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Multiple tropical cyclones can be present concurrently within one ocean
basin, and these clusters caninduce compound hazards within ashort time
window. While the western North Pacific has historically been home to most
tropical cyclone clusters, how climate change might affect this is unclear.
Here we use observations and high-resolution climate model simulations to
develop a probabilistic model, assuming that tropical cyclones are mutually
independent and occur randomly. Against this baseline, we identify outliers

% Check for updates

as clusters with dynamicinteractions between tropical cyclones. We find
that the recent global warming patterninduces major shifts in tropical
cyclone cluster hotspots from the western North Pacific to the North
Atlantic by modulating tropical cyclone frequency and synoptic-scale
wave activity. Our probabilistic modelling indicates a tenfold increase in
the likelihood of tropical cyclone cluster frequency in the North Atlantic,
surpassing that in the western North Pacific, from1.4 + 0.4%to14.3 +1.2%
over the past 46 years.

On14 September 2020, an extreme tropical cyclone (TC) cluster made
headlines, with five TCs entrenched over the North Atlantic (NA)!
(Fig.1aand Supplementary Fig.1). That year witnessed an unusually
active Atlantic hurricane season, with nine storms forming in succes-
sion within 3 weeks (Fig. 1a). Such back-to-back TCs over the NA and
their threat to the coastal USA have increased in recent decades®™.
Here, we define TC clusters as two or more TCs present simultaneously
within the same basin®®. Historically, only 40% of TCs appeared alone,
with the majority of TCs coming in clusters®. Beyond the combined
impacts of individual TCs, TC clusters can lead to disproportionate
damage along coastal regions because infrastructure, communi-
ties and restoration resources cannot bounce back from the damage
from the preceding TC within a short period of time*” . In addition,
dispatching limited emergency supplies to affected areas is rather

difficult when multiple TCs impact different regions concurrently,
as exemplified by the Federal Emergency Management Agency’s
failure to provide adequate support to Hurricane Maria’s victims in
Puerto Rico after its overextended responses to hurricanes Harvey
andIrmain2017%.

Although the extreme TC clusterin 2020 is relatively new to Atlan-
tic coastlines, East and Southeast Asian coastal regions have long suf-
fered from such temporally compound events. In late summer 2004,
over the western North Pacific (WNP), nine disturbances intensified
into TCs within 34 days (refs.11,12), five of which made landfall in East
Asia (Fig.1b). While the majority of TC clusters historically occurinthe
WNP, how climate change might affect this preference remains unclear.

Previous studies have analysed large-scale dynamic and thermo-
dynamic conditions that are favourable for TC genesis to investigate
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Fig.1| Extreme TC cluster seasons and observed changes in TC frequency
and TC cluster frequency. a,b, The TC activity from 31 August to 23 September
2020inthe NA (a) and from 4 August to 7 September 2004 in the WNP (b). The
histogram shows the daily TC counts within the period, and the map shows
coloured tracks for each TC. Hurricane Paulette (red line in a) regenerated into
aTCafter its extratropical transition, so we connect the two tracks with a dotted
line. c,d, Time series of TC frequency (blue lines) and TC cluster frequency
(orangelines) during 1979-2024 over the NA (c) and WNP (d). Kendall rank

correlations (Tau) between TC frequency and TC cluster frequency are shown at
the top left. The linear trends of TC frequency (T1) and TC cluster frequency (T2)
are plotted as dotted lines, with the associated 10-year trend values presented
inthe top panel. Asterisks denote significance at the 95% confidence level on

the basis of the 1,000-sample bootstrapping. Bold dots in b indicate that the
frequency over the NA reaches or exceeds that over the WNP, occurringin 5 years
for TC frequency and 10 years for TC cluster frequency during1979-2024.

TC cluster formation (for example, refs. 4-6,13). Additionally, recent
studies have highlighted changes in TC climatology features, including
frequency™", seasonality’*™® and duration'?° under anthropogenic
warming. However, understanding how these TC climatology features
besides the mechanisms at TC genesis influence TC cluster activity
remains a challenge.

Two possible conditions for TC cluster formation exist. First, TC
genesis may involve physical processes related to pre-existing TC(s),
thus contributing to TC cluster formation®**, TC-induced Rossby wave
dispersion***?*, synoptic-scale wave trains'>>*?° and other equatorial
waves?”? can lead to TC cluster formation, when subsequent TCs are
pre-conditioned by synoptic-scale cyclonic disturbances (hereafter,
‘dynamically connected events’). Second, the TCs in a TC cluster may
beindependently generated and happento coincide. Several studies,
some mutually conflicting, have tried to delineate the two types of
TC cluster formation on the basis of linear wave theory?** or through
case studies aided by numerical simulations®*°. However, the relative
importance of the two mechanisms for TC cluster formation remains
unknown owingto the lack of arobust theoretical framework and reli-
able diagnostictools.

The present study develops a probabilistic model to establish
abaseline of independent random TC occurrence and then identify
dynamically connected TC clusters as outliers from the baseline.
This method enables us to attribute TC cluster trends to the recent La
Nifna-like global warming pattern.

TCcluster climatology explained by a
probabilistic model

Although the WNP has long been home to most TCs globally, recent
decades have witnessed decreasing trends in both TC and TC cluster
frequencies in the WNP, accompanied by significant increasing trends
inthe NA (Fig.1c,d). Meanwhile, the TC cluster frequency inthe NA has
reached or even surpassed that of the WNP nine times since 2005 (red
dotsinFig.1c). Thisindicates that the NA is emerging as a hotspot for
TCclustersinrecent decades.

The TC cluster frequency is not alinear function of TC frequency,
as confirmed by the low Kendall rank correlationin Fig. 1d. Linking the
contrasting trends in TC cluster frequency between the two basins
to the TC frequency trend is thus not straightforward. Therefore, we
develop aprobabilistic framework for stochastic TC cluster simulations
with TC parameters estimated from observations during 1979-2024
(Fig.2and Methods). Probability density functions (PDFs) of TC genesis
time are shown in Fig. 2a,b. The window of TC genesis over the NA is
confined mainly to August-October, with ayearly peakin September,
whereas the window is much wider for the WNP (Fig. 2a,b). Considering
therelationship between TC occurrence time and lifespan, we then bin
the genesis timeinto deciles and obtain the corresponding conditional
PDF for TC lifespan for each decile of genesis time (Fig. 2c,d), which
shows that NA TCs tend to last longer in the TC peak season, and thus
TC clusters over the NA tend to be concentrated owing to the overlap
of many long-lived TCs.
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Fig.2 | Probabilistic modelling of TC clusters. a,b, Histogram and PDF of TC
genesis time in the NA (a) and WNP (b) derived from the 6-h best track dataset
during1979-2024. c¢,d, The joint distribution of TC genesis time and lifespan
inthe NA (c) and WNP (d). The average values of TC lifespanin every tenth
percentile of TC genesis time are plotted as blue lines, and the shaded area
indicates the range of the first quartile to the third quartile of the data. e,f, The
relationship between yearly TC frequency and yearly TC cluster frequency
inthe NA (e) and WNP (f) in observations (blue dots) and 1,000 Monte Carlo
simulations (box plots) during 1979-2024. g,h, The relationship between
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yearly TC frequency and yearly TC cluster duration in the NA (g) and WNP (h) in
observations (blue dots) and 1,000 Monte Carlo simulations (box plots) during
1979-2024. Linear regressions between TC frequency and TC cluster frequency/
durationin observations are shown as red lines, with 95% confidence intervals
shaded on the basis of the two-tailed Student’s ¢t-test. The function, R? and
Pvalue (P «0.01) of the models are presented in the top left of the figure. In each
box plot, the box spans from the first quartile to the third quartile of the data,
with aline marking the median. The whiskers extend from the box by 1.2x the
interquartile range.

