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ABSTRACT

Nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP) are
essential metabolic coenzymes in prokaryotic and eukaryotic cells, with their reduced forms, NAD(P)H,
serving as electron donors for myriad reactions. NADH is mainly involved in catabolic reactions, whereas
NADPH is mainly involved in anabolic and antioxidative reactions. The presence of endosymbiont-
derived organelles in eukaryotes has made the functional division of NADH and NADPH systems more com-
plex. Chloroplasts in photoautotrophic eukaryotes provide additional sources of reductants, complicating
the maintenance of the redox balance of NAD(P)*/NAD(P)H compared with heterotrophic eukaryotes. In this
review, we discuss the two redox systems in plants and systematically compare them with those in mam-
mals, including the similarities and differences in the biosynthesis and subcellular transport of NAD*, the
biosynthesis of NADP*, and metabolic reactions for the reduction and oxidation of NAD(P)H. We also review
the regulation of pyridine nucleotide pools and their ratios in different plant subcellular compartments and
the effects of light on these ratios. We discuss the advantages of having both NADH and NADPH systems,
highlight current gaps in our understanding of NAD(P)H metabolism, and propose research approaches
that could fill in those gaps. The knowledge about NADH and NADPH systems could be used to guide bioen-
gineering strategies to optimize redox-regulated processes and improve energy-use efficiency in crop
plants.
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INTRODUCTION

The oxidized and reduced forms of nicotinamide adenine dinucle-
otide (NAD*/NADH) and nicotinamide adenine dinucleotide phos-

both redox systems. Moreover, we compare heterotrophic eu-
karyotes, which acquired mitochondria as their major power-
houses from one endosymbiotic event, with photoautotrophic
eukaryotes, which acquired chloroplasts and mitochondria from

phate (NADP*/NADPH) play essential roles in energy metabolism
in all eukaryotes and prokaryotes. NAD* and NADP* “pick up”
electrons and protons to generate NADH and NADPH, respec-
tively. These reduced molecules serve as electron donors that
drive hundreds of redox reactions in living organisms. Adenosine
triphosphate (ATP), the energy currency of many biological
activities, is generated via the breakdown of carbon molecules
through glycolysis and oxidative phosphorylation. During oxida-
tive phosphorylation, electrons are transferred from NADH to ox-
ygen (Tourmente et al., 2015; Wilson, 2017; Zhang et al., 2020a).
Therefore, NADH is a key molecule that supplies reducing power
to many catabolic pathways. NADPH also serves as a key elec-
tron donor and is mainly involved in anabolic pathways and anti-
oxidative reactions (Chandel, 2021).

In this review, we describe how the two different redox coupling
systems (NAD*/NADH and NADP*/NADPH) are deployed in
plants and other organisms and discuss the importance of having

two distinct endosymbiotic events (Bjorn and Govindjee, 2009).
Comparing mammals and plants provides insights into the
diversity of redox coupling across eukaryotes.

NAD* BIOSYNTHESIS

Allliving organisms require NAD(P)H to support their life activities.
However, not all organisms synthesize NAD* or NADP* [NAD(P)*
hereafter]. Indeed, several prokaryotes, such as Haemophilus in-
fluenzae and Chlamydia trachomatis, have lost the biosynthetic
enzymes necessary for NAD(P)* biosynthesis and thus rely on
the uptake of NAD(P)* from their hosts (Reidl et al., 2000; Fisher
et al., 2014). Other prokaryotes generate NAD* via three path-
ways: the de novo pathway, the salvage pathway, and the
Preiss-Handler (PH) pathway (Supplemental Figure 1). Any
given prokaryotic species may contain one or more of these
pathways (Kurnasov et al., 2003). Similar to prokaryotes,
mammals utilize the de novo pathway, the salvage pathway,
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Figure 1. NAD" biosynthetic pathways in Arabidopsis and human cells.

Plants use the de novo pathway and the salvage pathway to synthesize NAD™. In the de novo pathway, plants use Asp as the precursor to generate QA in
plastids through a two-step enzymatic reaction catalyzed by LASPO and QS; QA is converted to NaMN by QPRT. NaMN is transported into the cytosol
and used as a substrate to generate NaAD by NaMNAT. Finally, NaAD is converted to NAD* through NADS-mediated catalysis. The salvage pathway of
plants primarily occurs in the cytosol and can be divided into two major recycling routes: via NicRi or via NAM. Cytosolic NAM can be generated from
NAD™ in two steps via NUDIXs and NMNG or directly from NAD* via ADPRc. NMN produced by NUDIX-catalyzed NAD* degradation may be directly
converted back to NAD* via NMNAT. In addition, NicRi can generate NAM via NNP". NAM is then converted to NA via NIC1-4P, and the resulting NA is
further converted to NaMN by NAPRT1 and NAPRT2. Subsequently, NaMN enters the universal pathway to generate NAD*. NaMN can be converted
back to NA via NAMNN?". NicRi is generated through NMN degradation via 5’ nucleosidases. NicRi is then converted to NaR via NicRiD". NaR is converted
to NaMN through NaRK and enters the universal pathway to produce NAD*. NaMN can be converted back to NaR via 5’ nucleosidases. NaR and NA can
be interconverted via NARN" and NUP", respectively. NAD* can be transported into mitochondria via the transporters NDT1 and NDT2 and degraded into
NAM via SIRT2. NAD* can also enter the nucleus through the nuclear pore complex, where it will be degraded into NAM through the nucleus-localized
NAD*-consuming enzymes SIRT1, PARP1, and PARP2.

Human cells synthesize NAD* through three pathways: the de novo pathway, the salvage pathway, and the Preiss—-Handler (PH) pathway. The human de
novo pathway occurs strictly in the cytosol. Extracellular Trp is transported into the cytosol through SLC7A5 and SLC36A1 and is subsequently converted
to N-formylkynurenine via IDO or TDO, whose product is converted to kynurenine by KFA. Kynurenine is converted to 3-HK by KMO, followed by the
conversion of 3-HK to 3-HAA via HYN. 3-HAA is further converted to ACMS via HAD, after which ACMS is converted to QA through spontaneous
cyclization. The resulting QA is converted to NaMN by QPRT, and NaMN is then converted to NaAD by NMNAT2. Finally, NaAD is converted to NAD* by
NADS. In the PH pathway, extracellular NA enters the cytosol through SLC5A8, SLC22A7, and SLC22A13 before being converted to NaMN via NAPRT.
NaMN then enters the universal pathway to generate NAD*. The human salvage pathway takes place in the cytosol, nucleus, and mitochondria. In the
cytosolic salvage pathway, extracellular NAM and NicRi are transported into the cytosol by SLC29A1/2 and ENT, respectively. Cytosolic NAM and NicRi
are subsequently converted to NMN via iNAMPT and via NicRiK1 or NicRiK2, respectively. Extracellular NAM can also be converted to NMN by eNAMPT
before entering the cytosol via SLC12A8. Cytosolic NMN is further converted to NAD* by NMNAT2. Cytosolic NAD* can be degraded to NAM by NAD-
consuming enzymes (such as SIRT2) or to NMN via NUDIXs, the products of which can enter the recycling pathway. In addition, cytosolic NAD*, NAM,
and NMN can enter the nucleus through the nuclear pore complex. In the nucleus, NAD* can be degraded to NAM by SIRTs and PARPs, and the resulting
NAM can be converted to NMN by iNAMPT. NMN can also be obtained from NAD degradation via nucleus-localized NUDIXs. NMN is ultimately converted
to NAD* by NMNAT1. Cytosolic NAD" can also enter mitochondria through SLC25A51 and SLC25A52 to be converted to NAM via SIRT3-5. NAM is then
converted to NMN by mitochondrial INAMPT, and NMN is converted to NAD* by NMNAT3. Mitochondrial NAD can also be degraded into NMN by NUDIX.
In mammalian cells, NUDIX is also present in peroxisomes; it is thought that cytosolic NAD* can enter peroxisomes through unknown transporters.
ACMS, 2-amino-3-carboxy-muconate-semialdehyde; ADPRc, ADP-ribose cyclase; Asp, aspartate; ENT, equilibrative nucleoside transporters; eNAMPT,
extracellular nicotinamide phosphoribosyl transferase; HAD, 3-hydroxyanthranilic acid 3,4-dioxygenase; 3-HK, 3-hydroxy-kynurenine; 3-HAA, 3-
hydroxyanthranilic acid; IDO, indoleamine 2,3-dioxygenase; iINAMPT, intracellular nicotinamide phosphoribosyl transferase; KFA, kynurenine for-
mamidase; KMO, kynurenine-3-monooxygenase; KYN, kynureninase; LASPO, L-aspartate oxidase; NAM, nicotinamide; NADS, NAD synthetase; NaAD,
nicotinate adenine dinucleotide; Na/NMNAT, nicotinate mononucleotide/nicotinamide mononucleotide adenylyltransferase; NaRK, nicotinate ribose
kinase; NARN, nicotinate ribose nucleoside; NaR, nicotinate ribose; NAPRT, nicotinate phosphoribosyltransferase; NAMNN, nicotinate mononucleotide
nucleosidase; NaMN, nicotinate mononucleotide; NA, nicotinic acid; NDT, NAD" transporters; NIC, nicotinamidase; NicRiD, nicotinamide riboside
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and the PH pathway to synthesize NAD*. By contrast,
vascular plants only possess the de novo and salvage/
recycling pathways, as, unlike mammals, plants effectively
synthesize nicotinic acid (NA) (Hunt et al., 2004; Xiao et al.,
2018) (Figure 1).

