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In quantum Shannon theory, various kinds of quantum entropies are used to characterize the capacities of
noisy physical systems. Among them, min-entropy and its smooth version attract wide interest especially in
the field of quantum cryptography as they can be used to bound the information obtained by an adversary.
However, calculating the exact value or nontrivial bounds of min-entropy are extremely difficult because
the composite system dimension may scale exponentially with the dimension of its subsystem. Here, we
develop a one-shot lower bound calculation technique for the min-entropy of a classical-quantum state that
is applicable to both finite and infinite dimensional reduced quantum states. Moreover, we show our
technique is of practical interest in at least three situations. First, it offers an alternative tight finite-data
analysis for the BB84 quantum key distribution scheme. Second, it gives the best finite-key bound known
to date for a variant of device independent quantum key distribution protocol. Third, it provides a security
proof for a novel source-independent continuous-variable quantum random number generation protocol.
These results show the effectiveness and wide applicability of our approach.
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Introduction—Quantum Shannon theory [1] is an active
subfield of quantum information processing whose aim is
to quantitatively characterize the ultimate capacity of noisy
physical systems. Under the independent and identically
distributed (i.i.d.) assumption and in the asymptotic limit
(that is, when there are infinitely many copies of the state),
the relevant entropy measures are the von Neumann
entropy and its variations. The situation is different in
the nonasymptotic or non-i.i.d. setting. Here, more general
entropy measures have to be used [2]. One of them is the
quantum conditional min-entropy, which we shall simply
call min-entropy throughout this Letter, together with its
smooth version. For example, if an adversary tries to guess
a string of random variable conditioned on some accessible
quantum states, then the supremum possible correctly
guessing probability is the min-entropy of the random
variable conditioned on the quantum states [2]. Clearly, this
adversarial setting is important as it includes important
primitives such as quantum key distribution (QKD) [3] and
quantum random number generation (QRNG) [4].

The min-entropy of raw data conditioned on adversary’s
state plays an important role in the information security
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analysis of quantum cryptography. In fact, by the quantum
leftover hashing lemma [5,6], the smooth min-entropy [5]
determines the length of distillable key. To calculate the
lower bound of smooth min-entropy of the large composite
system shared by the users and Eve, the usual way is to
reduce it to i.i.d. states and then sum up their von Neumann
entropies via de Finetti representation theorem [7], post-
selection technique [8], quantum asymptotic equipartition
property [9], or entropy accumulation theorem [10,11].
However, these approaches cannot provide a tight length
of final key when comparing to one-shot calculations using
uncertainty relations for smooth entropies [12—15]. Since
these entropic uncertainty relations stem from the fact that
the result of incompatible measurements are impossible to
predict [ 16], their applications in quantum cryptography are
limited as they require characterized measurements [12—-14].
Therefore, it is instructive to find other one-shot approaches
that are irrelevant to incompatible measurements.

In this Letter, we propose an alternative one-shot
approach to min-entropy lower bound calculation, which
can be extended naturally to the case of smooth min-
entropy. In essence, given a classical-quantum (CQ) state
whose quantum subsystem may be finite- or infinite-
dimensional, we develop a technique to calculate the lower
bound of min-entropy of its classical random variable
conditioned on its quantum subsystem. Unlike the entropic
uncertainty relation mentioned above, our approach can
directly calculate the lower bound of min-entropy once the
density matrix of a CQ state is given. Concretely, we can
always assume that the classical variable of a CQ state is
uniformly distributed in an adversarial setting. If not, we
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apply Weyl operators to transform the distribution to a
uniform one. Clearly, this transformation does not decrease
the adversary’s information gain. By working on the CQ
state whose classical random variable is uniformly distrib-
uted, the min-entropy can be written in terms of the
eigenvalues of the adversary’s state. In this way, we reduce
the complicated problem of min-entropy calculation to a
simple problem of solving eigenvalues.

