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ABSTRACT
Increased hygiene and sanitation are theorized to predispose to developing atopic diseases, 
a process potentially mediated by the gut microbiome. We hypothesized that the gut microbiome 
maturation has been altered by COVID-19 lockdown measures during the first year of life, a critical 
period when environmental exposure shapes human microbiome development. The two large pre- 
and during-COVID-19 mother-baby pairs cohorts in the Greater Bay Area of China provided the 
unique opportunity to assess the effect of increased hygiene standards on early gut microbiome 
maturation. Our results showed that the gut microbiome diversity, composition, and develop
mental trajectory were significantly altered between pre- and during-COVID-19 cohorts. 
Functionally, there was decreased richness in both antimicrobial peptide resistance genes and 
antibiotic resistance genes in the during-COVID cohort. Specially, Staphylococcus epidermidis 
carried a lower copy number of fluoroquinolone and beta-lactam antibiotics resistance genes 
while Klebsiella pneumoniae possessed a higher copy number of fluoroquinolone antibiotic resis
tance genes in gut microbiota of infants born during the COVID-19 pandemic. Our study under
scores the importance of considering the microbiome when evaluating hygiene measures and the 
need for future research to ascertain the role of the gut microbiome in disease development.
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Introduction

Since the beginning of the coronavirus (COVID-19) 
pandemic, stringent hygiene measures have been 
implemented to mitigate the spread of the virus. It 
has been hypothesized that this vigorous sanitation 
period may lead to atopic disease development due to 
poor gut microbiome stimulation.1–3 Epidemiological 
studies have shown that the prevalence of atopic der
matitis, allergic rhinitis or asthma has been on the rise 
between 1991 and 2006, especially in children of 

younger ages,4 with higher prevalence in affluent 
countries, although the prevalence is also rising in 
low to middle-income countries.5–7 The rise of atopic 
diseases has been linked to urbanization and increased 
hygiene standards.8,9 This has led to the development 
of the “hygiene hypothesis” and later the “microbiome 
hypothesis,” which implicates microorganism expo
sure in our living environment as a significant factor 
affecting the development of the immune system 
through its interactions with the human 
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microbiome.10,11 Studies have suggested that environ
mental factors are the primary determinants affecting 
the gut microbiome and the immune system 
development.12,13 Cohort studies have shown that in 
urbanized environments, poor microorganism expo
sure in the early-life period negatively affects the 
diversity and development of the neonatal gut micro
biome, which is associated with the future develop
ment of atopic diseases.14,15 Conversely, studies have 
shown that children living in rural environments in 
the early life period may be protected against atopic 
diseases.16,17 Such studies suggest that early life envir
onmental exposure during critical periods of life may 
lead to long-term health detriments.18,19

Hong Kong has adopted stringent measures 
starting from the first cases of COVID-19, includ
ing border restrictions, social distancing measures, 
contact tracing, quarantine, and isolation.20–22 

Furthermore, behavioral changes such as decreased 
travel, mask-wearing, use of alcohol-based saniti
zers, and increased sterilization of the environment 
have also been practiced by the public.21,22 In this 
study, we hypothesize that these behaviors have 
affected the level of microbial exposure during 
birth and early infancy, which are the critical per
iods for microbiome establishment and 
development.23,24 Therefore, in this study, we 

aimed to characterize how the COVID-19 lock
down measures have affected the early-life gut 
microbiome in the first year of life.

Results

Study population characteristics

We included two longitudinal cohorts from 
Hong Kong: (1) the pre-COVID cohort (246 stools 
samples from 67 healthy infants collected before 
the COVID-19 pandemic during Oct 2017–Jan 
2020); and (2) the during-COVID cohort (497 
stools samples from 120 healthy infants collected 
during April 2020-Jan 2022). In addition, a total of 
103 maternal stool samples (44 samples in the pre- 
COVID and 59 samples in the during-COVID 
cohort) were collected from the mothers in the 
2nd to 3rd trimester. To minimize the difference 
in covariates between the two cohorts, we applied 
propensity matching (1:1) to adjust for sex, delivery 
mode, and breastfeeding practice for the infants. 
The study cohort demographics are summarized in 
Table 1 and Supplementary Table S1. There were 
no significant differences in demographic charac
teristics between the two cohorts after matching. 
The collection timepoints of individual samples 
and stringency index are depicted in Figure 1.

Table 1. Characteristics between pre-COVID and during-COVID cohort.
Before propensity score matching After propensity score matching

pre-COVID 
(N = 67)

during-COVID 
(N = 120)

p-value
pre-COVID (N = 67)

during-COVID 
(N = 67) Adjusted p-value

Sex ·· ·· 0.70 ·· ·· 0.73
Male 34 (50.7%) 56 (46.7%) ·· 34 (50.7%) 31 (46.3%) ··
Female 33 (49.3%) 64 (53.3%) ·· 33 (49.3%) 36 (53.7%) ··

Delivery mode ·· ·· 0.081 ·· ·· 0.68
Vaginal delivery 54 (80.6%) 81 (67.5%) ·· 54 (80.6%) 51 (76.1%) ··
Caesarean section 13 (19.4%) 39 (32.5%) ·· 13 (19.4%) 16 (23.9%) ··

Month1 Breastfeeding practice ·· ·· 0.001 ·· ·· 1
Almost exclusive breastfeeding* 11 (16.4%) 42 (35.0%) ·· 11 (16.4%) 11 (16.4%) ··
Mixed feeding 49 (73.1%) 53 (44.2%) ·· 49 (73.1%) 49 (73.1%) ··
Almost formula feeding+ 7 (10.5%) 25 (20.8%) 7 (10.5%) 7 (10.5%)

Usage of intrapartum antibiotics ·· ·· 0.09 ·· ·· 0.72
Yes 24 (35.8%) 60 (50.0%) ·· 24 (35.8%) 27 (40.3%) ··
No 43 (64.2%) 60 (50.5%) ·· 43 (64.2%) 40 (59.7%) ··

Oral Antibiotics within 3 months ·· ·· ·· ·· ·· ··
Month 1 5 (7.5%) 1 (0.8%) 0.02 5 (7.5%) 0 0.06
Month 2-3 5 (7.5%) 1 (0.8%) 0.02 5 (7.5%) 0 0.06
Month 6 0 2 (1.7%) 0.54 0 0 1
Month 12 1 (1.5%) 0 0.36 1 (1.5%) 0 1