According to this framework, we can estimate TC cluster fre-
quency and their total occurrence days (denoted as ‘duration’) under
the assumptionthat TCsindependently and randomly occur (Fig. 2e-h,
box plots). The probabilistic model simulates the observed relationship
between TC frequency and TC cluster activity quite well, with most
observations (blue dots) falling within the box plots. Both the TC cluster
frequency and duration increase with the TC frequency.

We further couple the probabilistic model with seven
high-resolution climate models capable of resolving TC activity
(CMIP6-HighResMIP; the High Resolution Model Intercomparison Pro-
ject (HighResMIP) within the Coupled Model Intercomparison Project
Phase 6 (CMIP6)**? (Methods and Extended Data Figs. 1and 2). Simu-
lated TC cluster features from these full-physics high-resolution climate
models align well with the estimation in the probabilistic modelling.
Compared with linear regression results (red lines), the probabilistic
simulations (box plots) better capture the increasing tendency from
zero atarelatively low TC frequency and the saturation behaviour of TC

cluster frequency ata higher TC frequency. This saturationis intrinsic
tothe TC cluster definition, as a high TC frequency leads to persistent
overlapamong multiple TCs, causing alevel off or evenadeclinein TC
cluster frequency (Extended Data Fig. 2a). Thus, TC cluster duration
may serve as a better indicator of potential TC cluster hazards under
high TC frequency conditions.

To further validate the model across other basins, we perform
probabilistic simulationsin all six major TC genesis basins on the basis
of observations and the multi-model ensemble (MME) of the seven
high-resolution climate models from CMIP6-HighResMIP (Extended
Data Figs. 3 and 4). The TC cluster frequency and duration are well
distributed in the box plots generated by Monte Carlo simulations
across the six basins. This result indicates that the effect of TC clima-
tology in frequency, lifespan and genesis time predominantly govern
TC cluster climatology, and the probabilistic model can be used to
decompose the relative contributions of each individual parameter
to TC cluster changes.
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Fig. 3| Quantifying contributions of TC climatology changes to TC cluster
changes in probabilistic modelling. a,b, The observed TC cluster frequency
change (yellow histogram) and the changes simulated by probabilistic modelling
(box plots) between1979-2001 and 2002-2024 (the latter minus the former) in
the NA (a) and WNP (b). Contributions from changes in TC climatology (‘All’) and
individual parameters (‘Fre. denotes TC frequency; ‘Life. denotes TC lifespan;
‘Time’ denotes TC genesis time; and ‘L+T’ is the combinations of TC lifespan and
genesis time) are simulated by varying the given parameter(s) while keeping the
other(s) fixed (Methods). The box plots show the averages of every 1,000 Monte
Carlo simulations (in total, 100 averages). The box spans from the first quartile
to the third quartile of the data, with a line marking the median. The whiskers
represent the range from the 5th to the 95th percentile of the data. Asterisks
indicate that the mean value is significantly different from zero at the 95%
confidence level based on the 1,000-sample bootstrapping. ¢,d, The observed TC
cluster duration and the changes simulated by probabilistic modelling
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(box plots) between1979-2001 and 2002-2024 (the latter minus the former) in
the NA (c) and WNP (d). e,f, The observed MME of seven high-resolution climate
models from CMIP6-HighResMIP and the changes simulated by probabilistic
modelling (box plots) between 1981-2010 and 2020-2049 (the latter minus the
former) inthe NA (e) and WNP (f).ij, Deviations of average TC cluster frequency
in probabilistic modelling from model outputs scaled by the standard deviation
of residuals in corresponding linear regression models in the NA (i) and WNP (j)
based onthe MME. kI, Deviations of average TC cluster duration in probabilistic
modelling from model outputs scaled by the standard deviation of residuals in
corresponding linear regression modelsin the NA (k) and WNP (I) based on the
MME. The blue and red vertical dotted lines in i-1 denote the mean bias of the
probabilistic model during 1981-2010 and 2020-2049, respectively. The Pvalue
of the Kolmogorov-Smirnov test used to test the statistical difference between
the bias distributions during the two periods is shown at the top left of i-1.

Changing TC cluster activity and its drivers

The quantitative contributions of each parameter in both the observa-
tions and model projections are presented in Fig. 3a-h and Extended
Data Tables 1and 2 (Methods). During the recent 46 years, there has
beenanincreasein TC cluster frequency by 2.3 events and anincrease
in duration by 7.8 days over the NA. Conversely, the frequency of TC
clusters has decreased by 1.3 events, and the duration has decreased
by 11.6 days over the WNP. The contrasting changesin TC cluster activ-
ity between the NA and the WNP are projected to continue through
mid-twenty first century in the MME and individual model projec-
tions® (Supplementary Table 1). These changes are well captured by
the probabilistic modelling, except for a marked underestimation of
the projected decrease in TC cluster frequency over the WNP (Fig. 3f),
which explains only 54.7% of the TC cluster changes.

Thebias of the probabilistic model arises fromboth model uncer-
tainty and systematic error, with the latter due to assuming that TCsin
clusters are generated independently. Intense TCs caninduce alternat-
ing cyclonicand anti-cyclonic disturbances, as observed in2004 over

the WNP (Fig.1b), leading to subsequent TCs in the wake of pre-existing
TCs™. Such dynamic processes, involving enhanced synoptic wave
trains, are favourable for TC cluster formation**>***, contributing to
the systematic underestimation of TC cluster frequency in the proba-
bilistic model (Fig. 3i,j). In contrast to TC cluster frequency, the bias
distribution of TC cluster duration does not show a robust positive
shift from zero in the meanvalue (Fig. 3k, 1), probably owing to damping
effects by therandomized TClifespan. Especially, the bias distribution
for TC cluster frequency over the WNP (Fig. 3j) exhibits statistically
significant differences between the future (2020-2049) and histori-
cal (1981-2010) periods, as shown by the Kolmogorov-Smirnov test
(P<0.01), which mainly stems from a shift in the model’s mean bias.
This significant shift can partially explain the probabilistic model’s
failure to simulate the projected decrease in TC cluster frequency over
the WNP (Fig. 3f). The physical processes underlying this discrepancy
areinvestigated in the following section.