The de novo pathway

In the de novo pathway (Figure 1), NAD" is generated from
quinolinic acid (QA), which is converted to nicotinate mononu-
cleotide (NaMN) by quinolate phosphoribosyltransferase.
NaMN is then adenylated to form nicotinate adenine dinucleo-
tide (NaAD) by nicotinate mononucleotide/nicotinamide
mononucleotide adenylyltransferase (NaMNAT/NMNAT), a
bifunctional enzyme that also converts NAD* to nicotinamide
mononucleotide (NMN) in the salvage pathway. Finally, NaAD
is amidated to form NAD* via NAD synthetase. This biosyn-
thetic pathway from QA to NAD" is highly conserved among
prokaryotes, plants, and mammals (Rodionov et al., 2008;
Gakiere et al., 2018; Covarrubias et al., 2021). L-aspartate
(Asp) and L-tryptophan (Trp) both serve as precursors for QA
biosynthesis. The biosynthesis of QA from Asp is accom-
plished via a two-step reaction catalyzed by L-aspartate oxi-
dase (LASPO) and quinolinate synthase (QS) (Katoh et al.,
2006; Spaans et al., 2015). In the Trp-to-QA pathway, Trp is
converted to 2-amino-3-carboxy-muconate-semialdehyde
through a five-step enzymatic reaction, which then spontane-
ously cyclizes to QA (Figure 1) (Magni et al., 2008;
Badawy, 2017).

Prokaryotes use Asp or Trp as a precursor for QA biosynthesis,
but plants only utilize Asp, whereas mammals only utilize Trp
(Kurnasov et al., 2003; Gakiere et al., 2018; Xiao et al., 2018).
Most prokaryotes, including Escherichia coli, Bacillus subtilis,
and cyanobacteria, use Asp as a precursor for de novo NAD*
biosynthesis, while some prokaryotes, such as Xanthomonas
pruni, use Trp (Kurnasov et al., 2003; Gerdes et al., 2006; Lima
et al., 2009). Cyanobacteria, a division of prokaryotes that
perform photosynthesis and are thought to be the evolutionary
ancestors of plant chloroplasts, solely utilize Asp for de novo
NAD* biosynthesis, a pathway that might have been retained
throughout evolution from cyanobacteria to vascular plants
(Gerdes et al., 2006; Ishikawa and Kawai, 2019).

Differences in precursor choices in the de novo pathway
in plants and mammals

Plants synthesize all 20 standard amino acids, whereas mammals
synthesize only 11, including Asp. Therefore, mammals must
obtain the nine remaining essential amino acids, including Trp,
from their diet (Trovato et al., 2021) (Figure 1). Thus, it is worth
reflecting on why plants might have evolved the ability to use
Asp, whereas mammals evolved the ability to use Trp for their
respective de novo NAD™ biosynthesis pathways.

NAD(H) and NADP(H) in plants and mammals

Efficiency and economy are important reasons for plants to use
Asp rather than Trp for de novo NAD" biosynthesis. In plants,
Trp biosynthesis begins with the shikimic acid pathway in plas-
tids, which comprises a series of enzymatic reactions that require
large amounts of energy. Furthermore, Trp is one of the least
abundant amino acids in plants, with low abundance in solution
(1-15 pM) within plant cells (Last, 1995). Compared to the
complex and energetically costly Trp biosynthetic process, Asp
biosynthesis is much more economical (Akashi and Gojobori,
2002). Aspartate transaminase (AspAT) directly converts gluta-
mate (Glu) and oxaloacetate (OAA) to 2-oxoglutarate (2-OG)
and Asp. In plants, Glu is de novo synthesized via nitrate assim-
ilation, with the final step occurring in chloroplasts or plastids via
the glutamine synthetase (GS)-glutamate synthase (GOGAT) cy-
cle (Dragicevic et al., 2016). As a result, Glu is abundant in
chloroplasts, making these organelles a good location for Asp
production. It is therefore easy to understand why QA
biosynthesis occurs in chloroplasts and why Asp was selected
as the precursor for de novo NAD* biosynthesis during evolution:
Asp biosynthesis is more energetically efficient than Trp
biosynthesis.

In mammalian cells, de novo Asp biosynthesis primarily occurs
through the transamination of OAA via AspAT (Ndrepepa, 2021).
Asp is also obtained directly from the diet, as the amount of Asp
derived from food is markedly higher than the amount of Trp
(Gardner et al., 2019). In humans, Trp from the diet is transported
into the cytosol via the solute carrier family members SLC7A5
and SLC36A1 (Larsen et al., 2009; Jiang et al., 2024).
Nevertheless, it is surprising that mammals have lost the
enzymes LASPO and QS, preventing them from using Asp as a
precursor for de novo NAD" biosynthesis (Bossi et al., 2002;
Gerdes et al., 2002). The computer-calculated values of the
change in Gibbs free energy (AG) for the reactions catalyzed by
LASPO and QS are —53.2 and —24.0 kcal/mol, respectively, indi-
cating that these two reactions are highly favorable and irreversible
(https://biocyc.org/). Accordingly, we suggest that, if these two en-
zymes were retained in mammals during evolution, most of the Asp
obtained from the diet would be consumed for de novo NAD*
biosynthesis, which would deplete the Asp pool available for pro-
tein synthesis. This may explain why mammals adopted the Trp
pathway rather than the Asp pathway for de novo NAD* biosyn-
thesis during their evolution. Notably, most mammalian cells do
not express the genes encoding the enzymes necessary for the
Trp-to-QA conversion pathway and rely on circulating nicotin-
amide (NAM) to NAD™ via the salvage pathway (Liu et al., 2018;
Covarrubias et al., 2021). This preference for the salvage
pathway is attributed to its energetic efficiency compared with
the high energy cost of de novo NAD* biosynthesis via Trp.

The salvage/recycling pathway

Following NAD* biosynthesis via the de novo pathway, NAD* is
degraded to NAM by various NAD*-consuming enzymes,

deaminase; NicRi, nicotinamide ribose; NUDIX, NUDIX hydrolases; NuP, nucleoside phosphorylase; NMN, nicotinamide mononucleotide; NMNG,
nicotinamide mononucleotide glycohydrolase; NNP, nicotinate nucleoside pyrophosphatase; NicRiK, nicotinamide riboside kinase; PARP, poly(ADP-
ribose) polymerases; PXN, peroxisomal NAD carrier; QA, quinolinic acid; QPRT, quinolate phosphoribosyltransferase; QS, quinolinate synthase; SLC,
soluble carrier; SIRT, sirtuin; Trp, tryptophan; TDO, tryptophan 2,3-dioxygenase.

Superscript “P” indicates that the subcellular localizations of these enzymes were predicted by MULocDeep (https://mu-loc.org/).

Superscript “n” indicates that the enzymes and their encoding genes have not yet been identified in Arabidopsis, although their activities have been

identified in other plants.

940 Molecular Plant 18, 938-959, June 2 2025


https://biocyc.org/
https://mu-loc.org/

NAD(H) and NADP(H) in plants and mammals

including NAD* glycohydrolases, polyADP-ribose polymerases
(PARPs), and sirtuins (SIRTs). NAM itself is subsequently
degraded to other by-products (Figure 1). In addition, NAD™ is
directly converted to NMN by NUDIX hydrolases (NUDIXs). The
products of these reactions are recycled through the salvage
pathway to regenerate NAD* (Hunt et al., 2004; Braidy et al.,
2019; Kulikova and Nikiforov, 2020). In general, salvage
pathways recycle NAD" enzymatically via NAM, nicotinamide
ribose (NicRi), or NMN. Another NAD" recycling pathway, the
PH pathway, uses NA as a substrate (Figure 1) (Preiss and
Handler, 1958; Noctor et al., 2011). Precursors of the salvage
and PH pathways in prokaryotes and mammals are obtained
from the environment and diet, respectively, and through the
recycling of NAD* degradation products. Most prokaryotes
recycle NAD" using the NA, NicRi, or NAM pathway or two of
these pathways (Supplemental Figure 1) (Gerdes et al., 2006;
Rodionov et al., 2008), whereas mammals contain both a
complete PH pathway and a salvage pathway (Figure 1). Due to
the compartmentalization of mammalian cells, the NAD* recy-
cling pathway is much more complex in mammals than in
prokaryotes.

In humans, extracellular NA enters the cytosol via SLC5AS8,
SLC22A7, and SLC22A13 (Ganapathy et al., 2005; Bahn et al.,
2008; Mathialagan et al., 2020). Cytosolic NA is subsequently
converted to NaMN via nicotinate phosphoribosyltransferase
(NAPRT), which then enters the universal pathway to regenerate
NAD™ (Figure 1) (Fricker et al., 2018; Mehmel et al., 2020; Chini
et al.,, 2021). The human salvage pathway is active in the
cytosol, mitochondria, and nucleus (Figure 1). In these
compartments, NAD" is degraded into NAM and NMN by
NAD"-consuming enzymes and NUDIXs, respectively. NAM is
then converted to NMN by intracellular nicotinamide phosphori-
bosyltransferase (NAMPT) in these compartments, and NMN is
ultimately regenerated to form NAD* via the corresponding
NMNAT (Berger et al., 2005; Michishita et al., 2005; Boehler
et al., 2011; Bai and Canto, 2012; Kulikova and Nikiforov, 2020;
Covarrubias et al., 2021). Mammals also contain extracellular
NAMPT. This enzyme converts extracellular NAM to NMN, which
enters the cytosol via the importer SLC12A8 (Travelli et al., 2018;
Grozio et al., 2019). The extracellular NAM and NicRi are imported
into cells through SLC29A1-2 and equilibrative nucleoside trans-
porters, respectively (Kropotov et al., 2021; Chen et al., 2025).