Furry pets ·· ·· 1 ·· ·· 0.68
Yes 13 (19.4%) 23 (19.2%) ·· 13 (19.4%) 16 (23.9%) ··
No 54 (80.6%) 97 (80.8%) ·· 54 (80.6%) 51 (76.1%) ··

Data are n (%) unless otherwise indicated. 
*Almost exclusive breastfeeding: the proportion of breastfeeding higher than 90%. 
+Almost formula feeding: the proportion of formula feeding higher than 90%.
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Microbial composition in infants born before and 
during COVID-19

All stool samples were subjected to shotgun metage
nomics sequencing. In total, we sequenced 521 stool 
samples from 134 infants and 103 stool samples from 
mothers with an average of 6.789Gb sequence depth 
per sample. To rule out potential contamination, we 
used 6 negative controls in DNA extraction, library 

construction, and sequencing steps. Only unknown or 
unclassified taxa were detected in the negative con
trols after taxonomic annotation with MetaPhlAn3. 
Microbial Community Standard (ZymoBIOMICS™) 
was subject to repeated extraction, library construc
tion, and metagenome sequencing to assess batch 
variation. Species-level relative abundances of positive 
controls revealed minimal variation between 
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Figure 1. Sample collection summary and timeline. The histogram plot depicts the sample sizes of each time point after propensity 
matching by sex, delivery mode, and breastfeeding practice. The dots plot shows the collection timepoints of individual samples. Each 
dot indicates a sample, and each line indicates a subject. Red shaded bars delineate five levels of control-measure stringency in 
Hong Kong (level 1: <40; level 2 : 40–50; level 3: 50–60; level 4: 60–70; level 5: >70). Control-measure stringency applied in Hong Kong 
is based on the oxford COVID-19 government response tracker.
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replicates (Supplementary Figure S1A). The sequen
cing depths of samples are depicted in Supplementary 
Figure S1B. We first examined changes in bacteria 
alpha diversity in infants between the two periods. 
Bacteria richness assessed by Chao1 index 
(Figure 2a) and observed species (Supplementary 
Figure S2A) did not differ at birth and 1 month old 
between the two cohorts. However, richness indices of 

the microbiome assessed at 2–3 months, 6 months 
and 12 months of age were significantly reduced in 
the during-COVID cohort compared with pre- 
COVID cohort (Chao1: PM2–3 = 0.027, PM6 =  
6.4×10−4, PM12 = 0.0028; Observed species: PM2–3 =  
0.031, PM6 = 8.7 × 10−5, PM12 = 1.6 × 10−4) 
(Figure 2a and Supplementary Figure S2A). 
Likewise, Shannon diversity was significantly reduced 
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Figure 2. Gut microbial alpha diversity, beta diversity, and composition differed between pre-COVID and during-COVID. (a) Microbial 
richness was assessed by Chao1 index and (b) microbial diversity was assessed by Shannon index. p values were given by Wilcoxon’s rank- 
sum tests. (c) Principal component analysis (PCA) based on Bray-Curtis dissimilarity indicates significant differences in gut microbial 
community structure at birth, month 2-3, and month 6 between the pre-covid and during-covid. R2 and p values were given by 
permutational multivariate analysis of variance (PERMANOVA). Beta diversity was assessed with Bray-Curtis dissimilarity and was visualized 
by principal component analysis (PCA). (d) The bar plot depicts the effect size of host factors on gut microbiome at each timepoint. Effect size 
and statistical significance were determined via PERMANOVA. Asterisks indicate statistical significance with * p < 0.05. Differential bacterial 
species in infants between the two cohorts were detected by LEfSe at the age of (e) 1 month, (f) 2-3 months, (g) 6 months, and (h) 12  
months.
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in the during-COVID cohort at 6 and 12 months of 
age (PM6 = 0.004, PM12 = 0.007) (Figure 2b) and phy
logenetic diversity showed a decline from age 2 to 12  
months when compared with the pre-COVID cohort 
(PM2–3 = 0.0011, PM6 = 1.7 × 10−4, PM12 = 2.0 × 10−4) 
(Supplementary Figure S2B). We used a Generalized 
Linear Model to assess the difference in alpha diversity 
between the cohorts after adjustment with sequence 
depths. Chao1 index and Shannon index remain 
higher in pre-COVID than during-COVID cohort 
after adjustment (data not shown). We also compared 
the development of alpha diversity index along the 
chronological age at sample collection timepoints in 
both groups. Microbial richness and diversity were 
persistently higher in the pre-COVID cohort than in 
the during-COVID cohort over the first year of life 
(Supplementary Figure S2C,D). Hong Kong imple
mented stringent measures from the onset of 
COVID-19. We next divided the during-COVID 
group into high stringency and low stringency sub
groups based on whether the samples were collected 
under control measures with a stringency level higher 
than three.21 Notably, the observed species and 
Shannon diversity of gut microbiota were significantly 
lower in the high stringency group at 12 months of age 
compared to the low stringency group 
(Supplementary Figures S3A,B).

Microbial community structure, as assessed by 
the BrayCurtis dissimilarity metric, was signifi
cantly different between the pre- and during- 
COVID cohorts at birth, 2-3 months, and 6 months 
(Figure 2c, permutational multivariate analysis of 
variance (PERMANOVA): P D0 = 0.017, false dis
covery rate (FDR) PFDR D0 = 0.043; P M2–3 = 0.013, 
PFDR M2–3 = 0.043; P M6 = 0.041, PFDR M6 = 0.068). 
We next examined the impact of host factors on the 
infants’ gut microbiome composition. Among all 
host and environmental factors, delivery mode, 
COVID-19 pandemic, and intrapartum antibiotics 
were the top three factors that had the largest effect 
on early life gut microbiome composition 
(Figure 2d, PERMANOVA, FDR < 0.05). 
Differential species between the two groups were 
determined using Microbiome Multivariable 
Association with Linear Models (MaAsLin) to 
adjust for delivery mode, intrapartum antibiotics 