Anincreasein TC frequency candirectly enhance TC cluster activ-
ity, as shown in Fig. 2e,f. The TC seasonality and lifespan influence
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Fig. 4 |Identification of dynamically connected TC clusters. a,b, The relative
locations between pre-existing TCs (red star) and subsequent TCs (orange
dots) at the cyclogenesis time of the subsequent TCs in the outlier group (left)
and normal group (right) categorized by TC cluster frequency in the NA (a)
and WNP (b) based on the MME of the highresSST-present simulation in seven
high-resolution climate models from CMIP6-HighResMIP during 1950-2014.c,d,
Therelative locations between pre-existing TCs (red star) and subsequent TCs
(orange dots) at the cyclogenesis time of the subsequent TCs in the outlier group
(left) and normal group (right) categorized by TC cluster duration in the NA (c)
and WNP (d) based on the MME of the highresSST-present simulation in seven
high-resolution climate models from CMIP6-HighResMIP during 1950-2014.
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Percentages of subsequent TCs in each quadrant are indicated in the four
corners. Considering wave energy dispersion for limited distance, our analysis
focusses on aregion extending 35° north and south in latitude and 50° east and
west inlongitude from each pre-existing TC. e,f, The percentages of subsequent
TCslocated in the southeastern quadrant with different percentile thresholds
to define the outlier group in the NA (e) and WNP (f), categorized by TC cluster
frequency (red lines) and TC cluster duration (blue lines) (Methods). The average
ratios between the two regimes, separated by a threshold of 50%, are plotted
as dotted lines. The mean ratios between the two stages (TC cluster frequency
and TC cluster duration) are statistically different with P< 0.01based on the
1,000-sample bootstrapping.

the TC cluster activity by modulating the genesis time interval and
the likelihood of overlap between TCs, respectively. In general, the
TC frequency change is the primary contributor to the TC cluster
change, explaining 46.0-128.4% of the TC cluster changes (Fig. 3a-h
and Extended Data Tables 1 and 2). Changes in the TC lifespan and
seasonality play a secondary role in regulating the TC cluster activity
over time. Observed changes in the TC lifespan and seasonality lead
to a8.5% reduction in the TC cluster frequency and a 17.5% reduction
in the TC cluster duration over the NA. These results may be due to
the recent increase in short-lived TCs over the NAY, The probabilistic
model explains alarger portion of the changes in TC cluster activities
whenfocussing onrelatively long-lived TCs (lasting >2 days; Extended
DataFig.5).

Note that the relationship between TC lifespan and genesis time
may introduce additional complexity. However, our decomposition
results show that the contributions of collaborate changes in TC lifes-
panand seasonality canbelinearly reconstructed on the basis of each
parameter’sindividual contribution (Extended Data Tables1and 2, the
last three columns), thereby enhancing our confidence in the results
within the probabilistic framework.

Identification of dynamically connected TC
clusters
In the Northern Hemisphere, TCs typically move northwestward
owing to climatological steering flow and the Beta effect®. Ifa TC is
pre-conditioned by a Rossby wave train or other synoptic-scale dis-
turbance linked to a pre-existing TC; the genesis location of this new
TC will most probably be in the southeastern quadrant relative to the
pre-existing one because of the wave energy dispersion under easterly
vertical wind shear****, We evaluate the likelihood of anew TC forma-
tionsoutheast of the pre-existing TC against the random probabilistic
framework to identify dynamically connected TC clusters.

We begin by comparing the spatial distribution of newly formed
TCs relative to pre-existing TCs in the outlier group and the normal
group (Methods). Outliers are defined as TC clusters with yearly fre-
quency or duration (for example, blue dots in Fig. 2e) that is above
the 95th percentile of the Monte Carlo simulations (for example, box
plots in Fig. 2e), while events positioned at the median value of the
Monte Carlo simulations are categorized as the normal group. Inboth
groups, the largest proportion of TCs is located in the southeastern
quadrant of the pre-existing TCs because of the general west-polewards
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of TC cluster frequency based on the probabilistic modelling in the NA (a) and
WNP (b) (Methods). ¢,d, The composite differences in SST (K) between TC cluster
outlier group and normal group based on observational data, with two groups
divided by the 50th percentile of TC cluster frequency during 1979-2024 to
ensure a sufficient and comparable sample size for the two groups, in the NA
(c)and WNP (d). e,f, The differences in synoptic-scale wave intensity (10°s™)
between TC cluster outlier group and normal group based on observational data

during 1979-2024, with two groups divided by the 50th percentile of TC cluster
frequency, over the NA (e) and WNP (f). g,h, Effects of long-term La Nifia-like
warming in the tropical Pacific on synoptic-scale wave activity (shading) and TC
track density (contour) in the MRI-AGCM3-2-H experiments in the NA (g; (0.5,

1) red contours) and WNP (h; (-1.5, -0.5) blue contours). As the SST trend in the
experiments between the periods 1981-2010 and 2020-2049 shows a cooling

in the tropical Pacific (Extended Data Fig. 7), the differences in synoptic-scale
wave intensity and TC track density are considered to be forced by La Nifa-like
global warming pattern. The averages of changes are shown for TC peak seasons
ineach basin (thatis, JAS for the NA and JASO for the WNP). In all panels, the dots
indicate statistically significant differences at a 95% confidence interval based
onthe1,000-sample bootstrapping and false discovery rate test. Basemaps from
Natural Earth (https://www.naturalearthdata.com).

propagation of TCs (Fig. 4a-d). Notably, however, a higher concen-
tration of TCs is observed within this quadrant in the outlier groups
in both the NA and WNP, with ratios increasing by 10.53% and 5.12%,
respectively. These results suggest that the increased TC ratio in
the wake of pre-existing TCs (that is, the southeastern quadrant) is

probably associated with active dynamic connections between TCs.
The enhanced activity of synoptic-scale wave trains may lead to an
underestimation by the probabilistic model. Similar conclusions are
drawn from observational data, except for results categorized by TC
cluster duration over the WNP (Supplementary Fig. 2).
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Tovalidate robustness of the contribution from dynamic connec-
tions, we gradually increase the threshold used to define outliers from
the Othtothe 95th percentile (Methods) and investigated the changes
in TCratio in the southeastern quadrant (Fig. 4e,f). The ratios remain
nearly unchanged at lower percentile thresholds and rapidly increase
once the threshold reaches the 70th percentile. Ratios calculated on
the basis of data below the 50th percentile are significantly different
from those in the second half, indicating a robust signal of dynamic
connections. Previous attempts to detect dynamically connected
events by comparing differences between TC clusters conditions with
aclimatological base state'>** and single TC conditions>** suffer from
aninaccurate baseline, while numerical case studies**° are limited by
insufficient sample sizes. Our study sidesteps these issues, presenting
amore accurate baseline from the probabilistic model with adequate
samples based onthe MME with seven full-physics climate model simu-
lations. Systematic deviations from this baseline arise from neglecting
dynamically connected events. This approach identifies the role of
dynamic connections in TC clusters and their underlying physical
drivers as demonstrated below.