Notably, the NAD™ recycling pathway in plants differs greatly from
those in animals and prokaryotes, as the precursors are all
derived from NAD* degradation and the NAD* recycling pathway
itself (Figure 1). In plants, the salvage pathway, which primarily
functions in the cytosol, is divided into two recycling routes
based on the source of precursors (NicRi or NAM). In the NAM re-
cycling branch, NAD™" is first degraded to NMN by cytosolic
NUDIXs and is then converted to NAM via NMN glycohydrolase
(NMNG) (Wagner et al., 1986; Yoshimura and Shigeoka, 2015).
NAM is also generated from NAD* via ADP-ribose cyclase pre-
sent at the plasma membrane (Sanchez et al.,, 2004).
Subsequently, NAM generates NA via cytosolic nicotinamidase
(NIC), and NA generates NaMN via NAPRTSs before entering the
universal pathway to regenerate NAD* (Gakiere et al., 2018;
Ahmad et al., 2021; Jiang et al., 2021). NaMN is also converted
back to NA via NaMN nucleosidase (NAMNN) (Wagner et al.,
1986). In the NicRi recycling branch, NMN is converted to NicRi
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by 5 nucleosidase, and NaMN is then generated through a
two-step reaction via NicRi deaminase (NicRiD) and nicotinate
ribose kinase (NaRK), ultimately regenerating NAD*. Notably, in
this branch of the recycling pathway, NaMN is converted back
to nicotinate ribose (NaR) by 5’ nucleosidase.

The intermediate products of these two recycling pathways are
interconvertible, facilitating the flexible adjustment of the NAD*
pool (Figure 1). NicRi is converted to NAM via nicotinate nucleo-
side pyrophosphatase (NNP). NaR is transformed to NA via NaR
nucleoside (NARN), and the reverse reaction is catalyzed by
nucleoside phosphorylase (NuP) (Matsui and Ashihara, 2008;
Katahira and Ashihara, 2009; Ashihara and Deng, 2012). The
plant salvage pathway is less well characterized. The presence,
function, and encoding genes of NaRK, 5 nucleosidase,
NAMNN, NARN, NuP, NNP, NMNG, and NicRiD in Arabidopsis
(Arabidopsis thaliana) are still unclear (Gakiere et al., 2018). The
enzyme activities of NaRK, 5' nucleosidase, NARN, and NNP
were detected in both potato (Solanum tuberosum) tubers and
tea plant (Camellia sinensis) (Katahira and Ashihara, 2009;
Ashihara and Deng, 2012). The enzyme activities of NAMNN
and NMNG were detected in tobacco (Nicotiana tabacum)
(Wagner et al., 1986). Furthermore, the enzyme activity of NuP
was detected in mung bean (Vigna radiata) (Matsui and
Ashihara, 2008), and the enzyme activity of NicRiD was detected
in potato (Katahira and Ashihara, 2009).

As in mammals, NAD* synthesized in the plant cytosol is trans-
ported to different organelles and degraded (Figure 1). In
Arabidopsis, mitochondrial NAD" is degraded to NAM via
SIRT2, and NAD™ in the nucleus is degraded to NAM through
SIRT1, and PARP1-2 (Konig et al., 2014; Song et al., 2015; Liu
et al., 2017). Arabidopsis NAD-metabolizing NUDIXs are only
found in the cytosol, and the subcellular localizations and charac-
teristics of several Arabidopsis NUDIXs still need to be verified
(Yoshimura and Shigeoka, 2015). NMNAT activity was detected
in the mitochondria of Helianthus tuberosus tubers, suggesting
it may regenerate NAD* from NMN in mitochondria (Martino
and Pallotta, 2011). The Arabidopsis genome contains only one
gene encoding Na/NMNAT, which prefers NaMN, but it is unclear
whether it encodes a mitochondrial isoform (Hashida et al., 2007).
Therefore, evidence to support the existence of NAD* recycling
pathways in the mitochondria, nucleus, or peroxisomes of Arabi-
dopsis is not yet available (Figure 1).

NAD* TRANSPORT

In eukaryotic cells, the final step of de novo NAD* biosynthesis
takes place only in the cytoplasm (Figure 1). Therefore, NAD*
must be transported into organelles for specific metabolic
pathways following its biosynthesis. The nuclear membrane is
freely permeable to NAD" through nuclear pores (Fjeld et al.,
2003), and cytosolic NAD" is also transported to multiple
organelles via NAD* transporters. In Arabidopsis, three NAD*
transporters—AtNDT1, AtNDT2, and PEROXISOMAL NAD*
CARRIER (AtPXN)—have been identified, with AtNDT1 and
AtNDT2 both localized to mitochondria (Douce and Neuburger,
1989; Chaves et al., 2019; Luo et al., 2019). Although early
studies indicated that AtNDT1 localizes to the inner chloroplast
membrane, more recent subcellular localization assays indicated
that AtNDT1 is instead specifically present in the inner
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Figure 2. De novo NADP™ biosynthesis in Arabidopsis and human cells.

Arabidopsis has three NADK isoforms: AtNADK1-3. Cytosolic AtNADK1 and peroxisomal AtNADK3 can use both NAD* and NADH, although their
preferred substrate is NADH. In humans, there are two NADK isoforms, cytoplasmic hNADK1 and mitochondrial ANADK2, both of which prefer NAD* as a
substrate. As Arabidopsis mitochondria lack NADK activity, cytosolic NADP* may be transported into mitochondria through as-yet-unidentified trans-
porters to supply mitochondrial cellular metabolism. Likewise, NADKs are absent from peroxisomes in human cells, so cytosolic NADP* may enter

peroxisomes via an unknown transporter.

mitochondrial membrane (Palmieri et al., 2009; Chaves et al.,
2019). Therefore, exactly how plant plastids acquire NAD* from
the cytosol remains to be elucidated. Early in vitro studies sug-
gested that the peroxisomal NAD™ transporter AtPXN could
transport NAD(H) and coenzyme A (CoA) (Agrimi et al., 2012b;
Bernhardt et al., 2012). However, heterologous expression of
AtPXN in various mutant yeast strains defective in CoA or
NADH transport suggested that AtPXN does not transport either
CoA or NADH but may instead function as an NAD/adenosine
monophosphate (AMP) antiporter, importing cytosolic NAD™ via
counter-exchange with peroxisomal AMP (van Roermund
et al., 2016).

In human cells, cytosolic NAD* is transported into mitochondria via
the mitochondrial NAD* transporter SLC25A51 and its homolog
SLC25A52 (Luongo et al., 2020). Findings on mammalian
peroxisomal NAD" transporters are still controversial. In 2012,
in vitro experiments indicated that the human peroxisome-
localized transporter SLC25A17 transports CoA and NAD*, but
not ATP (Agrimi et al., 2012a). Subsequently, the zebrafish (Danio
rerio) Slc25a17 homolog was shown to transport CoA in vivo, but
not NAD* (Kim et al., 2020). Additionally, the contents of CoA,
ATP, NAD*, and other cofactors in the peroxisomes of mice
(Mus musculus) lacking Slc25a17 did not change significantly
(Van Veldhoven et al., 2020), suggesting that Slc25a17 is not a
mammalian peroxisomal NAD* transporter and that a true peroxi-
somal NAD™* transporter remains to be identified.

NADP* BIOSYNTHESIS FROM NAD*

NAD* kinase (NADK) is the sole enzyme responsible for produc-
ing NADP(H) de novo via the phosphorylation of NAD(H) (Figure 2)
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(Kawai et al., 2001b; Pollak et al., 2007). NADKs are classified as
NAD* kinases and NADH kinases based on their preference for
NAD* or NADH, respectively (Li et al., 2018). NADKSs are also clas-
sified as calmodulin (CaM)-independent or CaM-regulated iso-
forms based on their dependence on CaM. The CaM-regulated
NADKs are activated under stress conditions to provide
NADPH for an NADPH-dependent oxidative burst (Ruiz et al.,
2002; Li et al., 2014).

The number of NADKs varies among species. Most prokaryotes
only contain one NADK (Kawai et al., 2001a), whereas
eukaryotes usually contain multiple NADKs that function in
different organelles (Li et al., 2014). Humans contain two NADK
isoforms: cytosolic hNADK1 and mitochondrial hNADK2 (also
known as C50rf33). hNADK1 and hNADK2 both prefer NAD*,
and only hNADKT1 is regulated by CaM (Ohashi et al., 2012; Oka
et al., 2023). Arabidopsis contains three NADK isoforms:
cytosolic AtNADK1, chloroplast AtNADK2, and peroxisomal
AtNADKS. Of these three Arabidopsis NADKs, only AtNADK2 is
regulated by CaM and specifically uses NAD*. AtNADK1 and
AtNADKS utilize NAD(H), although NADH is their preferred sub-
strate (Berrin et al., 2005; Li et al., 2018). Wheat (Triticum
aestivum) contains four TaNADKs, among which TaNADK1 and
TaNADK?2 are located in the cytosol, TaNADKS in chloroplasts,
and TaNADK4 in peroxisomes (Wang et al., 2015). NADKc, a
recently identified plant NADK, localizes to the outer membrane
of mitochondria in Arabidopsis; NADKc is regulated by CaM
and supplies NADP™ for the cytosolic oxidative pentose phos-
phate pathway (OPPP) (Dell’Aglio et al., 2019).

Intriguingly, no mitochondrial NADK has yet been identified in
plants, and humans appear to lack a peroxisome-specific
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Figure 3. Major NAD(P)H production and consumption pathways in green tissues of Arabidopsis in the dark.