usage, household furry pets, and chronological age. 
Fifteen species were detected to be lower in the 
during-COVID cohort, including Streptococcus 
thermophilus and Bifidobacterium breve 
(Supplementary Table S2). We furthermore identi
fied differential species between the two cohorts at 
each sample collection timepoint (Figure 2e–h, 
Supplementary Figure S4A-D) using linear discri
minant analysis (LDA) effect size (LEfSe) and 
MaAsLin methods. No differential species were 
observed in meconium samples between the two 
cohorts. Interestingly, the abundance of two 
Bifidobacterium species, Bifidobacterium breve 
and Bifidobacterium dentium, were significantly 
reduced in the during-COVID cohort at 2-3  
months after birth detected by LEfSe (Figure 2f) 
and MaAsLin (Supplementary Figure S4B, adjusted 
with delivery mode, intrapartum antibiotics usage, 
and household furry pets). Interestingly, the abun
dances of Klebsiella pneumoniae and Klebsiella var
iicola were decreased in the during-COVID cohort 
at months 6 and 12 when compared to the pre- 
COVID cohort. A sensitivity analysis that excluded 
the infants who were exposed to antibiotics was 
performed to investigate the difference in gut 
microbiota alpha diversity and composition 
between the two cohorts and the results were con
sistent (Supplementary Figure S5A-C).

COVID-19 pandemic played the major determinant 
impacting the maternal gut microbiota composition

We further performed the metagenomic analysis to 
determine if the maternal microbiome was signifi
cantly altered during the lockdown measures of 
COVID-19, and if this alteration had played 
a role in the changes in the infant gut microbiome 
between pre- and during-COVID cohort. A total of 
103 maternal stool samples (44 samples in the pre- 
COVID and 59 samples in the during-COVID 
cohort) collected from the mothers in the 2nd to 
3rd trimester were included. The demographics of 
mothers are summarized in Supplementary Table 
S3. Our results showed that maternal gut micro
biome alpha diversity assessed by Chao 1 index and 
Shannon diversity did not differ in pre- and dur
ing-COVID cohorts (Figure 3a), although there 
was a significant change in overall gut microbiota 
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composition (Figure 3b). Among all host and 
environmental factors, including age, smoking sta
tus, gestational hypertension, gestational diabetes 
mellitus, and the COVID-19 pandemic, we 
observed that COVID-19 lockdown measures and 
smoking status were the major determinants 
impacting the maternal gut microbiota composi
tion (Figure 3c). We identified the differential 

species in maternal stool in pre- and during- 
COVID groups by LEfSe (Figure 3d) and compared 
them with the infant gut microbiome differential 
species. However, the maternal differential species 
did not overlap with the differential bacterial spe
cies in infant stools collected at month 1 or month 
2-3 between pre-COVID and during-COVID 
cohorts (Figure 2e,f). We also examined the 
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significance were determined via PERMANOVA. Asterisks indicate statistical significance with *p < 0.05. (d) Differential species in 
maternal stool between the two cohorts were determined by LEfSe.
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difference in mother-to-infant transmission 
between the two cohorts via PanPhlAn and 
StrainPhlAn. There were no significant differences 
in the strain-sharing rate between mother-infant 
pairs across the two cohorts (Supplementary 
Figure S6). Additionally, no species exhibited sig
nificant differences in transmission from mother to 
infant when comparing the pre-COVID and dur
ing-COVID cohorts (Supplementary Table S4). 
This may suggest that there are other factors aside 
from vertical transmission that account for the 
changes in the infant microbiome.

COVID-19 pandemic altered the trajectory of gut 
microbial development in infants

To evaluate gut microbial maturation, we devel
oped a microbiome-age prediction model using 
Random Forest based on the gut microbiome spe
cies-level profiles of healthy infants from the pre- 
COVID cohort and identified 33 age-discrimina
tory species (Figure 4a). To assess the performance 

of the gut microbiome-age prediction model, we 
drew 1,000 bootstrap samples which were repeated 
100 times. The mean absolute error (MAE, 95% CI) 
was 13.5 [13.4,13.6] days. We further correlated the 
estimated gut microbiota age with chronological 
age. The estimated gut microbiota age was strongly 
correlated with chronological age with a mean ken
dall’s tau coefficient of 87.9% [87.8%, 88.0%]. 
Using this prediction model, our data showed 
that the estimated microbial age of infants born 
during COVID-19 tended to be higher in the first 
100 days but subsequently developed at a slower 
rate in comparison with those born pre-COVID- 
19 (Figure 4b). We then calculated the relative 
microbiota maturity (RMM) using an established 
formula that compares postnatal assembly (defined 
here as maturation) of an infant’s fecal microbiota 
relative to infants of similar chronologic age in the 
pre-COVID cohort.25 We found that the RMM was 
significantly increased in pre-COVID cohort from 
birth to 1 month old but decreased at the age of 6  
months and 12 months as compared with the 
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Figure 4. Gut microbial maturation altered in infants born during COVID-19 pandemic (a) bar plot shows the variable importance in 
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during-COVID cohort (Figure 4c). To adjust other 
confounding factors, we further compared the dif
ferences in gut microbial relative maturity between 
the pre-COVID and during-COVID cohorts, stra
tified by delivery mode, intrapartum antibiotic 
exposure, and the presence of household pets. 
Infants born during the COVID-19 pandemic still 
exhibited lower gut microbial relative maturity at 
the ages of 6 and 12 months compared to those 
born pre-COVID pandemic, even after stratifica
tion (Supplementary Figure S7A-C). Additionally, 
the gut microbial relative maturity in the during- 
COVID cohort remains lower than that of the pre- 
COVID cohort at the ages of 6 and 12 months after 
excluding those infants with antibiotic exposure 
(Supplementary Figure S7D).