To illustrate the effectiveness of our one-shot min-
entropy approach in solving a wide range of quantum
cryptographic problems, we consider the following three
applications. First, we reproduce the best known provably
secure key rate of the BB84 QKD protocol. Next, we report
the best provably secure key rate for a variation of device-
independent (DI) QKD protocol under the assumption of
independent measurement. Finally, we show the security of
a novel source-independent continuous-variable (SI-CV)
QRNG protocol against general attacks.

Definitions—Here we describe the task of min-entropy
calculation in a quantum cryptographic setting. Alice holds
a classical random variable X that may take on values in the
finite set {0, 1,...,d — 1}, while Eve holds her system E.
Given a CQ state like

d—1

TXE = sz|x><x| ® 7y, (1)

x=0

where p, is its probability distribution of X, 7, is Eve’s state
when X takes the value x, Eve wants to maximize her
chance of correctly guessing X with the help of the
quantum state in her system E. This optimized guessing
probability is given by

d—1

pguess(X|E)rXE = {Sup} prTr(MxTx)7 (2)
Mx x=0

where the supremum is over all possible positive operator-
valued measures (POVMs) {M,} on Eve’s system.
The optimized guessing probability is related to the min-

entropy of 7yy. Given p,p, recall that the min-entropy is
defined by [2,5,17-19]

Hyin(A[B),,, = sup{A€R:271, @ o5 > psp}. (3)

where the supremum is over all normalized states oz within
subsystem B, and /, is the identity matrix of subsystem A.
(Throughout this Letter, the symbol of the identity matrix
of any subsystem is similarly defined.) From the opera-
tional meaning of min-entropy [2], the guessing probability
is determined by the min-entropy of X conditioned on E,
that is,

pguess (X|E)TXE = 2_Hmin(x‘E)rXE . (4)

Results—In the cryptographic setting, the task is to
bound pgyess(X|E) or equivalently Hy,(X|E), . This

TXE

can be done via Lemma 1, Theorem 1 and Corollary 1
below whose proofs can be found in Sec. I of Supplemental
Material (SM) [20].

Lemma 1—For any state tyy shared between Alice and
Eve, there exists a corresponding

d-1

1
pxe =D [X) x| @ [¥.) (%] (5)
x=0
with
Hunin(X[E) ,, < Hinin (X[E),., - (6)
Here, |¥,) is Eve’s pure state when X takes the value x.

Moreover, we can write |¥,) as

d—1
) =Y o™\ [ale,). (7)
y=0

where @ is a primitive dth root of unity, 4,’s are the
eigenvalues of Eve’s state. In other words,

1 d—1 d—1
PE = TrX[pXE] - EZ |lPx><lPx| - Zﬂy|ey><ey > (8)
x=0 y=0

with 32970 2, = 1, and {[e,)} is an orthonormal eigenbasis
of subsystem E.
Theorem 1—The min-entropy of the state pyg given by

Eq. (5) in Lemma 1 equals

d—1 2
Hoin(X|E), = logd —log (Z \/@ )
y=0

Hence,

d—1 2
Hpin(X|E),,, > logd - log (Z \/Z> . (10)
y=0

Corollary I—For the state pyp given by Eq. (5) in
Lemma 1 and its min-entropy expressed in Eq. (9) in
Theorem 1, the guessing probability pyyes(X|E), , can be

attained by the POVM {M, }?Z}, where

Mx:P{%jg;wxyey)}. (11)