Shifting hotspot driven by the surface warming
pattern

Local and remote SST forcings modulate synoptic-scale wave variability
through large-scale circulations'>*** (Methods). We investigate the
SST patterns that favour dynamic connections between TCs (Fig. 5a-d
and Methods). The enhanced dynamic connections between TCs over
the WNP and NA are associated with El Nifio and La Nifia conditions,
as evidenced by both climate model simulations and observations
(Fig. 5a-d). Observational composites of synoptic-scale wave inten-
sity for the corresponding groups of years (categorized into outlier
years and normal years) support the linkage between dynamically
connected TC clusters and enhanced synoptic disturbance activity
(Fig.5e,fand Supplementary Fig. 3 for validation in another reanalysis).
Synoptic-scale wave activities strengthened over the broad subtropical
NA, while synoptic-scale wave intensity anomalies are characterized
by anorthwest-southeast-oriented band in the WNP. In these regions
with large zonal wind shear, synoptic-scale wave trains can develop by
converting barotropic energy from the mean flow". Similar patterns
are observed when composites are grouped on the basis of TC cluster
duration (Supplementary Fig. 4).

La Nifa events can increase TC frequency in the NA by reducing
the vertical wind shear®”*, whereas they primarily redistribute TC
genesislocationsinthe WNP with aslight decrease in TC frequency®*°.
Inaddition todirect TC frequency changes, we show that the contrast-
ing effects of ENSO on TC cluster frequency and duration over the two
basins canbe further reinforced by changes in dynamically connected
events, especially for the WNP. The lower Kendall rank correlation
between TC frequency and TC cluster frequency over the WNP, com-
pared with the NA, also confirms the weaker influence of TC climatology
features on TC cluster formation in this basin (Fig. 1c,d).

Recent decades have witnessed a cooling trend over the tropical
Pacific, known as La Nifa-like warming*. While it is known that inter-
annual ENSO causes seesaw changes in TC cluster activity between
the two basins, theimpacts of La Nifia-like global warming pattern on
TC cluster activity need to be further qualified. We take daily outputs
of the highresSST-present and highresSST-future simulations from
MRI-AGCM3-2-H, whose results show good agreement with the MME in
projected changesin TC clusters over the NAand WNP (Supplementary
Table1). Asthe forced warming pattern between the two periods (1981-
2010 and 2020-2049) after tropical mean warming rate subtracted
is similar to the observed cooling in tropical Pacific (Extended Data
Fig.6), the differencesinsynoptic-scale wave intensity are taken as the
responses to the recent La Nifia-like global warming pattern (Fig. 5g,h).
The synoptic-scale wave intensity is projected to increase across the
NA (Fig.5g), indicative of enhanced dynamic connections. Meanwhile,

there is a significant decrease in synoptic-scale wave intensity over
the mean flow confluence regions in the WNP (Fig. 5h), indicating
that the La Nifna-like global warming pattern will lead to suppression
of the dynamically connected TC clusters over the WNP by reducing
barotropic energy conversion. In addition, the widespread increase
and decrease synoptic-scale wave intensity over the two basins agree
well with TC track density changes (Fig. 5g,h), suggesting contrasting
trends in TC frequency by changes in pre-TC synoptic-scale distur-
bances, which are typically referred to as ‘TC seeds*>****, Observa-
tional evidence confirms that the increase in TC frequency over the
NA and decrease over WNP are associated with tropical Pacific cooling
and warming elsewhere, including the positive Atlantic Multidecadal
Oscillation (AMO)-like anomalies**¢ (Extended Data Fig. 7). These
results, together with findings in Fig. 5e-h, suggest that long-term La
Nifia-like global warming pattern (Extended Data Fig. 6) contributes
to contrasting changes in TC clusters over the NA and WNP in both
observations and model projections through modulating TC frequency
and synoptic-scale wave intensity.

The above analysis shows that changes in synoptic-scale wave
intensity driven by the recent La Nifia-like global warming pattern can
furtherincrease (decrease) dynamically connected TC cluster activity
over the NA (WNP), leading to a systematic bias in the probabilistic
model (Fig. 3i-k). The significant decrease in model bias in projected
TC cluster frequency in the WNP is closely related to the suppression
of dynamically connected events under forced La Nifia-like warming
conditions (Fig. 3j).

Discussion

We have developed a probabilistic model toinvestigate changesin TC
clusteractivity over the NAand WNP and disentangle the individual con-
tributions of changes in TC climatology features to TC cluster changes.
Thismodelis used as abaseline for randomoccurringindependent TCs,
against whichwe identify outliers as dynamically connected TC clusters.
We reveal that the NA has recently emerged as a TC cluster hotspot
owing primarily to the increased TC frequency and dynamically con-
nected TC clusters driven by the recent La Nifa-like global warming pat-
tern. Whether this warming patternis internally generated or externally
forced remains an open question and warrants further investigations.
Nonetheless, we find that the contrasting trendsin TC cluster frequency
betweenthe NAand WNP remain robust even when the study periodis
extended to1961 (Supplementary Fig. 5), suggesting the presence of a
long-term change signal that goes beyond the impacts of inter-decadal
variability. We perform asuite of high-resolution climate model experi-
ments with different global warming patterns to test the hypothesis
(Methods). When forced with the observed La Nifa-like global warming
patternover1960-2014, the hotspot for TC clusters shifts from the WNP
tothe NAbasin (Extended DataFig. 8). When forced with the projected
EI Nifio-like warming, the TC cluster activities are suppressed in both
basins, with alarger decrease occurring over the WNP.

Estimated based on TC climatology feature changes, the possibil-
ity for TC cluster frequency over the NA to exceed that of the WNP has
sharply increased by as much as tenfold from 1.4 + 0.4% to 14.3 +1.2%
over the past 46 years (Methods). With the ongoing Pacific decadal
cooling, this likelihood will further increase when changes in dynami-
cally connected TC clusters are considered, highlighting a rapidly
growing TC cluster threat to the coastal NA.

