetics parameter values used for the simulation. Uni-

form priors were used for all parameters. The data underlying this table can be found at

https://doi.org/10.5281/zenodo.12795911.

(XLSX)
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