Alterations in microbial functional pathway in 
infants born during COVID-19

Given that microbiota composition changed dra
matically in early life during COVID-19, we next 
applied DESeq2 and MaAsLin to identify differen
tial microbial pathways between the two groups. 
A total of 10 pathways were depleted, while 16 were 
enriched in the during-COVID cohort during the 
first year after adjusting for chronological age, 
intrapartum antibiotics usage, delivery mode, and 
having household furry pets (Figure 5a, 
Supplementary Table S5). Pathways related to vita
min biosynthesis (PWY-6895: superpathway of 
thiamine diphosphate biosynthesis II), sugar 
degradation (DARABCATK12-PWY: D-arabinose 
degradation I; PWY-7345: superpathway of anae
robic sucrose degradation) and purine nucleotide 
degradation (PWY-6607: guanosine nucleotides 
degradation I) were the top 4 functional pathways 
negatively correlated with the during-COVID 
cohort after adjustment. Among pathways 
enriched in the during-COVID cohort, there were 
three pathways associated with microbial energy 
generation, namely PWY-5690: tricarboxylic acid 
(TCA) cycle II, PWY-7254: TCA cycle VII, and 
PWY-5083: NADP/NADPH interconversion 
(Figure 5a, Supplementary Table S5).

Four bacteria species, Bifidobacterium breve, 
Bifidobacterium dentium, Veillonella parvula, and 
Clostridium perfringens, depleted in infants during 
the COVID-19 pandemic, were identified to be 

associated with most of the altered microbial func
tion. (Figure 5b, Supplementary Table S6). Among 
them, Bifidobacterium breve was identified to be 
significantly related to L-alanine biosynthesis 
(Figure 5b, and Supplementary Table S6). No sig
nificant correlation was found between the specific 
increased species during COVID-19 and pathways 
associated with microbial energy generation 
(Supplementary Table S6). These results provide 
evidence that the depletion of specific beneficial 
species in infants born during COVID-19 is asso
ciated with functional changes in the gut 
microbiome.

COVID-19 pandemic dampened the gut microbiota 
adaptation to antimicrobial peptide

To address whether COVID-19 lockdown measures 
affect the richness of early life anti-microbial pep
tides (AMP), an evolutionarily conserved compo
nent of immune defense26 and a critical factor in 
early life gut microbiota seeding,27 shotgun metage
nomic reads were mapped to a comprehensive data
set of 138 AMP resistance genes.28 We observed 
a significant decrease in the richness of AMP resis
tance genes in the stool of infants aged 2 months to 
12 months born during the pandemic 
(Supplementary Figure S8A, Chao1: PM2–3 = 5 × 
10−5; PM6 = 9.5 × 10−8; PM12 = 3.7 × 10−4; 
Supplementary Figure S5B, Observed: PM2–3 = 1.1 
× 10−5; PM6 = 5.4 × 10−10; PM12 = 8.9×10−7). The 
richness of genes that confer resistance to two 
major human AMPs (cathelicidin and defensin) 
showed significant reduction at the age of 2–3  
months (Figure 6a: cathelicidin: PObserved =  
7.1×10−5; Figure 6b: defensin: PObserved = 0.02), 6  
months (Figure 6a: cathelicidin: PObserved = 1.4 × 
10−7; Figure 6b: defensin: PObserved = 1.3 × 10−4) 
and 12 months (Figure 6a: cathelicidin: PObserved =  
7.1×10−6; Figure 6b: defensin: PObserved = 1.7 × 10−3) 
during the pandemic. Decreases in the richness of 
genes that confer resistance to cathelicidin and 
defensin from 2 to 12 months during the pandemic 
were also observed in a sensitivity analysis that 
excluded the infants who were exposed to antibiotics 
(Supplementary Figure S8C,D). We next compared 
the changes in the observed index within different 
time periods in the first year to determine whether 
longitudinal patterns of AMP resistance genes 
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acquisition differ between the two cohorts. The 
changes in observed index from postpartum month 
2–3 to month 1 and from month 12 to month 6 were 
significantly lower in during-COVID cohort than 
those in pre-COVID cohort (Supplementary Figure 
S8E). Additionally, the Chao1 index of AMP resis
tance genes was significantly lower in the high strin
gency group at 2–3 months of age compared to the 
low stringency group (Supplementary Figure S9A, 
B). MaAsLin analysis revealed that 24 AMP resis
tance genes were significantly decreased while only 1 
gene, degP, was enriched in the during-COVID 
cohort when compared with the pre-COVID cohort 

(Figure 6c, FDR < 0.05). Among the AMP categories 
to which these AMP resistance genes belong, poly
myxin, cathelicidin, and defensin ranked in the top 
three (Figure 6d).

To identify species that contributed to the dif
ference in the abundance of these AMPs resistance 
genes between the two cohorts, we assembled and 
binned the high-quality paired-end reads into 
metagenome-assembled genomes (MAGs). 
Medium- and high-quality MAGs were annotated 
with AMP resistance genes. AMP resistance genes 
were detected in 547 out of 13,326 MAGs. After 
filtering away those species with a prevalence lower 

Figure 6. Distinct antimicrobial peptides (AMPs) resistance genes reservoir in infants during the COVID-19 pandemic (a) Data 
represents observed index of cathelicidin resistance genes in fecal sample. (b) Data represents observed index of defensin resistance 
genes in faecal sample. p values were given by Wilcoxon’s rank-sum tests. (c) The heatmap represents the abundance of differential 
AMP resistance genes in each sample quantified as logarithm of the hit counts [log (count +1)] for each AMP resistance gene. 
Differential AMP resistance genes were determined by a linear mixed-effects model with adjustments for chronological age, delivery 
mode, intrapartum antibiotics usage, and household furry pets using MaAsLin (all adjusted p < 0.05). (d) The pie chart represents the 
frequency of resistance class for the AMP resistance genes significantly affected by COVID-19 pandemic. The violin plot depicts the 
copy number of cathelicidin resistance genes in (e) Enterococcus faecalis, (f) Staphylococcus epidermidis and (g) Staphylococcus aureus; 
the copy number of defensin resistance genes in (h) Staphylococcus epidermidis and (i) Staphylococcus aureus, and the copy number of 
polymyxin resistance genes in (j) Staphylococcus epidermidis and (k) Staphylococcus aureus in pre-COVID and during-COVID cohort.
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than 10%, we got 439 MAGs belonging to 8 species, 
including Enterococcus faecalis, Klebsiella pneumo
niae, Escherichia coli, Staphylococcus epidermidis, 
Staphylococcus aureus, Staphylococcus hominis, 
Intestinibacter bartlettii, and Klebsiella variicola. 
Of these 8 species, only Enterococcus faecalis dis
played a higher copy number of genes encoding for 
resistance to cathelicidin in during-COVID cohort 
compared with pre-COVID cohort (Figure 6e). By 
contrast, Staphylococcus epidermidis and 
Staphylococcus aureus harbored significantly 
lower genes that confer resistance to cathelicidin, 
defensin, and polymyxin in during-COVID cohort 
(Figure 6f–k). A sensitivity analysis that excluded 
the infants who were exposed to antibiotics showed 
consistent results (Supplementary Table S7).