Investigating systematic biases in probabilistic modelling based
on seven full-physics high-resolution climate models, we robustly
identify the role of enhanced synoptic-scale wave intensity in dynami-
cally connected TC clusters. However, quantifying this contribution
from dynamically connected events remains a challenge and should be
further pursued. Regardless, our research highlights theimportance of
TCclusters for hazard assessment, which often assumesindependent
TC events. Future research could explore more sophisticated model-
ling to explicitly capture dynamic interactions within TC clusters and
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investigate the landfall phase of TC clusters to support hazard assess-
ment frameworks towards better representation of such temporally

compound events.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butionsand competinginterests; and statements of dataand code avail-

ability are available at https://doi.org/10.1038/s41558-025-02397-9.
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Methods

Probabilistic TC cluster model

To statistically analyse the climatology of TC clusters, we design a
probabilistic TC cluster model based on a probabilistic TC occurrence
model developed fromrefs. 2,3. Within this modelling framework, we
donotaccount for the dynamic connections between TCsina TC clus-
ter; thatis, the occurrence of each TCis assumed to be independent of
the occurrence of the others. Thus, the probabilistic model can serve
asaTCclusterbaseline contributed by randomly occurring independ-
ent TCs. The deviations from this baseline can be used to identify the
dynamically connected TC clusters.

The model consists of three parameters, namely the annual
basin-wide TC genesis frequency n, the date of TC genesis Tand the TC
lifespan D. Here the genesis frequency nis adeterministic value either
obtained from historical observations and simulations or prescribed
asagiven value, while the genesis date Tand the duration D of each of
thenTCsare considered tobe randomvariables. The genesis date and
duration of TCs are shown to be correlated (Fig. 2c,d). However, limited
historical observations and climate simulations prevent arobust esti-
mation of thejoint probability distribution of the two variables. Instead,
we first obtain the kernel density estimations (KDE) of TC genesis time
T.Then, we bin every tenth percentile of Tand obtain the conditional
PDF of TC lifespan D for each bin of Tusing the KDE. The estimation is
performed for historical observations in each basin, and for two peri-
ods (1950-2014 and 2015-2050) for each climate model simulation.

For eachyear, with afixednumber of TCs, we apply the KDE of Tand
the conditional KDE of Dto perform1,000 Monte Carlo simulations of
the genesis date and duration of TCsin that year. In each Monte Carlo
simulation, when two or more TCs co-exist simultaneously, we count
it as one TC cluster event (frequency) and document the duration of
the co-existence asthe duration of the TC cluster (days). The simulated
TC cluster frequency and duration of the 1,000 Monte Carlo members
are used to represent the climatology of the TC cluster.

Decomposing the contribution to TC cluster changes from TC
climatology features

The abovementioned probabilistic model enables the flexibility to
investigate the influence of the change in each individual feature of
TCclimatology on changesin the frequency and duration of TC cluster
activity. We perform sensitivity tests to decompose the impact from
genesisfrequency n (‘Fre.), date of TC genesis T (‘Time’) and TC lifespan
D (‘Life’) individually, as well as the joint impact from the changesin T
and Dtogether (‘L + T’) on TC cluster changes. To study the individual
influencesin MME, we change one parameter at a time fromits histori-
cal probability distribution during 1981-2010 to its future probability
distribution during 2020-2049 estimated from climate model out-
puts, while keeping the other parameters the same as their historical
values. We also investigate the individual influence of the changes in
observations between 1979-2001 and 2002-2024. We repeat these
sensitivity experiments 100 times (that is, 100,000 simulations in
total) for every parameter to obtain statistically robust results. The
differences between the estimated probability distributions of the
simulated TC cluster frequency or duration and the historical prob-
ability distributions are used to represent theinfluence of the selected
parameter(s). To estimate the change in the possibility of NATC cluster
frequency exceeding that of the WNP in observations, we compare
the simulated TC cluster frequency over the NA and WNP in the two
periods (1979-2001 and 2002-2024) by the probabilistic model. The
possibility is calculated as the percentage of instances where the TC
cluster frequency over the NA surpasses that of the WNP.

Observational data

TC best-track data are obtained from the International Best Track
Archive for Climate Stewardship (IBTrACS)*, which is compiled by
six Regional Specialized Meteorological Centres and four Tropical

Cyclone Warning Centres affiliated with the World Meteorological
Organization. We use 6-h TC records for the period of 1979-2024
in the NA and WNP, as data quality before 1979 is poor owing to the
absence of routinely used geostationary satellites for monitoring.
Thus, pre-1979 records should be interpreted with caution owing to
observational limitations. Nevertheless, extending the TC dataset to
the 1950s will not alter the contrasting TC cluster trends between the
NA and WNP (Supplementary Fig. 5). TC records from 1979 to 2022 are
also analysed for the other four basins: the East Pacific, North Indian,
South Indian and South Pacific. Since our focus is on TC genesis and
its persistence in a basin rather than its intensity—a parameter that
suffers from substantial uncertainty*°—our probabilistic model results
arenotsensitive to the dataset selection. We considered only TCs that
reached atleast tropical stormintensity (=35 kt) during their lifetime.
However, our conclusions remain unchanged when tropical depres-
sions, extratropical cyclones and subtropical storms are included
(Supplementary Fig. 6).

Monthly SST dataare obtained from the Extended Reconstructed
SeaSurface Temperature version 5 (ERSST.v5)* during 1950-2024. To
calculate synoptic-scale wave intensity, we use 6-hzonal and meridional
wind data at 850 hPa during 1979-2024 based on the fifth-generation
atmosphericreanalysis from the European Centre for Medium-Range
Weather Forecasts (ERA5)*. We also analyse the results using daily
reanalysis data from the National Centres for Environmental Predic-
tion-Department of Energy (NCEP/DOE Reanalysis II) during 1979~
2020. Consistent with the findings from ERAS, the synoptic-scale wave
intensity patterns exhibit a northwest-southeast oriented enhanced
band over the WNP and a uniformly enhanced band over the NAin the
NCEP/DOE dataset (Supplementary Fig. 3). We exclude the linear trends
ofthe datato eliminate the possible influence of global warming when
investigating the favourable SST pattern for dynamically connected
TCclusters.