In the dark, chloroplast/cytosolic glycolysis and the TCA cycle become more active. The sucrose and malate that accumulated during the day are
released from the vacuole and can serve as sources of reducing equivalents. Sucrose can supply NADPH to chloroplasts and the cytosol via OPPP and
NADH (via chloroplast GAPDH [GAPDHp] and cytosolic GAPDH, respectively) via glycolysis. Whether np-GAPDH can provide cytosolic NADPH at night
requires validation. Malate stored in the vacuole during the day can be released to the cytosol during the night to supply cytosolic NADPH and NADH via
NADP-ME1-3 and cyNAD-MDH, respectively. In addition, cytosolic malate can enter chloroplasts, mitochondria, and peroxisomes to supply NADH and
NADPH via their respective MDHs and MEs. Specifically, cINAD-MDH and NADP-ME4 provide NADH and NADPH for chloroplasts, pNAD-MDH provides
NADH for peroxisomes, and mtNAD-MDH and light-inactivated mtNAD-ME provide mitochondrial NADH. In mitochondria, OGDH in the TCA cycle also
provides NADH. Pyruvate generated from glycolysis and cytosolic NADP-MEs enters the mitochondria to feed the TCA cycle. Citrate is exported from the
mitochondria and stored in the vacuole during the night. Isocitrate can serve as a source of NADPH in the cytosol, mitochondria, peroxisomes, and
chloroplasts via their respective NADP-ICDHs. NADH and NADPH in the matrix can be consumed by NDA1-2 (A1-2) and NDC1 (C1), respectively. During
the night, the incomplete OPPP pathway in peroxisomes is driven by the import of plastid GEPD1 to provide NADPH. NADPH can participate in oxidative
reactions throughout the day. Cytosolic NADH can be consumed by NDB2-4 (B2-4). Cytosolic NADPH can be consumed by NDB1 (B1), RboH, and NTRA;
plastid-localized NADPH can be consumed through NTRC; and mitochondrial NADPH can be consumed through NTRB. The AsA-GSH cycle can
consume both NADH and NADPH in the cytosol, chloroplasts, peroxisomes, and mitochondria regardless of light conditions.

Actyl-CoA, acetyl coenzyme A; AsA-GSH, ascorbate—glutathione cycle; BPGA, 1,3-bisphosphoglycerate; cyNAD-MDH, cytosolic NAD-dependent
malate dehydrogenase; cINAD-MDH, chloroplast NAD-dependent malate dehydrogenase; cINADP-MDH, chloroplast NADP-dependent malate
dehydrogenase; cmNADP-ICDH, chloroplast-mitochondrial NADP-dependent isocitrate dehydrogenase; cyNADP-ICDH, cytosolic NADP-dependent
isocitrate dehydrogenase; ETC, electron transport chain; FNR, ferredoxin-NADP(H) oxidoreductase; GAPDH, cytosolic NAD-specific glyceraldehyde
3-phosphate dehydrogenase; GAPDHp, plastidic NAD-specific glyceraldehyde 3-phosphate dehydrogenase; G6P, glucose 6-phosphate; GAP,
glyceraldehyde 3-phosphate; mETC, mitochondrial electron transport chain; mPDC, mitochondrial pyruvate dehydrogenase complex; mNAD-ME,
mitochondrial NAD-dependent malate enzyme; mtNAD-MDH, mitochondrial NAD-dependent malate dehydrogenase; mNAD-ICDH, mitochondrial
NAD-dependent isocitrate dehydrogenase; np-GAPDH, non-phosphorylating glyceraldehyde 3-phosphate dehydrogenase; NADP-ME, NADP-depen-
dent malate enzyme; NDA1-2 (A1-2), alternative NADH dehydrogenases A1-2; NDB1 (B1), alternative NADPH dehydrogenase B1; NDB2-4 (B2-4),
alternative NADPH dehydrogenase B2-4; NDC1 (C1), alternative NADPH dehydrogenase C1; NTRA, NADPH-dependent thioredoxin reductase A; NTRB,

(legend continued on next page)
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NADK (Figure 2). As various NADP*/NADPH-dependent enzy-
matic reactions take place in human peroxisomes, a transporter
is likely to transport cytosolic NADP™* into peroxisomes, but it re-
mains to be identified (Chornyi et al., 2020). Various studies in
plants have demonstrated the existence of NADPH utilization
pathways in plant mitochondria, but no plant mitochondrion-
localized NADK or transporter for NADP* into mitochondria has
been identified or validated (Gakiere et al.,, 2018; Moller
et al., 2020).

WHY DO ORGANISMS REQUIRE TWO
DIFFERENT ENERGY CURRENCIES?

NADH is primarily involved in energy-producing catabolic reac-
tions, whereas NADPH mainly participates in anabolic and antiox-
idative pathways (Oka et al., 2012; Ju et al., 2020). The two redox
regulatory mechanisms of NADH and NADPH in cells are precise
and non-conflicting, so how do the two mechanisms operate?

THE NADH REDOX SYSTEM

In living cells, NADH is primarily generated via catabolic reac-
tions, including glycolysis, pyruvate oxidation, the tricarboxylic
acid (TCA) cycle, fatty acid oxidation, glycine oxidation,
and glutamate oxidation (Supplemental Table 1). The most
important role of NADH is to provide electrons for aerobic ATP
production by the mitochondrial electron transport chain
(METC) to support fundamental cellular activities (Rasmusson
et al., 2008; Schertl and Braun, 2014). In the following sections,
we compare NADH metabolism in plants and mammals.

NADH generation in plants

Plants use different sources of NADH in the light and dark. In the
dark, malate and complex carbon molecules that accumulated
during the day fuel the production of NADH. Glycolysis is a
biochemical process that predominantly occurs in the dark
(Figure 3). During glycolysis, glyceraldehyde 3-phosphate
dehydrogenases (GAPDHs) generate NADH by catalyzing
the oxidation of glyceraldehyde-3-phosphate (GAP) to 1,3-
bisphosphoglycerate. Cytosolic NAD-GAPDH (encoded by
GAPC) and plastidic NAD-GAPDH (encoded by GAPCp) partici-
pate in glycolysis in the cytosol and plastid, respectively (Zeng
et al., 2016). In photosynthetic cells, glycolysis in chloroplasts is
mainly responsible for supplying stromal ATP at night (Voon
et al., 2018). In non-photosynthetic cells, glycolysis occurs in
both the cytosol and plastids throughout the day; both pathways
are interconnected via highly selective transporters present on
the inner plastid membrane (Petersen et al., 2003; Anoman
et al., 2015, 2016).

Pyruvate oxidation connects glycolysis and the TCA cycle. During
this process, pyruvate is converted to acetyl-CoA by the pyruvate
dehydrogenase complex (PDC) to produce CO, and NADH
(Patel et al., 2014). Plant cells contain two PDC isoforms: a
mitochondrion-localized PDC (mtPDC) and a plastid-localized
PDC (pIPDC). In green tissues, plPDC is active in the light and

NAD(H) and NADP(H) in plants and mammals

supplies acetyl-CoA for fatty acid biosynthesis, whereas mtPDC
is active in the dark and feeds the TCA cycle (Budde and Randall,
1990; Tovar-Mendez et al., 2003).

Each acetyl-CoA molecule that is fed into the TCA cycle reduces
three molecules of NAD* to NADH. The first NADH molecule is
generated by isocitrate dehydrogenase (ICDH), which converts
isocitrate to 2-OG and reduces NAD(P)* to NAD(P)H. In vascular
plants, NAD-dependent ICDHs are strictly localized to mitochon-
dria (Lemaitre and Hodges, 2006). The second molecule of NADH
is produced by the conversion of 2-OG into succinyl-CoA via the
mitochondrial multienzyme 2-oxoglutarate dehydrogenase com-
plex (OGDH). The structure of this multienzyme is conserved
across plants, mammals, and prokaryotes (Frank et al., 2007;
Nemeria et al., 2014; Condori-Apfata et al., 2019). The third
NADH molecule is produced by a reversible malate oxidation
reaction via malate dehydrogenase (MDH). Arabidopsis has
multiple NAD-MDH isoforms, including mitochondrial AtmtNAD-
MDH1 and AtmtNAD-MDH2 (which function in the TCA cycle
and photorespiration), three cytosolic MDHs (cyNAD-MDH1-3),
and one plastidic MDH (pINAD-MDH), as well as two peroxisomal
MDHs (pNAD-MDH1-2) involved in photorespiration (Selinski and
Scheibe, 2019). In the light, the TCA cycle in photosynthetic cells
does not operate as a cycle and does not provide a substantial
amount of NADH in mitochondria as it does in the dark because
the activities of mtPDC, mtNAD-ICDH, and OGDH are sup-
pressed under illumination (Figure 4) (Sweetlove et al., 2010;
Gardestrom and Igamberdiev, 2016; Fedorin et al., 2022;
Igamberdiev and Bykova, 2023).

Glutamate oxidation can supply mitochondrial NADH through
glutamate dehydrogenase (GDH), which reversibly deaminates
glutamate, producing NAD(P)H and 2-OG. Plants contain distinct
isozymes of GDH that are either NAD* or NADP* specific (Dubois
et al., 2003; Qiu et al., 2019). Plant NAD-specific GDHs in mito-
chondria and NADP-specific GDHs in chloroplasts both function
in nitrogen assimilation (Terce-Laforgue et al., 2004; Fontaine
et al., 2012; Du et al., 2019).