Infants born during COVID-19 pandemic had 
a distinct reservoir of gut antimicrobial resistance 
genes

To characterize the impact of the COVID-19 pan
demic measures on gut microbiota antibiotic resis
tance genes (ARGs) reservoir in infants’ gut 
microbiome, we performed ShortBRED to identify 
antibiotic resistance genes based on The 
Comprehensive Antibiotic Resistance Database 
(CARD).29 The richness indexes of ARGs were 
significantly lower in the gut microbiota of infants 
at 6 and 12 months old who were born during 
COVID-19 (Figure 7a,b, Observed index: PM6 =  
4.0 × 10−6; PM12 = 3.4 × 10−3; Chao1 index: PM6 =  
1.2 × 10−4; PM12 = 1.7 × 10−4). A sensitivity analysis 
that excludes the infants who were exposed to 
antibiotics showed consistent results of the differ
ence in the richness of ARGs between the two 
cohorts. (Supplementary Figure S10A,B). 
Additionally, the observed index of ARGs resis
tance genes was significantly lower in the high 
stringency group at 12 months of age compared 
to the low stringency group (Supplementary 
Figure S10C,D).

A total of 24 reduced ARGs but no enriched ARG 
were found in the during-COVID cohort via long
itudinal analysis (Figure 7c). These decreased ARGs 
encode resistance to major broad-spectrum antibio
tic classes, with the highest representation of resis
tance to tetracycline, β-lactams, fluoroquinolones, 
and rifamycin (Figure 7d). Next, we investigated 

species that contributed to the difference in the 
abundance of these ARGs between the two cohorts 
by recovering medium- and high-quality MAGs, for 
which ARGs were assigned to 1240 MAGs. After 
filtering those species with a prevalence lower than 
10%, we got 725 MAGs belonging to 12 species, 
including Bifidobacterium bifidum, Bifidobacterium 
breve, Bifidobacterium dentium, Bifidobacterium 
longum, Bifidobacterium pseudocatenulatum, 
Enterococcus faecalis, Staphylococcus aureus, 
Staphylococcus epidermidis, Bacteroides fragilis, 
Bacteroides uniformis, Escherichia coli, and 
Klebsiella pneumoniae. Notably, Klebsiella pneumo
niae displayed a higher copy number of genes 
encoding for resistance to fluoroquinolone antibio
tics in during-COVID cohort compared with pre- 
COVID though no specific ARG was found to be 
enriched in the during-COVID cohort (Figure 7e). 
Consistent with the reads-alignment analysis show
ing depression in β-lactams, fluoroquinolones, and 
rifamycin resistance genes, Staphylococcus epidermi
dis revealed decreased copy numbers of β-lactams 
and fluoroquinolones resistance genes, while 
Bifidobacterium breve harbored a lower copy num
ber of rifamycin resistance genes in during-COVID 
group (Figure 7f–h). No specific species was found 
to be responsible for the difference in the abundance 
of tetracycline antibiotic resistance genes between 
the two cohorts. A sensitivity analysis that excluded 
the infants who were exposed to antibiotics showed 
consistent results (Supplementary Table S7).

Discussion

This is the first proof-of-concept study to demon
strate the altered neonatal gut microbiome devel
opment during COVID-19 lockdown measures in 
an East Asian population. The data provide evi
dence that restrictive pandemic measures (includ
ing increased hygiene and sanitation measures) 
may have impaired neonatal microbial diversity. 
Using shotgun metagenomic sequencing of stool 
samples, we showed that the loss of microbiome 
diversity was associated with differences in micro
bial encoded function, including the reduction of 
bacteria richness and diversity related to antimi
crobial peptides resistance genes and antibiotics 
resistance genes. Neonatal gut microbiome devel
opmental trajectory during the COVID-19 
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pandemic was also changed when compared with 
infants born before the pandemic. These results in 
combination suggest a negative impact of the 
COVID-19 lockdown measures in relation to 
altered human gut microbiome development 
which may be associated with long-term health 
outcomes.

The first 1,000 days of life is a critical window for 
the establishment and development of the gut 
microbiota.30,31 In this early period, the immune 
system is in a state of immaturity, and an impaired 
immune response allows for gut microbiota 
colonization.32,33 During the COVID-19 pan
demic, lockdown measures may affect the infant 
gut microbiome through: 1) Impairment of the 
maternal microbiome and 2) Reduced exposure to 
the environmental microbiome. The maternal 

microbiome serves as the major source of inocula
tion for the fetal gut, and is a critical factor in the 
development of the infant microbiome.34 The 
maternal microbiome is theorized to be affected 
during the COVID-19 pandemic due to poor 
microbial exposure, such as through reduced travel 
and decreased outings.1 Maternal-fetal transmis
sion of gut microbes may also be impaired due to 
heightened hygiene practices, such as due to 
decreased frequency of breastfeeding and maternal 
self-isolation from the baby for fear of COVID-19 
infection.2 In our study, COVID-19 pandemic 
lockdown measures were regarded as the major 
determinant impacting the maternal gut micro
biota composition. Nevertheless, current evidence 
suggests that other factors other than mother- 
infant transmission may account for the differences 