High-resolution climate simulations
The CMIP6-HighResMIP initiative uses a multi-model framework
to evaluate the regional impacts of climate change on TC activity>.
In this study, we analyse tier 1 and tier 3 simulations from seven
high-resolution climate models: CNRM-CM6-1-HR**, EC-Earth3P-HR”,
HadGEM3-GC31-HM*, MRI-AGCM3-2-S¥, MRI-AGCM3-2-H*’, NICAM16-
8S* and NICAM16-7S*® (detailed in Supplementary Table 2). Coupled
modelsare notincluded, as they are limited in simulating the observed
warming pattern and generally perform poorly in reproducing TC cli-
matology and the observed interannual variability of TC activity.*“°,
Tier1comprises atmosphere-only simulations forced by observed daily
SST and sea ice concentration from HadISST2 spanning 1950-2014
(referred to as ‘highresSST-present’). Tier 3 extends tier 1 simulations
through 2049 or 2050, with an option to continue to 2100 under sce-
nario SSP585 (referred to as ‘highresSST-future’). For tier 3, SST forc-
ing incorporates the local warming rates derived from an ensemble
mean of CMIP5 RCP8.5 simulations and includes interannual vari-
ability from observational data. Model resolutions are set at 50 km or
finer to capture key statistics of TC climate and variability, such as
genesis frequency, spatial distribution and intensity®*. Original TC
tracks are identified by the TRACK algorithm in ref. 61, which detects
TCs by tracking vorticity features onacommon T63 spectral grid and
accounting for warm-core criteriaand storm lifespan. We focus on the
firstensemble member from each model and compare the differences
between 1981-2010 and 2020-2049 on the basis of the MME results.
AsHighResMIP simulations do not provide the SST variable online,
we use variable surface air temperature (SAT) as a substitute® to show
long-term changesin SST patterns. To ensure datareliability, we assess
the Nifio3.4 index derived from both observed SST and SAT in the
highresSST-present simulation spanning 1979-2014 (Supplementary
Fig. 7). The high correlation coefficient between the indices suggests
that the SAT serves as areliable proxy for SST.
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The SST patterns in Fig. 5a,b are composited on a year-to-year
timescale without any trend information, and therefore the intensified
synoptic-scale wave in the dynamic connections cannot be directly
attributed to the decadal SST warming pattern in the tropical Pacific
(Extended Data Fig. 6). To confirm the effects of surface warming
patterns on dynamically connected events, we use daily outputs from
the MRI-AGCM3-2-H model to calculate the changes in synoptic-scale
wave intensity. This model has good agreement with the MME in
projected changes in the NA and WNP (Supplementary Table 1). In
highresSST-future simulations, the modelis forced by patterned warm-
ing from an ensemble mean of CMIPS5 to 2050 plus observed inter-
annual variability. The differences between the periods 1981-2010
and 2020-2049 are a La Nifa-like warming pattern after the tropical
mean warming rate is subtracted (shown in Extended Data Fig. 6a,b).
Therefore, the changes in synoptic-scale wave intensity between the
two chosen periods canbe considered as the responses to La Nifia-like
global warming patterns.

Constraint detection for simulated TC tracks

Inthis study, we define TC track density atagrid point witha1°resolu-
tion as the number of TCs passing through a15°longitude x 15°latitude
areacentred at that grid point. We select a15° x 15°box to capture syn-
optic waves (such as equatorial Rossby waves, mixed Rossby-gravity
waves and easterly waves) that could trigger TC genesis®.

The simulated global distribution of TC track density without
constraints is shown in Supplementary Fig. 8a, which shows large
overestimations, particularly in the WNP, North Indian and Southern
Hemisphere. These overestimations stem fromuniform detection param-
eters and wind speed thresholds, leading to excessive TC frequency in
very-high-resolution climate models®. To mitigate the bias and ensure
equitablerepresentation of eachmodelinthe MME, we implement addi-
tional constraints onthebasis of the TRACK algorithm, detailed in Supple-
mentary Table 2. Owing to the different parameterization schemes used
insimulating the planetary boundarylayer, some high-resolution models
tend to artificially reach very strong wind speeds (such as NICAM16-8S
and NICAM16-7S)%. We increase the wind speed thresholds in these
models since our focus is TC frequency rather than intensity. Further-
more, we use arelatively weak constraint onlifespanto retainshort-lived
TCs, which might become more prevalent in the future”. Besides the
traditional wind speed and duration criteria, we further filter out storms
generated in the region where climatological SST is lower than 26 °C,
which are often misinterpreted as TCs in the TRACK algorithm®*.

Thebias of TC track density is largely reduced after the constraint
detection methods are implemented, although an overabundance
of TCs persists in the NI, probably owing to the misidentification
of monsoonal low-pressure systems®*® (Supplementary Fig. 8b,c).
TC frequency across six basins agrees better with the observations,
particularly for the WNP. Additionally, the standard deviations of TC
frequency in the MME are reduced to levels comparable to the obser-
vations, indicative of the improvement of the constrained results
(Supplementary Table 3).

Outlier analysis
The observed and simulated TC cluster frequencies and durations
(Fig. 2e-h, blue dots) that exceed the 95th percentile of the respec-
tive Monte Carlo simulations (box plots) are defined as outliers. To
maintain an adequate sample size, events falling within the 5th to
95th percentiles of the simulations are included in the normal group
for comparison with the outlier group, as depicted in Supplementary
Fig.2.Inthe Monte Carlo simulations based on climate model outputs,
events positioned at the median value of the box plots are considered
asthe normal group for comparison (Fig. 4a-d), ensuringacomparable
sample size with outlier groups.

We investigate the relative locations between pre-existing TCs
and subsequent TCs within TC clusters and quantify the TC ratio in

each quadrant. The wave energy dispersion in synoptic trains cannot
extend beyond 5,000 km owing to its decaying feature and basin size®,
and thus we only utilize the results withina 35° latitudinal and 50° lon-
gitudinal distance. The different ratios between the abovementioned
outlier and normal groups are attributed not to the co-occurrence of
independent stochasticarrivals but to dynamic connections between
TCs, asevidenced by enhanced synoptic wave intensity (Fig. Se,f). Fur-
thermore, we modify the threshold for defining outliers, incrementally
increasing from the O to the 95th percentile (in 5-percentile intervals)
of the Monte Carlo simulations, and calculate the corresponding ratio
of subsequent TCs located in the southeastern quadrant to confirm
the role of dynamic interactionsinincreasing TC cluster activity. The
sample sizes of the outlier group at each percentile threshold in the
climate simulations are sufficiently large to yield robust conclusions
(Supplementary Fig. 9). The conclusions remain unchanged when no
constraints on distance are applied (Supplementary Fig. 10).

To determine the underlying mechanisms for dynamically
connected TC clusters, we composite the differences in SST and
synoptic-scale wave intensity according to the deviations of the
probabilistic model as follows. In the highresSST-present simulations
(1950-2014), we classify the two groups as above the 95th percentile
and below15th percentile. In observations, we divide the years into two
groups on the basis of whether the TC cluster frequency reaches the
50th percentile of the probabilistic simulations, to ensure a sufficient
and comparable sample size for the two groups, and the results remain
consistent when using TC cluster duration for classification (Supple-
mentary Fig.4). We compute the differences in SST and synoptic-scale
wave intensity during the TC season fromJuly to October (JASO) for the
WNP*¢and from August to October (ASO) for the NA®.

Synoptic-scale wave activity

Thelower-tropospheric synoptic-scale wave train favours dynamically
connected TCs'>**. To quantify the synoptic-scale wave activity, we
apply aButterworthbandpassfilter to daily zonal and meridional wind
data at 850 hPa, with half power at 3 and 7 days (denoted as u* and 5,
respectively). The standard deviation of the synoptic-scale relative
vorticity (&) issubsequently utilized as ametric for the intensity of the
wave train. The synoptic-scale relative vorticity in the spherical coor-
dinate system can be calculated as follows*7°:

o out  u
(S—E—E'I-Etan@ (1)

where ¢ indicates the synoptic-scale relative vorticity (in s71), ais the
radius of the Earth (in metres) and @ is the latitude (in radians).