Photorespiration as a major source of NADH in C3
plants

In C3 plants, during photorespiration, decarboxylation and deam-
ination of glycine, catalyzed by glycine decarboxylase (GDC)
in mitochondria, generates NADH, ammonia (NH3), and CO,
(Douce et al., 2001). This is the major source of NADH for the
mETC during photosynthesis (Hagemann and Bauwe, 2016; Lim
et al., 2020). An abundant supply of NADH from photorespiration
allosterically suppresses the activities of various TCA cycle
enzymes (Gardestrom and Igamberdiev, 2016). C4 plants have
evolved the capacity to spatially compartmentalize initial CO, fixa-
tion and decarboxylation, which greatly increases the CO, concen-
tration around Rubisco, thereby minimizing photorespiration and
diminishing the mitochondrial NADH pool (Sage, 2016; Schulze
et al., 2016). In Kranz-type C4 plants, anaplerotic CO, fixation oc-
curs in mesophyll cells (MSCs), and malate decarboxylation and

NADPH-dependent thioredoxin reductase B; NTRC, NADPH-dependent thioredoxin reductase C; OGDH, 2-oxoglutarate dehydrogenase complex; OAA,
oxaloacetate; OPPP, oxidative pentose phosphate pathway; pNAD-MDH, peroxisomal NAD-dependent malate dehydrogenase; pNADP-ICDH,
peroxisomal NADP-dependent isocitrate dehydrogenase; RboH, respiratory burst oxidase homologs; Succinyl CoA, succinyl-coenzyme A; TCA
cycle, tricarboxylic acid cycle; 3-PGA, 3-phosphoglycerate; 2-OG; 2-oxoglutarate.
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Figure 4. Major NAD(P)H production and
H,0 y consumption pathways in green tissues of
‘ Arabidopsis in the light.
Under illumination, the photosynthetic light re-
actions are the main source of NADPH in the
chloroplasts. During this process, electrons are
transferred from water molecules to reduce
NADP* to NADPH via FNR, and NADPH is mainly
consumed by the Calvin cycle. Malate accumu-
lating in chloroplasts can be converted to
pyruvate and provides NADPH via NADP-ME4.
Pyruvate is then oxidized to acetyl-CoA and
produces NADH in the light. NADH produced
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exported from chloroplasts to the cytosol in the
form of malate and triose-P; the latter is mainly
used for sucrose biosynthesis. Malate can also
be a source of cytosolic NADPH and NADH via
the actions of NADP-ME1-3 and cyNAD-MDH,
respectively. np-GAPDH and cytosolic OPPP
can also supply cytosolic NADPH. The conver-
sion of PEP into OAA in the cytosol is light
dependent, offering an important source of
cytosolic OAA during the day. Cytosolic OAA
enters the mitochondria and is converted into
malate by mtNAD-MDH. This reaction and the
mETC consume large amounts of mitochondrial
NADH provided by the glycine decarboxylation
step of photorespiration via GDC. The excess
NADH can also be consumed by NDA1-2 (A1-2),
with NDA1 (A1) being significantly induced in the
NAD* @ light. During the daytime, the tricarboxylic acid
L7 (TCA) cycle is not actually a cycle, as the activities
of mtPDC, citrate synthase, NAD-ICDH, and
OGDH are suppressed. Surplus mitochondrial
NADH can be exported to the cytosol in the form

Photorespiration

NADH
NAD* Y

of malate. Some cytosolic malate is imported into
peroxisomes to generate NADH via pNAD-MDH

and is then consumed in the hydroxypyruvate reduction step of photorespiration via HPR1. The remaining surplus cytosolic malate and synthesized
sucrose are stored in the vacuole. Citrate accumulating in the vacuole at night can be released during the day via conversion to isocitrate in the cytosol
and mitochondria by cyNADP-ICDH and cmNADP-ICDH, respectively, offering a supply of NADPH. Cytosolic isocitrate is transported to peroxisomes
and can supply NADPH via pNADP-ICDH. In the light, cytosolic nitrogen assimilation is the major cytosolic NADH sink. Under stress conditions, the
NADPH oxidase RboH can consume cytosolic NADPH. TrxRs also consume NADPH in the cytosol (NTRA), chloroplasts (NTRC), and mitochondria
(NTRB). The AsA-GSH cycle can consume both NADH and NADPH in the cytosol, chloroplasts, peroxisomes, and mitochondria regardless of light
conditions. In addition, NADPH in the matrix can be consumed by NDC1 (C1); cytosolic NADPH and NADH can be consumed by NDB1 (B1) and NDB2-4

(B2-4), respectively.

DHAP, dihydroxyacetone phosphate; GDC, glycine decarboxylase; HPR1, hydroxypyruvate reductase 1; PEP, phosphoenolpyruvate; pIPDC, plastidic

pyruvate dehydrogenase complex; PSI, photosystem I; PSII, photosystem II.

the Calvin-Benson-Bassham (CBB) cycle occur in bundle sheath
cells (BSCs). In C4 plants, GDC protein is mainly expressed in
BSC mitochondria, which primarily function in C1 metabolism, as
photorespiration is significantly inhibited by the high CO, concen-
tration resulting from the C4 mechanism (Hylton et al., 1988;
Schulze et al., 2016). By contrast, the C4 plant Bienertia
sinuspersici achieves spatial compartmentalization in a single cell
using dimorphic chloroplasts (i.e., peripheral and central
chloroplasts) (Offermann et al., 2011, 2015).

C4 plants are divided into the NADP-malic enzyme (NADP-ME),
NAD-malic enzyme (NAD-ME), and phosphoenolpyruvate car-
boxykinase (PEPCK) subtypes, but no pure PEPCK C4 species

has been identified to date. In the NAD-ME subtype, Asp gener-
ated from OAA in MSC chloroplasts is transported to mitochon-
dria in the BSCs and converted back to OAA via AspAT and
then to malate by mtNAD-MDH. The malate is then decarboxy-
lated by NAD-ME to release CO, and NADH (Rao and Dixon,
2016). Light significantly induces NAD-MEa expression in NAD-
ME C4 but not C3 Cleome species (Hudig et al., 2022). By
contrast, in the C3 plant Arabidopsis, the activities and
expression of two mitochondrial NAD-ME genes (mtNAD-ME1
and mtNAD-ME?2) decrease during the day (Tronconi et al.,
2008). The high expression of mtNAD-ME2 could represent an
adaptation of NAD-ME C4 plants. For example, mtNAD-ME2 is
expressed at higher levels in B. sinuspersici than in Arabidopsis,
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and this gene is also expressed at much higher levels in NAD-ME
C4 grasses than in C3 grasses (Rao and Dixon, 2016; Watson-
Lazowski et al., 2018; Han et al., 2023). Unlike mtNAD-ME,
mtNAD-MDH transcription did not markedly differ between C3
and NAD-ME C4 Cleome species, and mtNAD-MDH enzyme ac-
tivity was high in both species, suggesting that the capacity of
mtNAD-MDH is sufficient in both C3 and C4 Cleome species
(Brautigam et al., 2011; Sommer et al., 2012).

NADH generation from the glyoxylate cycle of plants

In addition to the main TCA cycle in the mitochondrial matrix,
plants also employ a unique cycle that bypasses the TCA cycle
known as the glyoxylate cycle, which occurs in glyoxysomes
(Graham, 2001; Pracharoenwattana et al., 2005; Kunze and
Hartig, 2013). Glyoxysomes are specialized microbodies found
in plant cells, particularly in oil-rich germinating seeds such as
in soybean (Glycine max), Arabidopsis, and sunflower (Helianthus
annuus). Germinating oilseeds mainly rely on the degradation of
their oil reserves as a source of carbon backbones and energy.
The core glyoxylate cycle involves the conversion of acetyl-CoA
to succinate, with each cycle producing one NADH molecule
that is generated via the oxidation of malate by glyoxysomal
NAD-MDH. In leaves, glyoxysomes disappear and peroxisomes
appear when photosynthesis is initiated (Oikawa et al., 2019;
De Bellis et al., 2020). During the phototrophic stage, fatty
acids are oxidized via p-oxidation in peroxisomes to generate
NADH for plant growth under limited carbon conditions
(Goepfert and Poirier, 2007; Yu et al., 2019).

NADH generation in mammalian cells

In mammals, glycolysis occurs only in the cytosol and generates
NADH via a single GAPDH (Tristan et al., 2011; Ikeda et al., 2012).
Subsequently, pyruvate, the end product of glycolysis, is
transported into the mitochondria and oxidized by PDC to
generate NADH and acetyl-CoA, the latter entering the TCA cy-
cle. As in plants, each turn of the TCA cycle in mammals produces
three NADH molecules, which are produced sequentially by
ICDH, OGDH, and MDH. Humans contain three ICDHs:
hICDH1-hICDH3. hICDH3 generates NADH in mitochondria,
and the other two enzymes generate NADPH (Reitman and
Yan, 2010). The human MDH isoforms hMDH1 and hMDH2
are both NAD* specific, and, while mitochondrial hMDH2 is
involved in the TCA cycle, hMDH1 localizes to the cytosol and
peroxisomes (McCue and Finzel, 2022). Malate is also
decarboxylated via NAD(P)-ME to provide NAD(P)H. Human cells
contain three malic enzymes—hNADP-ME1, hNADP-ME2, and
hNAD(P)-ME3—with hNADP-ME1 localized to the cytosol and
the other two enzymes localized to mitochondria. hNAD(P)-ME3
participates in the TCA cycle and generates NADH, and it also
produces NADPH for lipid biosynthesis and glutathione reduction
(Hsieh et al., 2019).

In mammals, fatty acid p-oxidation occurs and generates NADH
in both mitochondria and peroxisomes (Poirier et al., 2006). As
mammals only obtain sugars from their diet, when cells contain
insufficient glucose levels, fat reserves are converted into fatty
acids via lipolysis. The resulting fatty acids undergo p-oxidation
in the mitochondria to produce NADH, thereby supporting ATP
production via the mETC (Elmadfa and Kornsteiner, 2009). The
oxidation of amino acids also provides NADH in mammalian
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cells. In mammals, glycine oxidation via GDC functions in
mitochondrial folate metabolism (Pai et al., 2015). Unlike plant
GDHs, mammalian mitochondrial GDHs use both NAD* and
NADP", allowing mitochondria to use glutamate as an NADH
source for the mETC when required (Bunik et al., 2016; Plaitakis
et al., 2017).

Major sources of NADH for mitochondrial ATP
production in mammals versus plants

In mammals, the TCA cycle is the main source of NADH for ATP
production in mitochondria. In plants, however, the sources of
mitochondrial NADH vary in different tissues, developmental
stages, light conditions, and photosynthetic types. During oilseed
germination, p-oxidation and the glyoxylate cycle convert stored
lipids into succinate, which is transported to mitochondria for
NADH production (Voon and Lim, 2019). In the photosynthetic
tissues of C3 plants, the glycine decarboxylation step of
photorespiration supplies a large amount of NADH to
mitochondria, exceeding the NADH-consuming capacity of the
mETC, and the surplus NADH is exported to the cytosol in the
form of malate (Lim et al., 2020). Hence, in the photosynthetic
tissues of C3 plants, photorespiration and the TCA cycle are the
major sources of NADH for ATP production in mitochondria
during the day and night, respectively. In the non-photosynthetic
tissues of plants and in the photosynthetic tissues of C4 plants,
the TCA cycle represents the major source of fuel for ATP produc-
tion in mitochondria during the day.