Figure 7. Distinct antibiotic resistance genes (ARGs) reservoir in infants during the COVID-19 pandemic (a) data represents observed 
index of ARGs in fecal samples. (b) Data represents Chao1 index of ARGs in faecal sample. p values were given by Wilcoxon’s rank-sum 
tests. (c) The heatmap represents ARGs abundance in each sample quantified as logarithm of the reads per kilobase per million [log 
(RPKM +1)] mapped reads for each ARG. Differential ARGs were determined by a linear mixed-effects model with adjustments for 
chronological age, delivery mode, intrapartum antibiotics usage, and household furry pets using MaAsLin (all adjusted p < 0.05). (d) 
The pie chart represents the frequency of resistance classes for the ARGs significantly affected by COVID-19 pandemic. The violin plot 
depicts the copy number of fluoroquinolone antibiotics resistance genes in (e) Klebsiella pneumoniae and (f) Staphylococcus 
epidermidis; the copy number of beta-lactams antibiotics resistance genes in (g) Staphylococcus epidermidis, and the copy number 
of rifamycin antibiotics resistance genes in (h) Bifidobacterium breve in pre-COVID and during-COVID cohort.
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in infant microbiome between our cohorts. To 
better understand how hygiene measures influence 
the relationship between maternal and infant 
microbiota, further studies with larger sample 
sizes are warranted. Indeed, infants may also have 
decreased exposure to the environmental micro
biome through vigorous hygiene practices and 
decreased social exposure. A survey study in 
Hong Kong has previously shown that by 
March 2020, Hong Kong citizens had a high pre
valence of practicing hygiene protective measures. 
The study reported that 93.0% of respondents 
admitted to washing hands more often, including 
with disinfectants or antiseptics, 89.6% practiced 
house disinfection, and 98.8% used face masks.22 

The same study also showed that 85.1% of respon
dents avoided going to crowded places, and 83.8% 
stayed at home as much as possible. During 
COVID-19 in Hong Kong, policies such as the 
closure of schools and nursery day-care centers, 
and maximum gathering restrictions were imple
mented which further decreased exposure to com
munity microbiome in the form of other 
individuals, such as other family members or 
peers.35 Such an increase in hygiene measures and 
self-isolation measures may have impaired the 
environmental microbiome colonization in the 
infant’s gut.

Altered infant gut microbial diversity is postu
lated to mediate the effects of environmental expo
sure and stress on later human health and 
diseases.36 Our results showed significant down
regulation of the species B. breve and B. dentium 
at 2–3 months in the during-COVID cohort. 
Bifidobacteria have previously been shown to con
fer health benefits such as inducing host innate 
immunity.37 Depletion of Bifidobacterial species 
in early life has also been linked with immunologi
cal diseases.38 In addition, Bifidobacteria are gen
erally considered to synthesize several B group 
vitamins and degrade hexose sugars through 
a particular metabolic pathway, termed the “bifid 
shunt”.39 Therefore, fewer Bifidobacteria species in 
the infant microbiome during the COVID-19 lock
down measures might be the reason for relevant 
deficient microbial functional pathways. Further 
work is warranted to elucidate the potential 
mechanism of whether microbiota modulation by 
Bifidobacteria species may serve as a potential 

approach to mitigate and restore gut microbiota 
dysbiosis. In contrast, no specific increased bacteria 
were identified to be associated with the increased 
energy generation pathways in the during-COVID 
cohort, indicating that augmentation observed in 
these pathways might be a cumulative effect of 
alterations in a series of bacterial populations in 
the during-COVID cohort. A potential underlying 
mechanism for the enhancement in energy genera
tion pathways could be certain bacteria increase 
their reliance through upregulating energy meta
bolism under environmental stress, such as fre
quent usage of disinfection reagents during the 
COVID-19 pandemic. For example, a noticeable 
upregulation of genes and enzymes involved in 
energy metabolism, including the tricarboxylic 
acid (TCA) cycle, was identified in Klebsiella pneu
moniae in response to antibiotic stress.40,41

We found that infants in the during-COVID 
cohort had reduced abundances of Klebsiella pneu
moniae, Klebsiella quasipneumoniae, and Klebsiella 
variicola at months 6 and 12 compared with that in 
the pre-COVID cohort, which may be related to 
the stricter epidemic control, the isolation of chil
dren at home, the reduction of hospital visits, the 
avoidance of crowd gathering and the widespread 
use of disinfectants. Similarly, the prevalence rate 
of Klebsiella pneumoniae infection in pediatric 
patients during the COVID-19 pandemic was 
reported to be decreased.42,43

Infant gut microbial diversity loss may also be 
due to poorer microbiome adaptability. The 
immune response to exogenous stimuli is tightly 
regulated during early life. Newborns have an 
immature cellular defense immune system and 
are more susceptible to infections. Antimicrobial 
peptides therefore provide a compensatory innate 
defense mechanism during the development of cel
lular immune response mechanisms in the new
born period and induce highly specific changes in 
the composition of the human microbiota with 
profound implications for disease risks.28,44 We 
applied a comprehensive approach to systemati
cally characterize the potential impact of pandemic 
measures on the richness of AMP and antibiotic 
resistance gene reservoirs in infant’s gut micro
biome. Our results showed that the richness of 
AMPs and/or antibiotics resistance genes was 
indeed compromised in neonates during the 
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COVID-19 pandemic, suggesting compromised 
gut microbiome adaptability. On the other hand, 
the decrease in richness of ARGs in during-COVID 
cohort may be related to the reduction of hospital 
visits and decreased antibiotics consumption dur
ing the pandemic.45,46

We furthermore used metagenome-assembled 
genomes to compare the microbial origin of AMP 
and antibiotics resistance genes at the strain level. 
Notably, a skin commensal, Staphylococcus epider
midis, and a common skin pathogen, 
Staphylococcus aureus were found to harbor 
a lower copy number of cathelicidin, defensin, 
and polymyxin resistance genes in during-COVID 
cohort. In addition, Staphylococcus epidermidis also 
carried a lower copy number of fluoroquinolone 
and beta-lactams antibiotics resistance genes in the 
during-COVID cohort. This may be due to the 
reduction in community exposure of infants, the 
widespread use of disinfectants, and increased fre
quency of handwashing of their caregivers. 
Nevertheless, we still observed that Klebsiella pneu
moniae possessed a higher copy number of fluor
oquinolone antibiotic resistance genes in infants 
born during the COVID-19 pandemic, which alerts 
us to the growing threat of multi-drug resistant 
Klebsiella pneumoniae infection in the post- 
COVID-19 era. This is consistent with a previous 
study showing that Klebsiella genus possessed evi
dent correlations with multiple ARGs in the hospi
tal wastewater samples during the COVID-19 
pandemic,47 which may be a source for the disse
mination of multi-drug resistant Klebsiella in the 
environment.48

Such changes to the infant gut microbiome may 
affect the development of the immune system, and 
predispose to the development of atopic, metabolic, 
and inflammatory diseases.49 However, more 
research is needed to delineate the potential 
mechanisms. Longitudinal follow-up of infants in 
these two cohorts to compare the growth status and 
incidence of diseases is necessary to investigate the 
long-term effect on the health of the changes in gut 
microbiota in early life due to the COVID-19 
pandemic.