Toassess the intensity of the synoptic-scale wave train for aspecific
month, we compute the s.d. of the synoptic-scale relative vorticity in
thatmonthinagivengrid. This approach allows a detailed analysis of
wave train intensity month by month.

HIRAM experiments

To confirm the effects of long-term warming patterns on TC clus-
ters, we conducted numerical experiments using the high-resolution
atmospheric general circulation model (HIRAM-C180) developed by
the Geophysical Fluid Dynamics Laboratory (detailed in ref. 71). The
model features a horizontal resolution of approximately 50 km with
32vertical levels, making it comparable to the high-resolution climate
models used in this study.

We design three experiments, acontrol (CTRL) runand two future
climate (GWLA and GWEL) runs, to elucidate the influence of different
warming patterns. The CTRL run is forced by the observed monthly
mean SST. The GWLA run is driven by a La Nifia-like global warming
pattern, represented by the SST in the CTRL run plus the observed
SSTtrend over 1960-2014. In the GWEL run, the modelis forced by the
SST from the CTRL run combined with an EINifio-like global warming
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pattern, derived from the MME of 12 CMIP5 models for the 2006-2099
period under the RCP8.5 scenario (similar to CMIP6-HighResMIP and
refs. 72,73). Awidely used TC detection algorithm” for global climate
modelsisusedtodetect TCsin the simulations. The model simulations
were conducted from January 1990 to December 2009 for each run.
In our analysis, differences in TC cluster activity between the GWLA
(GWEL) and CTRL runs, evaluated through 55-year resampling repeated
1,000 times, are taken as the response to the La Nifa-like (EI Nifio-like)
global warming pattern (Extended Data Fig. 8).

Itis important to note that inter-decadal variability in SST may
influence the results. To minimize this impact, we selected the period
1960-2014, during which the positive and negative phases of the AMO
and Inter-decadal Pacific Oscillation are largely offset”. Neverthe-
less, we found that the La Nifa-like global warming pattern persists
regardless of the chosen periods (Supplementary Fig. 11), consistent
withref. 41.

Statistical significance test

Inour study, all significance tests are conducted at the 95% confidence
level. Kendall rank correlationis used to evaluate the correspondence
of TC cluster frequency and TC frequency, which measures the similar-
ity of the ordering of the two series when ranked by each of the quanti-
ties”. Before coupling the probabilistic model with observations and
model simulations, we evaluate the independence of TC frequency,
duration and genesis time distributions using the chi-squared test.
We use the deviations of the probabilistic model from model outputs
scaledbythes.d. of residualsin thelinear regressionmodelin TC cluster
frequency/durationtorepresent the normalized bias distribution. This
approach enablesinter-basin comparisons of bias distributionsin the
probabilistic modelling. To determine the changes in bias distribution
between the two periods in the probabilistic model, we conduct a
Kolmogorov-Smirnov test. A1,000-sample bootstrapping approach
is applied to evaluate the linear trends in both TC frequency and TC
cluster frequency, as well as the differences in TC ratio, SST and syn-
optic wave intensity between two given periods’. The false discovery
rate test is also used to assess the significance of grid points in the
spatial pattern’”’®, The uncertainty of the linear regression model is
represented by the s.d.

Data availability

The data that support the findings of this study are all openly avail-
able online. The best-track TC data with 6-h temporal resolution
are available via NCEI at https://www.ncei.noaa.gov/products/
international-best-track-archive. The CMIP6-HighResMIP data are
openly available via CEDA at https://data.ceda.ac.uk/badc/cmip6/
data/CMIP6/HighResMIP. The daily wind fields at pressure levels
from MRI-AGCM3-2-H in CMIP6-HighResMIP are available via ESGF
at https://aims2.lInl.gov/search/cmip6/. The tropical storm tracks
calculated by the TRACK algorithm are available via CEDA at https://
catalogue.ceda.ac.uk/uuid/Ob42715a7a804290afa9b7e31f5d7753.
Hourly reanalysis data on pressure levels from the ERAS are avail-
able via Copernicus at https://cds.climate.copernicus.eu/cdsapp#!/
dataset/reanalysis-era5-single-levels?tab=overview and via NCEP/
DOE Reanalysis Il at https://psl.noaa.gov/data/gridded/data.ncep.
reanalysis2.html. ERSST.v5 data from NOAA are available via NOAA at
https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html. Allthe map
figures (Fig. 5, Extended DataFigs. 6 and 7 and Supplementary Figs. 3,
4,8and11) were generated using Python Cartopy v.0.22.0 (https://doi.
org/10.5281/zenodo.1182735) (ref.79). The datanecessary to reproduce
the main results are available via Zenodo at https://doi.org/10.5281/
zenodo.15383539 (ref. 80).

Code availability
Analysis and figure generation were performed using Python (ver-
sion3.9.7). The code and scripts used to calculate the tropical cyclone

clusters, perform the probabilistic modelling and generate the
figures in the main text are available via Code Ocean at https://doi.
0rg/10.24433/C0.0176970.v2 (ref. 81).
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Extended Data Table 1| Quantified contributions (%) of changes in TC statistics to TC cluster changes based on observations

Al Frequency Lifespan Genesis time Lifespan + Genesis time
TC cluster frequency

NA 61.9, [57.2, 67.5] 68.7,[64.1,74.0] -1.5,[-5.5, 2.8] -6.1, [-101, -1.5] -8.5,[-12.3, -4.3]

WNP 871,[75.2,99.4] 70.4,(60.3, 80.9] 10.9, [-0.8, 22.8] 6.8,[-4.3,18.2] 18.7,[7.6, 29.5]

TC cluster duration

NA 99.3,[90.4,107.9]

128.4,[118.2,137.6]

-6.2,[-13.6, 0.9]

-11.8, [-19.9, -4.5]

-17.5, [-23.3,-10.4]

WNP 81.6,[72.2, 88.6]

55.8,[48.2,62.8]

25.4,[19.0, 33.4]

5.8, [-1.9,121]

30.8,[23.0,38.3]

The contribution is calculated by dividing the TC cluster changes estimated through probabilistic modeling by the observed or modeled changes. Square brackets represent the 5th to 95th
percentile of the quantified contributions in the probabilistic simulations.
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Extended Data Table 2 | Quantified contributions (%) of changes in TC statistics to TC cluster changes based on the MME in
seven high-resolution climate models from CMIP6-HighResMIP