Applications—We use three examples to illustrate the
effectiveness of our approach in solving quantum crypto-
graphic problems. The first one is the entanglement-based
(EB) version of the BB84 QKD scheme. This example
helps us to understand how our technique work in the
security proof against general attack. From the quantum
leftover hashing lemma [6], the extracted secure key
length is determined by the smooth min-entropy of raw
key conditioned on Eve’s quantum side information.
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Therefore, the core issue is to express this smooth min-
entropy in terms of the observable statistics. To this end, we
first express n pair of qubit (shared by Alice and Bob before
measurements) with some parameters, and Eve naturally
holds the purification. We then apply our technique to
calculate the smooth min-entropy (for the n-partite CQ state
shared by Alice and Eve after Alice’s measurements) using
these parameters. In this way, we write the min-entropy in
terms of observable statistics. Within the framework of
universal composable security [5,21,22], this gives a way to
prove the unconditional security against general attack for
the BB84 protocol. The final key length obtained turns out
to be the same as the best one-shot result known to
date [13,14]. Details are reported in §II.A of SM [20].
Entropic uncertainty relations may be ineffective when
comes to security involving uncharacterized or imperfect
measurements. To show the effectiveness of our one-shot
min-entropy approach in such scenarios, we consider in our
second example the security analysis of a QKD protocol
with uncharacterized measurements. We pick the protocol

Procedure I: The DI QKD Protocol With Causally Independent
Measurements.

1. State preparation and distribution: Eve prepares an N-pair
qubit state. She sends half of each pair to Alice and the other
half to Bob.

2. Measurement: for each qubit pair sent by Eve, both Alice and
Bob randomly and separately choose either the key
generation mode or the testing mode. If the testing mode is
selected, Alice (Bob) uniformly at random chooses «, = 0,
1 (x, =0, 1), where k, € {0, 1} and ;, € {0, 1,2}, whereas
if the key generation mode is picked, Alice (Bob) sets k, =
0 (x, = 2). They separately measure their share of the qubit
pair according to the mode they have selected. [See the
discussion near Eq. (63) in SM [20] for their measurements
used.] They jot down their measurement result as the bits x
and y, respectively.

3. Sifting: Alice (Bob) publicly announces her (his) mode.
And they keep the mode-matched data. Denote the
number of testing rounds by 4k with each combination
(k4. k) €{00,01, 10, 11} by k. Further denote the number
of key generation mode by 4n. Clearly, 4n 4+ 4k = N. (We
may assume for simplicity that n and k are large positive
integers.)

4. Parameter estimation: Alice and Bob calculate the winning
probability of the CHSH game using their measurement
results from the testing mode. That is to say, they compute
the chance that x @ y = «,, - k;, [23]. They abort the
protocol if the winning frequency is lower than predefined
threshold.

5. Classical postprocessing: for the remaining 4n bits of data
from key generation mode, Alice and Bob execute an
information reconciliation scheme that leaks at most

leakgc + [logy (1/€.0.)] bits if the protocol is e, -correct.

Then they apply a random two-universal hash function to
the resultant error-corrected bits to extract £ bits of secret
key.

introduced in Ref. [24], whose methods are listed in
Procedure I, in our illustration. It is a variant of DI
QKD [25-27] with assumption of independent measure-
ments. This independence condition may be justifiable in
several implementations and is necessarily satisfied when
the raw key is generated by N separate pairs of
devices [24]. For more practical implementation, in which
the raw key is generated by repeatedly performing
measurements in sequence on a single pair of devices,
this assumption means that the device outputs do not
depend on any internal memory storing the quantum
states and measurement results obtained in previous
rounds [24]. Thus, it is not secure against memory
attack [28]. By applying our approach with a new
technique for classical data estimation, Theorem 1 below
offers an almost tight finite-size key rate which deviates
from the asymptotic result only by terms that are caused
by the unavoidable statistical fluctuations in parameter
estimations. Actually, the obtained key rate is better than
all other known proofs to date. The proof of Theorem 1
can be found in §II.B of SM [20].

Procedure II: The SI-CV QRNG Protocol.

1. Sending untrusted states: Eve prepares an N-partite
optical quantum state and sends them to Alice one
by one.

2. Measurement: for each photon sent by Eve, Alice randomly
chooses either the randomness generation mode or the
testing mode. Denote the number of photons used in the
randomness generation mode and testing mode by » and k,
respectively. Clearly, n + k = N. We fix k so that N > k. If
randomness generation mode chosen, Alice performs an
heterodyne measurement on the received optical pulse to
obtain the phase 8 €[0,27) and amplitude u € [0, +o0). If
testing mode chosen, Alice performs a single photon
measurement on the received optical pulse. She records the
frequency of detection Q, namely, the number of detection
events divided by «.