The main strength of this proof-of-concept 
study is the replication and extension design of 
the during-COVID cohort compared with the 
pre-COVID cohort with regular longitudinal 

clinical follow-up at the same clinical research 
site. Collecting fecal samples longitudinally from 
birth, 1 month, 2-3 months, 6 months, and until 12  
months of age allowed for the characterization of 
the microbial population during the first year of 
life. Especially, the reasonably large cohorts’ sizes 
recruited and maintained during the pandemic. 
Another major strength is the use of shotgun meta
genomics. Previous studies on the gut microbiome 
relied on 16S rRNA gene sequencing. The use of 
shotgun metagenomics in this study allows for 
better characterization of the gut microbiome in 
infants, with identification of low-abundant taxa.50 

Shotgun metagenomics also allows for increased 
resolution and better functional classification of 
the gut microbiome, such as pertaining to that of 
AMPs and ARGs.51

Our study has some limitations. The sample 
size is modest, and external validation cohorts of 
different ethnogeography populations are 
needed. There is no evidence directly connecting 
hygiene practices to our findings since it is dif
ficult to ascertain individual lifestyle responses 
(such as the exact solid food introduced time), 
social isolation status of infants, and behavior 
toward pandemic control measures. However, 
standardized measures in maternity wards are 
applied across all hospitals and outpatient set
tings in Hong Kong. Although gender, age, edu
cation, household income, and occupation can 
affect adherence to pandemic controls, most of 
the public in Hong Kong during the early pan
demic were compliant.52,53 Lastly, while our 
study has shown microbial compositional 
changes and possible functional alterations in 
the during-COVID cohort compared with pre- 
COVID infants, more research is needed to fully 
characterize whether this represents 
a pathological state, and what constitutes 
a healthy microbiome. This study makes the 
assumption that a pre-COVID state may repre
sent a less pathological state based on the 
hygiene hypothesis. Future research can focus 
on elucidating the exact biological pathways 
that modulate microbiome-immune system 
cross-talk and development. This highlights the 
need for large-scale, long-term cohort follow-up 
studies to better understand the consequences of 
the COVID-19 pandemic and establish whether 
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the alteration of the neonatal microbiota during 
the pandemic would negatively affect health out
comes in childhood and later life.

Materials and methods

Cohort description and study subjects

We included two longitudinal cohorts from 
Hong Kong during (1) Oct 2017-Jan 2020, defined 
as the pre-COVID cohort; and (2) April 2020-Jan 
2022, defined as the during-COVID cohort. Both 
cohorts recruited neonates who were delivered at 
the Prince of Wales Hospital in Hong Kong. 521 
stool samples were collected at birth, 1 month, 2-3  
months, 6 months, and until 12 months postpar
tum from 67 pre-COVID and 67 matched during- 
COVID infants. 103 stool samples were collected 
from mothers in the 2nd to 3rd trimester, including 
44 samples in the pre-COVID group and 59 sam
ples in the during-COVID group.

Faecal samples

Faecal samples were collected at home by all subjects 
using tubes prepared by investigators containing 
preservative media (cat. 28330, Norgen Biotek 
Corp, Ontario Canada). The Norgen preservative 
can preserve and allow safe transportation of micro
bial DNA & RNA at ambient temperature eliminat
ing sample variability. The stool sample was sent to 
the hospital within 24 h of collection and stored at −  
80°C freezers until further processing.

Metagenomic sequencing of faecal samples

The fecal DNA was extracted using the DNeasy 
PowerSoil Pro Kit (QIAGEN, Hilden, Germany) 
following the manufacturer’s instructions. 
Libraries were prepared from the extracted DNA 
using the Illumina DNA Prep (Illumina, California 
USA), and sequenced with paired-end 150 bp 
sequencing strategy by Illumina NovaSeq 6000 
System at the Microbiota I-Center (MagIC), 
Hong Kong Science Park. Microbial Community 
Standard (ZymoBIOMICS™) was subject to 
repeated extraction, library construction and meta
genome sequencing to assess batch variation. 
Norgen preservative media was used as negative 

controls during DNA extraction, library construc
tion, and sequencing. Raw sequence reads were 
filtered and quality-trimmed using Trimmomatic 
(v0.39).54 The mean read length and number of 
sequences provided on the MultiQC reports were 
used to determine sequencing coverage. Human- 
derived reads were filtered using Kneaddata 
(v0.10.0) based on a human reference genome 
(hg19) with default parameters. Profiling of bacter
ial communities was performed using MetaPhlAn3 
(v3.0.14)55 by mapping reads to clade-specific mar
kers. Microbial alpha diversity indices were calcu
lated based on the species-level profiles, including 
Chao1 index and observed species, Shannon diver
sity and phylogenetic diversity. Beta diversity was 
assessed with Bray-Curtis dissimilarity using 
R packages phyloseq and vegan, and was visualized 
by principal component analysis (PCA). The sam
ple collection, storage, and sequencing strategies of 
both cohorts were consistent.