NADH consumption in plants

Under aerobic conditions, NADH produced in mammal and plant
mitochondria is mainly consumed through the mETC (Efremov
and Sazanov, 2012; Lapuente-Brun et al., 2013; Sazanov, 2014).
Here, NADH is consumed by complex | to generate the proton
motive force needed to produce ATP through ATP synthase.
However, the system is more sophisticated in plants. Alternative
oxidase (AOX) and alternative NAD(P)H dehydrogenases (NDs)
in plant mitochondria only transfer electrons without proton
translocation and thus do not directly contribute to
oxidative phosphorylation. AOX directly transfers electrons from
ubiquinone to O, to generate water. NDs located on the inner or
outer surface of the inner mitochondrial membrane transfer elec-
trons from NAD(P)H in the mitochondrial intermembrane space
or matrix to ubiquinone (UQ), which is then transferred to
complexes llI-IV or AOX (Rasmusson et al., 2008; McDonald
et al, 2009; Antos-Krzeminska and Jarmuszkiewicz, 2019).
Arabidopsis contains seven ND isoforms divided into three
subfamilies: NDA, NDB, and NDC. NADH-dependent NDA1-2
(NDin) are located on the inner surface of the mitochondrial inner
membrane. Light significantly induces the transcription of AtNDA1
and it might function in the dissipation of mitochondrial NADH
produced by photorespiration (Elhafez et al., 2006). NADPH-
dependent NDB1 (NPDex) and NADH-dependent NDB2-NDB4
(NDex) are located on the outer surface of the inner mitochondrial
membrane (Schertl and Braun, 2014; Moller et al., 2021). AtNDBs
have a low pH optimum, and the activities of AtNDB1 and AtNDB2
were strongly and moderately stimulated by Ca®*, respectively
(Geisler et al., 2007). Some stress conditions, such as hypoxia
and ammonium and salt treatments, increase cytosolic Ca®* level,
which then activates Caz“'-dependent AtNDB1 and AtNDB2,
thereby alleviating ROS generation by consuming cytosolic NAD
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(P)H (Igamberdiev and Hill, 2018; Rasmusson et al., 2020; Bachani
et al., 2022). The activity of NADPH-dependent NDC1, located on
the inner surface of the mitochondrial inner membrane, is also
stimulated by Ca?* and low pH (Rasmusson and Moller, 1991).
Under certain stress conditions, concurrent upregulation of ND
and AOX genes was observed, which helps plants to decrease
UQ pool reduction and prevent excessive generation of ROS
(Moller, 2001; Van Aken et al, 2009; Vanlerberghe, 2013;
Sweetman et al., 2019; Rasmusson et al., 2020).

Fermentation is a common anaerobic pathway that consumes
NADH without ATP production. When cellular O, concentrations
are below a given threshold, pyruvate in the plant cytosol is reduced
to lactate by lactate dehydrogenase (LDH) or converted to acetal-
dehyde by PDC, followed by further reduction to ethanol by acetal-
dehyde dehydrogenase (Dolferus et al., 2008; Wei et al., 2009).

In plant nitrogen assimilation, nitrate (NO3™) reduction is cata-
lyzed by nitrate reductase (NR), the activity of which is light acti-
vated in photosynthetic tissues (Riens and Heldt, 1992). NR is
present in the plant cytosol and uses NAD(P)H as its electron
donor. In most vascular plants, NR uses NADH as an electron
donor, whereas a bi-specific form of NR that uses NADH/
NADPH is present in monocotyledons and some dicotyledons
(e.g., soybean); NR in mosses and fungi uses NADPH as the elec-
tron donor (Tischner and Kaiser, 2007). In vascular plants, nitrite
(NO,7), a product of nitrate reduction, is transported to plastids,
converted to ammonium (NH,*) by nitrite reductase (NIR), and
participates in the GS-GOGAT cycle (Takahashi et al., 2001;
Gupta et al., 2022). In the GS-GOGAT cycle, GIn is converted
to Glu by GOGAT, which uses reduced ferredoxin (Fd,.q) as the
electron donor in photosynthetic tissues and NADH as the elec-
tron donor in non-photosynthetic tissues (Kojima et al., 2014).

In C3 plants, toxic glyoxylate is generated during photorespiration
in peroxisomes and is rapidly converted to glycine via glyoxylate
aminotransferase. Glyoxylate transported to the cytosol and
chloroplasts is detoxified by NAD(P)H-dependent glyoxylate
reductase (GR). In Arabidopsis and rice, there are two GR isoforms,
cytosolic GR and chloroplast GR, and both prefer NADPH rather
than NADH as a cofactor (Simpson et al., 2008; Zhang et al.,
2020b). Peroxisomal glycine is transported and converted to
serine in mitochondria, which is exported and converted to
hydroxypyruvate in peroxisomes and further reduced to glycerate
using NADH via hydroxypyruvate reductase (HPR). Glycerate is
further converted to 3-phosphoglyceric acid (3-PGA) in chloro-
plasts to complete the photorespiration cycle. Arabidopsis has
three HPR isoforms: peroxisome-localized NADH-dependent
AtHPR1, cytosolic NADPH-dependent AtHPR2, and chloroplast-
localized NADPH-dependent AtHPR3 (Timm et al., 2011). We
suggest that the preferences of enzymes with NAD(P)H dual
specificity have evolved as an adaptation to the prevailing
concentrations of NADH and NADPH in their respective subcellular
compartments. In both the cytosol and chloroplasts, where NADPH
levels are higher than those of NADH, NADPH is preferred by GRs
and by AtHPR2 and AtHPR3 (Gakiere et al., 2018).

NADH consumption in mammals

In mammals, NADH is mainly consumed through the mETC under
aerobic conditions via complex |. Under anerobic conditions,
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mammalian cells perform lactate fermentation to recycle NAD*
via cytosolic LDH. In addition to functioning in the cytosolic
lactate fermentation pathway, LDH is also found in mammalian
peroxisomes, where it utilizes peroxisomal NADH to reduce pyru-
vate (Schueren et al., 2014). In mammals, glyoxylate is also toxic
and is reduced to glycolate by the dual-localized bifunctional
enzyme glyoxylate reductase/HPR using NAD(P)H in mitochon-
dria and the cytosol. In peroxisomes, glyoxylate is metabolized
to glycine by alanine/glyoxylate aminotransferase (Booth et al.,
2006; Belostotsky et al., 2012; Salido et al., 2012; Garrelfs
et al., 2024).

THE NADPH REDOX SYSTEM

NADPH is a key electron donor for ROS detoxification and a va-
riety of anabolic pathways, including fatty acid and nucleic acid
biosynthesis, the CBB cycle, carotenoid biosynthesis, and pro-
line biosynthesis (Aghdam et al., 2020; Moller et al., 2020).
A major difference between mammalian cells and plant cells is
that plant cells contain chloroplasts, which have a profound
influence on the plant NADPH regulatory system (Supplemental
Table 2).

NADPH in plant chloroplasts/plastids

In photosynthetic tissues under illumination, photosynthesis is
the primary source of NADPH production in chloroplasts
(Figure 4). Linear electron flow (LEF; powered by sunlight) is
the key electron flow in the photosystems, in which electrons
are transferred from water to reduce NADP* to NADPH by
ferredoxin-NADP(H) oxidoreductase (FNR) (Morigasaki et al.,
1990; Hanke et al., 2005; Mulo, 2011). By contrast, in non-
photosynthetic tissues and in photosynthetic tissues in the
dark, OPPP is the major source of NADPH in plastids (Figure 3).
Plants have two complete OPPPs: one in the cytosol and one in
plastids. Both pathways convert one molecule of glucose-6-
phosphate to ribulose-5-phosphate to generate two molecules
of NADPH via glucose-6-phosphate dehydrogenase (G6PD)
and 6-phosphogluconate dehydrogenase (6PGD). There are six
G6PDs in Arabidopsis, namely plastid-localized G6PD1-4 and
cytosolic G6PD5 and G6PD6 (Wakao and Benning, 2005). The
Arabidopsis genome encodes three 6PGDs: PGD1 and PGD3
localize in the cytosol and plastids, and PGD2 localizes in the
cytosol and peroxisomes (Holscher et al., 2016).

Plant chloroplasts/plastids also contain other NADPH-producing
enzymes, including NADP-ICDH, NADP-MDH, and NADP-ME.
Four NADP-ICDH isozymes were identified in Arabidopsis,
including one isoenzyme localized to peroxisomes, one to the
cytosol, one to mitochondria, and one to chloroplasts. Notably,
the mitochondrion-localized and chloroplast-localized NADP-
ICDH isozymes are encoded by the same gene (Hodges et al.,
2003; Leterrier et al., 2016).

NADP-MDH is localized to the chloroplast (Ocheretina et al.,
2000) (Figure 4). In C3 plants, the enzymatic activity of NADP-
MDH is light activated and contributes to the export of surplus
reducing equivalents from the chloroplast to the cytosol via ma-
late export (Foyer et al., 2009; Lim et al., 2020; Yokochi et al.,
2021). During the evolution of NADP-ME C4 plants, the enzyme
activity and transcript abundance of NADP-MDH have been
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shaped to support C4 photosynthesis. In this type of photosyn-
thesis, OAA is converted to malate by NADP-MDH in MSCs,
which is then transported to BSCs and decarboxylated via
NADP-ME to release CO, via NADP-ME (Rao and Dixon, 2016).
Although the NADP-MDH gene exists as a single copy in
both C3 and NADP-ME C4 Flaveria species, the enzyme
activity and transcript abundance of NADP-MDH are much
higher in the latter. In addition, light significantly induced the
transcription of NADP-MDH in C4 Flaveria species and maize
(Zea mays) but had no effect on this gene in C3 Flaveria species
(Metzler et al.,, 1989; McGonigle and Nelson, 1995; Lyu
et al., 2025).