3. Parameter estimation: Alice continues the protocol only if O
is smaller than the predefined threshold.

4. Discretization: Alice maps the continuous number 6 € [0, 27)
to a discrete number x € {0, 1,2, 3}. Specifically, x = 0
when 6 €[0,7/2), x =1 when 0 € [z/2,7), x =2 when
0 € [r,37/2), and x = 3 when 0 € [37/2,2x). In this way,
the sequence of continuously distributed 6’s is mapped to
the raw sequence of discrete random variables.

5. Randomness extraction: Alice applies a random two-universal
hash function to the raw sequence of x to extract final secret
£-bit random numbers.

Theorem 2—If the final key length £ obeys

1 —h(l — V16s(@s — 1) +3>]

2

£ <4n

— leakgc — log— (12)

£SCC gCOY
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where

2. V6 (n+k)dk+1) 1
s =0 — |72 — T (1
A \/ k> e, (13)

and the classical information of the error correction
leaked to Eve is at most leakgc + log,(1/€.o), then this
protocol is gg.-secret. Here ¢, and ¢, are defined by
Egs. (83) and (84) in SM [20] and are related to the failure
probabilities due to statistical fluctuations in the parameter
estimation step.

To demonstrate the power of our approach in infinite
dimensional systems, we report as our last example a novel
SI-CV QRNG protocol that uses more commonly available
and cheaper threshold detectors rather than photon number
resolving ones (see Procedure II) [29-33] and apply our
method to prove its security against general attacks. Here
we assume that the optical source is untrusted, but the
measurement devices are trusted and perfect. Inspired by
the number—phase uncertainty relation [34] of electromag-
netic field, the randomness stems from the fact that the
more certain the photon number is, the more uncertain the
phase will be. Naively, if we ensure that the standard
deviation of the photon number of an incoming light is
sufficiently small, then the phase of this light must be close
to a uniform i.i.d. distribution. In this way, we do not need
to trust the incoming light as long as we could test both of
phase and photon number. The problem of this approach is
that it is not clear how to define a general quantum phase
operator (see §2.7 in Ref. [34] for discussion). Fortunately,
we may substitute the quantum phase operator by hetero-
dyne detection. That is, a threshold detection is designed to
test how close the untrusted optical source is to the vacuum
state; and an heterodyne detection is designed to generate
randomness if the source is sufficiently close enough to the
vacuum state. Our security proof goes as follows. We first
express the CQ state shared by the user and eavesdropper
with some parameters, and then apply our technique to
calculate its smooth min-entropy. By linking the observable
statistics to these parameters, we obtain the final secure
random number. Our result is stated in Theorem 2 below
whose proof is reported in §II.C of SM [20]. In contrast, it
is unclear whether entropic uncertainty relations could be
applied to analyze the security of this QRNG protocol
because it is not straightforward to calculate the overlap
(which quantifies how much incompatible between two
measurements).

Theorem 3—If the final key length is given by

¢ <n[2-H(Q) —1og%, (14)

then this protocol is &.-secret. Here H(Q) := —Qlog O —

(1 —Q)log[(1 - Q)/3] is the Shannon entropy of a ran-
dom variable with four possible states following the

probability distribution {0, (1 — 0)/3,(1 - Q)/3,(1 -
Q) /3} and Q is the upper bound of detection frequency
Q by concentration inequality.

Summary—We develop a powerful technique to calculate
nontrivial lower bound on min-entropy as well as its
smoothed version for a given classical-quantum state by
reducing the computation to a problem of eigenvalues of
the adversary state. This eases the lower bound computa-
tion. Using three examples, we demonstrate the usefulness
of our one-shot min-entropy calculation technique in
computing the upper bound on the information obtained
by an adversary in both discrete and continuous variable
finite-data size problems in quantum key distribution and
quantum random number generation.
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