Strain-level profiling

Strain-level analysis was performed using 
a combination of gene-content-based profiling 
using PanPhlAn,56 and single-nucleotide variant 
profiling using StrainPhlAn57 with default para
meters. Strain distance was defined as for 
PanPhlAn including normalization of each tree by 
its median value. A pair of strains with a strain 
distance lower than 0.1 was considered the same 
strain.58 Strain-sharing rates were calculated as the 
number of shared strains divided by the number of 
species common to each pair of individuals.59

Gut microbiota maturation estimation

For estimated gut microbial age, Random Forest 
regression was applied to regress with the relative 
abundances of bacterial species (prevalence >5%) 
of a training set made of infants in the pre-COVID 
cohort after filtering out all species with 
a prevalence less than 5% against their chronologic 
age using default parameters of the 
R implementation of the algorithm (R package 
randomForest, ntree = 10,000, default mtry). 
Ranked lists of species in order of feature impor
tance based on the percent increase in mean 
squared error reported by Random Forest were 
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determined over 20 iterations of the algorithm. 
Higher values of the percent increase in mean 
square error indicate more significant variables. 
To estimate the minimal number of top-ranking 
age-discriminatory species required for prediction, 
the rfcv function implemented in the 
randomForest package was applied with 10-fold 
cross-validations over 20 times. The minimal num
ber of age-discriminatory species was determined 
by minimizing the cross-validation error. A sparse 
model consisting of the top 33 taxa was then 
trained on the training set followed by internal 
validation using bootstrapping. Random Forest 
model performance was evaluated using mean 
absolute error (MAE) and Kendall’s tau coefficient 
by correlating estimated gut microbiota age and 
chronological age at sampling. The relative micro
biota maturity was defined as the deviation from 
a smooth spline fit of microbiota age values with 
respect to the chronologic age of healthy infants in 
the pre-COVID cohort.

Profiling of microbial functional pathways

Bacterial functions were predicted using 
HUMANN3.0.1. Data on the functionality was 
normalized based on relative log expression by 
Deseq2 (v1.26.0).60 To determine differential path
ways between the pre-COVID cohort and the dur
ing-COVID cohort during the first year, we applied 
Deseq2 to identify differential pathways at each 
time period, including 1 month, 2–3 months, 6  
months, and 12 months followed by MaAsLin61 to 
adjust delivery mode, intrapartum antibiotics 
usage, chronological age, and household furry pets.

Profiling of antimicrobial peptide resistance genes 
and antibiotic resistance genes

To detect AMP resistance genes, we performed 
a sequence similarity search against a manually 
curated collection of AMP resistance genes using 
Diamond (BLASTx mode).62 The raw sequencing 
data in FASTQ format was first converted to 
FASTA format before aligning with the AMP. 
dmnd file. After the alignment, we processed the 
output to obtain hit counts for each AMP resis
tance gene. The counts of resistance genes were 

then normalized using the rlog transformation 
implemented in DESeq2.60 To identify antibiotic 
resistance genes, we employed ShortBRED,29 

which is based on the Comprehensive Antibiotic 
Resistance Database (CARD).29 Differential AMP 
resistance genes and ARGs between the two 
cohorts were determined by MaAsLin to adjust 
delivery mode, intrapartum antibiotics usage, 
chronological age, and household furry pets.

Analysis of AMP resistance genes and ARGs on 
metagenome-assembled genomes

High-quality paired-end reads were assembled and 
binned into metagenome-assembled genomes 
(MAGs) using the Metapi pipeline with associated 
dependencies.63 Average nucleotide identity (ANI) 
from MAGs was calculated by skani v.0.1.5.64 Then, 
MAGs were clustered into strain-level genomes using 
python networkX package based on the 0.99 ANI 
cutoff.65 Representative strain MAGs were generated 
for downstream analysis. Taxonomic classification 
was assigned using GTDBTK v2.3.2 based on GTDB 
Release212 database.66 Taxonomy dump information 
was generated using taxonkit v0.15.0.67 Medium- and 
high-quality strain-level MAGs were aligned with the 
AMP.dmnd file using diamond V2.1.8 for AMP 
annotation and ARGs were annotated by ABRicate 
v1.0.1.68,69 The results were filtered at > 95% query 
coverage (read coverage) and > 80% alignment iden
tity thresholds. Hit counts for AMP resistance genes 
and ARGs of each MAGs were obtained. To identify 
species that contributed to the difference in the abun
dance of resistance genes for certain AMP classes and 
antibiotics classes between the two cohorts, the hit 
counts for genes that were resistant to the specific 
AMP class or antibiotics class in a MAG were 
summed. MAGs that belong to those species with 
a prevalence lower than 10% were removed.

Quantification and statistical analysis

Propensity matching was used to adjust sex, 
delivery mode, and breastfeeding practice 
between the pre-COVID cohort and during- 
COVID cohort. One-to-one propensity matching 
was performed with the MatchIt package in 
R using the nearest neighbor approach and the 
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standardized mean difference of all adjusted fac
tors between the two groups was not more than 
0.1.70 Categorical variables were presented as 
counts (percentage). Changes in continuous vari
ables, including the relative abundances of bac
teria were compared by Wilcoxon rank-sum test, 
whereas changes in categorical variables were 
compared using the Chi-square test or Fisher’s 
exact test. A two-sided p-value of <5% was con
sidered statistically significant. The development 
of alpha diversity along chronological age was 
measured by Kendall rank correlation coefficient 
and the difference in development rates between 
the two groups was compared by Fisher’s 
Z Transformation after converting Kendall’s Tau 
to Pearson’s r. Pairwise multi-level comparisons 
in each timepoint of the pre-COVID cohort and 
the during-COVID cohort were carried out on 
the Bray-Curtis dissimilarity matrix using pair
wise Adonis test assessed using permutational 
multivariate analysis of variance 
(PERMANOVA). Differential species, pathways, 
ARGs, and AMP resistance genes between the 
two groups within the first year were detected 
using Multivariate Analysis by Linear Models 
(MaAsLin), including cohorts, delivery mode, 
intrapartum antibiotics usage, household furry 
pets, and chronological age as fixed effects and 
subjects as random effect. Differentially abundant 
species at each sample collection timepoint 
between the two groups were identified using 
the linear discriminant analysis (LDA) effect 
size (LEfSe) implemented in the Huttenhower 
Lab Galaxy Server (http://huttenhower.sph.har 
vard.edu/galaxy/.) with cutoffs being LDA score  
>2, and p < 0.05. Correlations between bacteria 
species and functional pathways were assessed 
with Hierarchical All-against-All association test
ing (HAIIA).71 All microbiome-related statistical 
tests were performed with R Statistics (version 
4.0.3). For a sensitivity analysis, we excluded 
infants who were exposed to antibiotics and 
investigated the differences in gut microbiota 
alpha diversity, composition, gut microbial rela
tive maturity, and richness of gut microbial AMP 
and ARGs resistance genes, as well as differences 
in the copy number of AMP and ARGs resistance 
genes in specific bacteria between pre-COVID 
and during-COVID cohorts.
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