Similar to NADP-MDH, the transcription of NADP-ME in NADP-
ME C4 Flaveria species is induced by light, and its enzyme activity
is much higher in NADP-ME C4 Flaveria species than in C3
Flaveria species (Lyu et al., 2025). Arabidopsis contains only
one chloroplast NADP-ME isoform (NADP-ME4). By contrast, in
maize, the original non-C4-NADP-ME gene was duplicated and
an additional C4-NADP-ME gene evolved (Wheeler et al., 2005;
Alvarez et al., 2013; Bohm et al., 2025). The enzymatic activity
of maize C4 NADP-ME is much higher than that of maize non-
C4 NADP-ME and AtNADP-ME4 (Maier et al, 2011). In
addition, maize C4-NADP-ME is expressed at much higher levels
in leaves compared to non-C4-NADP-ME, and UV treatment
significantly increased the expression of maize C4-NADP-ME
but had little effect on non-C4 and cytosolic NADP-MEs
(Alvarez et al., 2013).

In chloroplasts, NADPH generated via the light reactions of
photosynthesis is mainly used in the CBB cycle via NADP-
specific GAPDH (Marri et al., 2009; Zeng et al., 2016). This pool
of NADPH is also used by thioredoxins, as well as for lipid and
chlorophyll biosynthesis (Mulo, 2011). In non-photosynthetic
plastids, root FNR reduces Fd using NADPH derived from
the OPPP to drive various metabolic pathways (Hachiya
et al.,, 2016; Guan et al.,, 2018). In vascular plants, nitrite
reduction during nitrogen assimilation also occurs in plastids/
chloroplasts, a process catalyzed by NIR using Fd,.q as an elec-
tron donor in photosynthetic chloroplasts and NADPH as an elec-
tron donor in non-photosynthetic plastids (Joy and Hageman,
1966; Takahashi et al., 2001).

NADPH is also involved in ROS detoxification, which is important
for defense responses and signal transduction. In chloroplasts,
ROS is mainly produced via the Mehler reaction, which generates
superoxide (Oo7) from O in photosystem I[; the resulting ROS is
detoxified via the ascorbate—glutathione (AsA-GSH) cycle and
the thioredoxin (Trx) system, both of which use NADPH as an elec-
tron donor. In the AsA-GSH cycle, glutathione reductase (GTR)
uses NADPH as a source of reducing equivalents to catalyze the
reduction of oxidized glutathione (GSSG) to reduced glutathione
(GSH) (Noctor et al., 2012). GSH is then converted back to
GSSG by dehydroascorbate reductases (DHARs). Electrons from
hydrogen peroxide (H,O,) are then dissipated by the oxidation of
ascorbate (AsA) to monodehydroascorbate (MDHA) via ascorbate
peroxidase. AsA is recycled either from dehydroascorbate via
DHAR or from MDHA via NAD(P)H-dependent monodehydroas-
corbate reductase (MDAR) (Noctor et al., 2000). Arabidopsis
contains two GTR isoforms: AtGTR1 localizes in the cytosol, nu-
cleus, and peroxisomes and AtGTR2 is targeted to plastids and
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mitochondria (Foyer and Noctor, 2011; Marty et al., 2019).
Arabidopsis also contains five MDAR isoforms: cytosolic/
peroxisomal AtMDAR1, cytosolic AAMDAR2 and AtMDARS, perox-
isomal AtMDAR4, and chloroplastic/mitochondrial AtMDARS5.
AtMDARs have different NAD(P)H preferences, with AtMDAR1
and AtMDAR5 preferring NADH and AtMDAR2 preferring
NADPH (Vanacker et al., 2018; Tanaka et al., 2021). In the Trx
system, peroxiredoxins, a class of cysteine-dependent peroxi-
dases, are reduced by NADPH oxidation via thioredoxin reductase
(TrxR) and Trx (Hebbelmann et al., 2012). In Arabidopsis and rice,
three NADPH-dependent TrxRs (NTRs) with disulfide-bond reduc-
tase activity have been reported: NTRA, the major cytosolic NTR;
NTRB, the major mitochondrion-localized NTR, sharing a redun-
dant function in the cytosol and mitochondria with NTRA; and
chloroplast-localized NTRC (Cha et al., 2015).

NADPH in the cytosol

NADPH levels in eukaryotic cells are usually lower in the cytosol
than in organelles (Tao et al., 2017; Lim et al., 2020). As
mentioned above, the OPPP is an essential source of NADPH
in plant plastids and cytosol; in mammals, the OPPP is only found
in the cytosol (TeSlaa et al., 2023). In addition to the OPPP,
cytosolic NADPH is also produced via several NADPH-
generating enzymes, including non-phosphorylating GAPDH
(np-GAPDH), NADP-ICDH, and NADP-ME. np-GAPDH, an
enzyme mainly found in autotrophic eukaryotes, catalyzes the
oxidation of GAP to 3-PGA in the cytosol and generates one
molecule of NADPH (Bustos and Iglesias, 2003; Wieloch, 2021).
Cytosolic NADP-ICDH activity has been detected in all Arabidop-
sis tissues, with high activity in leaves (Mhamdi et al., 2010).
Arabidopsis contain three cytosolic NADP-ME isoforms,
AtNADP-ME1-3, and only AtNADP-MEZ2 is continuously ex-
pressed in leaves and roots (Wheeler et al., 2005). In humans,
hICDH1 and hNADP-ME1 generate NADPH in the cytosol, and
the latter plays a role in cytosolic lipogenesis (Reitman and Yan,
2010; Hsieh et al., 2014).

In plants, cytosolic NADPH provides reducing power for mem-
bers of the respiratory burst oxidase homolog (RboH) family.
RboHs are a class of transmembrane proteins that mediate the
transfer of electrons from intracellular NADPH to extracellular
O, to give O, ", which is subsequently catabolized to H,O, by su-
peroxide dismutase (Kaur and Pati, 2016; Foyer and Noctor,
2020). In mammals, the transmembrane enzymes NADPH oxi-
dases catalyze electron transfer from cytosolic NADPH across
the cell membrane to generate H,O, (Torres and Dangl, 2005;
Nazari et al., 2023). The H,0, is detoxified by the cytosolic
AsA-GSH cycle and the Trx systems using NADPH as a cofactor.
In Arabidopsis, AtGTR1 and NTRA consume NADPH and function
in the cytosolic AsA-GSH cycle and the Trx system, respectively.
In humans, a single gene, hGTR, encodes both cytosolic and
mitochondrion-localized isoenzymes that function in the AsA-
GSH cycle in each compartment (Kelner and Montoya, 2000).
The two major TrxR isoforms in humans, cytosolic TrxR1 and
mitochondrial TrxR2, function in redox signaling in the corre-
sponding organelles (Miseviciene et al., 2022). Notably, in
plants, cytosolic NAD(P)H can also be consumed by NDBs
located on the outer surface of the inner mitochondrial
membrane, thereby participating in cytosolic redox metabolism
(Rasmusson et al., 2008, 2020).
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NADPH in mitochondria

The mitochondrion is an important site for ROS production
during cellular oxidative phosphorylation in both plant and
mammalian cells (Lenaz, 2001; Moller, 2001; Navrot et al.,
2006). In humans, hNADK2 generates NADP™* in mitochondria,
which is then converted to NADPH by mitochondrion-localized
NADPH-generating enzymes including hICDH2, hNADP-ME2,
hNAD(P)-ME3, and proton-translocating transhydrogenase
(Reitman and Yan, 2010; Ohashi et al., 2012; Hsieh et al.,
2014, 2019; Francisco et al., 2022). Proton-translocating trans-
hydrogenase, also known as nicotinamide nucleotide transhy-
drogenase (NNT), catalyzes the reversible transfer of hydride
from NADH to NADP* coupled to inward proton translocation.
This enzyme is only found in the inner membranes of animal
mitochondria and the plasma membranes of some prokaryotes
(Jackson, 2012; Kastaniotis et al., 2017). In mammals, the
electrochemical proton gradient (Ap) generated by respiration
is mainly consumed by the NNT forward reaction. As a result,
the pH of the mammalian mitochondrial matrix is 0.2 units
lower than that of the plant mitochondrial matrix, which
makes the [NADPH][NAD*]/[NADP*][NADH] ratio two orders of
magnitude greater in mammalian than in plant mitochondria
(Jackson, 2003; Shen et al., 2013; Gakiere et al., 2018; Zou
et al., 2018). In mammals, NADP* produced by mitochondrial
NADK and NADH generated by mitochondrial p-oxidation
provide sufficient substrate for NNT, and the NADPH produced
by NNT is consumed during fatty acid biosynthesis (Kastaniotis
et al,, 2017). As fatty acid biosynthesis in plants occurs in
plastids and beta-oxidation occurs in peroxisomes, NNT is not
needed to provide large amounts of NADPH in plant mitochon-
dria and there is no evidence that it is present (Bykova et al.,
1999; Moller et al., 2020).

NADPH in the plant mitochondrial matrix is mainly consumed
by NDC and the NADPH-dependent ROS detoxification system,
NTRB-Trx system, and AsA-GSH cycle via GTR2 (Moller and
Rasmusson, 1998; Moller, 2001; Rasmusson et al., 2008,
2020; Cha et al.,, 2015; Marty et al., 2019). Although the
activity of the mitochondrion-localized NADPH-generating
enzyme NADP-ICDH has been detected in Arabidopsis
and pea (Pisum sativum) (Rasmusson and Moller, 1990;
Igamberdiev and Gardestrom, 2003; Leterrier et al., 2016), no
mitochondrial NADK has been identified in plants. NADP* was
shown to be transported across the inner membrane of the plant
mitochondrion (Bykova and Moller, 2001), but this result has not
been verified, and there are no known plant mitochondrial
membrane carriers for NADP* (Moller et al., 2020). Therefore,
the origin of plant mitochondrial NADP* requires further
investigation.

NADPH in peroxisomes

Peroxisomes are highly dynamic organelles with pivotal roles
in various metabolic pathways, such as fatty acid oxidation
and glyoxylate metabolism. Many enzymes involved in these
pathways generate distinct types of ROS. In mammalian
peroxisomes, H,O, is mainly metabolized into H,O by catalase
or transported into the cytosol by peroxisomal membrane
protein 2, thus maintaining redox balance in peroxisomes
(Rokka et al., 2009; Fransen et al.,, 2012). Therefore, in
mammals, peroxisomal NADPH mainly functions in anabolic
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pathways. In humans, NADP-dependent hICDH1, which local-
izes to both the cytosol and peroxisomes, provides NADPH for
the biosynthesis of fat and cholesterol in peroxisomes
(Reitman and Yan, 2010; Van Veldhoven, 2010). However,
human cells lack NADK in their peroxisomes and thus require
a transporter to transport cytosolic NADP* into peroxisomes
(Chornyi et al., 2020). The identity of this transporter remains
unknown, and peroxisomal NADPH metabolism in mammalian
cells also needs to be elucidated.

By contrast, NADK is present in plant peroxisomes, and the path-
ways for NADPH production in plant peroxisomes are more
numerous. Plant peroxisomal NADP-ICDH (pNADP-ICDH) pro-
duces NADPH in peroxisomes (Leterrier et al., 2016). An
incomplete OPPP present in plant peroxisomes also generates
NADPH. In Arabidopsis, PGD2 is present in peroxisomes. How-
ever, Arabidopsis G6PD isoforms do not carry distinct C-terminal
peroxisomal targeting signal 1 (PTS1) or N-terminal PTS2 motifs,
and the interaction between G6PD4 and G6PD1 facilitates the
import of G6PD1 into peroxisomes to complete the OPPP
(Corpas et al., 1998; Meyer et al., 2011). Plant peroxisomal
NADPH participates in ROS detoxification via the peroxisomal
AsA-GSH cycle (Del Rio and Lopez-Huertas, 2016; Marty
et al., 2019).

PYRIDINE NUCLEOTIDE POOLS AND
RATIOS IN PLANTS

NAD(H) and NADP(H) pools and the ratios of reduced/oxidized
forms vary among different tissues and compartments and
change dynamically under different conditions. In vivo, most
NAD(P)H molecules are protein-bound, and the concentration
of free NAD(P)H is relatively low (Agius et al., 2001; Kasimova
et al., 2006; Smith et al., 2021). In plants, the levels of free and
total NADH in cytosol under darkness were estimated to be 0.
5 and 18 pM, respectively, and their levels in mitochondria were
70 and 190 pM, respectively, which were higher than the free
NADH levels in human cell cytosol (0.12 pM) and mitochondria
(30 pM) (Heineke et al., 1991; Igamberdiev and Gardestrom,
2003; Kasimova et al., 2006; Zhao et al., 2011). The combined
levels of free NADP™ (38 pM) and NADPH (150 pM) in plant mito-
chondria and cytosol were also higher than that of human cell
mitochondria (0.19 uM for NADP* and 37 pM for NADPH) and
cytosol (0.1 uM for NADP* and 3.1 pM for NADPH) (Heineke
et al., 1991; Tao et al., 2017; Zou et al., 2018).

Early studies employed in vitro methods to measure the
subcellular concentrations of pyridine nucleotides in plant
organelles rapidly fractionated from protoplasts. Under illumina-
tion, free NADPH and NADP* levels are higher in spinach leaf
chloroplasts than in the cytosol and mitochondria, and the
NADPH/NADP* ratio in the stroma under light (0.5) is a double
of the ratio in the dark (0.23) (Heineke et al., 1991). The NADH
level in mitochondria is higher than in chloroplasts and cytosol,
and the NADH/NAD" ratio in the cytosol is much lower than that
in mitochondria and chloroplasts (Heineke et al., 1991; Szal
et al., 2008). lllumination of pea leaves increased mitochondrial
total NADH level from 75 to 455 pM and the NADH/NAD™ ratio
from 0.05 to 0.29, and, in cytosol, total NADH level increased
from 18 to 55 uM and the ratio from 0.03 to 0.1. These changes
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disappeared when photorespiration was inhibited by saturating
CO, level (Ilgamberdiev and Gardestrom, 2003). Similarly, the
NADH/NAD™" ratio in the mitochondria of barley (Hordeum
vulgare) protoplasts dropped from 0.22 to 0.07 when photorespi-
ration was inhibited by high CO, concentration under
illumination (Wigge and Krémer, 1993). In plant and mammalian
cells, the ratio of NADH/NAD™ is usually lower than that of
NADPH/NADP* (Wigge and Kromer, 1993; Zou et al., 2018).
These two coenzyme couples have a marked difference in
their reduction levels in plant matrix, as they are not in
thermodynamic equilibrium but in a kinetic steady state (Moller
et al., 2020).

The recent application of fluorescent biosensors in plants has
enabled more sensitive and efficient monitoring of the dynamic
changes in free pyridine nucleotide contents in different subcel-
lular compartments in planta (Smith et al., 2021). An increase in
the NADH/NAD" ratio upon illumination was observed in Arabi-
dopsis stroma using the in planta biosensor SoNar; this increase
disappeared when photorespiration was inhibited. This analysis
also revealed that the changes in the cytosolic NADH/NAD"* ra-
tio were dependent on light intensity, with the ratio increasing at
296 mmol m~2 s~ and decreasing at 40 mmol m=2 s~ (Lim
et al., 2020). NADH/NAD" ratios and NADPH levels are differen-
tially regulated in plants (Lim et al., 2020; Liu et al., 2022).
Notably, 3 min of illumination increased the stromal NADPH
level and NADH/NAD™ ratio. Both readings dropped after the
light was turned off; the NADH/NAD™" ratio dropped to below
basal levels, and the NADPH level only decreased during the
first minute of darkness and subsequently stabilized above
the basal level (Lim et al., 2020). These differences are due to
the differential regulation of NAD(P)-MDH activities. While stro-
mal NADP-MDH is activated by light and inactivated in the dark,
the activation of NAD-MDHs in various organelles occurs inde-
pendently of light. Mitochondrial NAD-MDH, due to its equilib-
rium properties and NADH/NAD* buffering ability, rapidly
recycles NAD" from NADH, thereby alleviating the inhibition of
mtPDC and GDC activities under high rates of respiration
and photorespiration (Hagedorn et al., 2004; Bykova et al.,
2014; Igamberdiev et al., 2014). These MDHs allow the rapid
transport and storage of surplus reducing equivalents
generated from photosynthesis and photorespiration in the
form of malate, which accumulates in the vacuole during the
day, and supplies NADH to various compartments in the dark
(Figures 3 and 4).

CONCLUDING REMARKS AND
PERSPECTIVES

The NADH and NADPH systems are robust and complex and
have evolved to become increasingly sophisticated. Due to
the endosymbiotic origin of chloroplasts, the functions of organ-
elles in plant cells are more specialized than those in mammalian
cells. In mammalian cells, mitochondria are enriched in both
NADH and NADPH metabolic pathways. By contrast, plant
mitochondria serve as powerhouses of the cell by consuming
reductants harvested by chloroplasts and providing the cytosol
with ATP and are therefore enriched in NADH metabolic path-
ways (Gardestrom and Igamberdiev, 2016). Plant chloroplasts
capture solar energy and are involved in various anabolic
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pathways, resulting in the marked enrichment of NADPH-
related metabolism.

More research on plant NAD(H) and NADP(H) metabolism is
needed. The identity of chloroplast NAD* transporter is still un-
clear. Homologs of AtNDT1, AtNDT2, and AtPXN can be
searched among chloroplast transmembrane proteins and their
NAD™ transport capacity can be examined. The origin of NADP*
in plant mitochondria remains to be elucidated, and the NADP*
transporter in the plant mitochondrial carrier family remains to
be revealed.

Reduction and oxidation of pyridine nucleotides consume or
release protons and these processes could affect subcellular
pH. Their effect on pH is determined by the net release or up-
take of protons in conjunction with concomitant reactions
(lgamberdiev and Kleczkowski, 2019; Smith et al., 2021). For
example, NADPH produced by Fd-FNR is consumed in the
CBB cycle. Hence, the contribution to pH stat via proton release
and consumption in the pyridine nucleotide redox reactions
warrants further studies.

Under sufficient light, photosynthetic plant cells produce a sur-
plus of reducing equivalents that will generate ROS, deplete
NADP™*, and impede LEF. This depletion of NADP* particularly
affects C3 photosynthesis, as tremendous NADH generated
by photorespiration indirectly restricts stromal NADP* regener-
ation from the malate valve (Lim et al., 2020). Therefore,
inhibiting photorespiration by introducing photorespiratory
bypasses (Xin et al., 2015; Shen et al., 2019) and enhancing
NAD(P)H metabolism could improve energy efficiency of C3
plants. For example, overexpression of AtPAP2 improved
photosynthetic efficiency and productivity by enhancing
chloroplast and mitochondrial activities, optimizing NAD(P)H
metabolism, and increasing the NADP*/NADPH ratio (Sun
et al., 2012; Liang et al., 2015; Voon et al., 2018; Cai et al.,
2022). Other strategies such as optimizing NAD(P)H metabolic
fluxes, enhancing enzyme stability, and reducing ATP costs,
are potential pathways for improving energy-use efficiency in
plants.
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