All Frequency Lifespan Genesis time Lifespan + Genesis time

TC cluster frequency

NA 84.5,[73.2,97.2] 53.4,[38.6, 66.9] 141, 1.0, 27.6] 97, [-4.9, 22.6] 25.4,[13.2, 38.3]

WNP 547,[46.8,62.2] 46.0, [37.0,53.9] 5.3, [-3.8,13.5] 37, [-47,11] 97,[2.6,16.8]
TC cluster duration

NA 111.6, [97.4,124.9] 50.2,[34.5,62.7] 291,181, 41.5] 14.1,[2.6,26.0] 471,[29.8, 62.3]

WNP 89.7,[80.4, 99.2] 63.2,[53.5,73.2] 23.4,[14.0, 34.8] 8.4,[-3.3,20.1] 32.3,[23.2,43.3]

The contribution is calculated by dividing the TC cluster changes estimated through probabilistic modeling by the observed or modeled changes. Square brackets represent the 5th to 95th
percentile of the quantified contributions in the probabilistic simulations.
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Extended Data Fig.1| Performance of the TC cluster probabilistic modelin
individual models and their MME in the NA. Relationship between yearly TC
frequency and yearly TC cluster activity (a, frequency; b, duration) in model
outputs (blue dots) and 1000 Monte Carlo simulations (boxplots) during
1950-2050 in the NA based on seven high-resolution climate models and
their MME from CMIP6-HighResMIP. The linear regression models between

TCfrequency and TC cluster frequency/duration are shown as red lines, with
95% confidence intervals shaded based on the two tailed Student’s t-test. The
function, R-squared (R?), and p-value of the models are presented at the upper
left. In each boxplot, the box spans from the first quartile to the third quartile of
the data, with aline marking the median. The whiskers extend from the box by
1.2x theinterquartile range.
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Extended Data Fig. 2 | Performance of the TC cluster probabilistic model in
individual models and their MME in the WNP. Relationship between yearly TC
frequency and yearly TC cluster activity (a, frequency; b, duration) in model
outputs (blue dots) and 1000 Monte Carlo simulations (boxplots) during
1950-2050 in the WNP based on seven high-resolution climate models and
their MME from CMIP6-HighResMIP. The linear regression models between

TCfrequency and TC cluster frequency/duration are shown as red lines, with
95% confidence intervals shaded based on the two tailed Student’s t-test. The
function, R-squared (R?), and p-value of the models are presented at the upper
left. In each boxplot, the box spans from the first quartile to the third quartile of
the data, with aline marking the median. The whiskers extend from the box by
1.2x theinterquartile range.
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Extended Data Fig. 3| Performance of the TC cluster probabilistic model in
global basins. a-f, Relationship between yearly TC frequency and yearly TC
cluster frequency in observations (blue dots) and 1000 Monte Carlo simulations
(boxplots) in the six major basins (1979-2024 for the NA and WNP, and 1979-2022
for the other four basins). The linear regression models between TC frequency
and TC cluster frequency/duration are shown as red lines, with 95% confidence
intervals shaded based on the two tailed Student’s t-test. The function, R-squared
(R?), and p-value of the models are presented at the upper left. g-1, Same asina—f
but for TC cluster duration. In each boxplot, the box spans from the first quartile

to the third quartile of the data, with a line marking the median. The whiskers
extend from the box by 1.2x the interquartile range. When extending the analysis
to thebasinsin the Southern Hemisphere (that is, South Indian (SI) and South
Pacific (SP)), the data are shifted by 182 days (approximately 6 months) to obtain
aunimodal distribution of genesis time. Due to the limited sample size and
bimodal distribution of TC genesis time in the North Indian (NI) in observations,
we divide the TC genesis time based on the median and obtain the corresponding
PDF of TClifespan.
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Extended Data Fig. 4 | Performance of the TC cluster probabilistic model
inclimate models. a-f, Relationship between yearly TC frequency and yearly
TC cluster frequency in the model outputs (blue dots) and 1000 Monte Carlo
simulations (boxplots) during 1950-2050 in the six major basins based on the
MME of seven high-resolution climate models from CMIP6-HighResMIP. The
linear regression models between TC frequency and TC cluster frequency/
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duration are shown as red lines, with 95% confidence intervals shaded based
onthe two tailed Student’s t-test. The function, R-squared (R?), and p-value of
the models are presented at the upper left. g-1, Same as ina-fbut for TC cluster
duration. In each boxplot, the box spans from the first quartile to the third
quartile of the data, with aline marking the median. The whiskers extend from
theboxby1.2x theinterquartile range.
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Extended Data Fig. 5| Quantifying contributions of TC climatology changes to
TC cluster changes focusing on long-lived TCs (lasting > 2days). a, b, Observed
TC cluster frequency change (yellow histogram) and the changes simulated by
probabilistic modeling (boxplots) between 1979-2001 and 2002-2024 (the latter
minus the former) in the NA (a) and WNP (b). The contributions from changes

in TC climatology (‘All’) and individual parameters (‘Fre. for TC frequency, ‘Life.
for TC lifespan, ‘Time. for TC genesis time, and ‘L + T’ for the combinations of
TClifespan and genesis time) are simulated by varying the given parameter(s)

while keeping the other(s) fixed (Methods). The boxplots show the averages of
every 1000 Monte Carlo simulations (in total, 100 averages). The box spans from
the first quartile to the third quartile of the data, with aline marking the median.
The whiskers represent the range from the 5th to the 95th percentile of the data.
Asterisks indicate that the mean value is significantly different from zero at the
95% confidence level based on the 1000-sample bootstrapping.c,d,Sameasina,
bbut for TC cluster duration with periods between 1979-2001 and 2002-2024.
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Extended Data Fig. 6 | Patterns of SST changes in observations and climate 1979-2001and 2002-2024 in observations. Averages of changes are shown for
models. a, b, Differences in SAT (K) between 1981-2010 and 2020-2049 based TC peak seasons in each basin (that s, JAS for the NA and JASO for the WNP). Dots
on the MME of the highresSST-present and highresSST-future simulations from indicate statistically significant differences at a 95% confidence interval based
CMIP6-HighResMIP. We subtract the tropical mean changes (20°S-20°N) to onthe1000-sample bootstrapping and false discovery rate test. Basemaps from
eliminate the signal of uniform warming. ¢, d, Differences in SST (K) between Natural Earth (https://www.naturalearthdata.com).
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Extended Data Fig. 7 | Patterns of SST that favorable for TC genesisinthe NA significant differences at a 95% confidence interval based on the 1000-sample
and WNP. a, b, Linear regression coefficients (K) between TC frequency in the NA bootstrapping and false discovery rate test. The data are not detrended to
(a) and WNP (b; multiplied by 1) with global SST during 1979-2024. The SST are include the possible influences from recent global warming. Basemaps from
analyzed for TC peak seasons in each basin, indicative of concurrent influences Natural Earth (https://www.naturalearthdata.com).

(thatis, JAS for the NA and JASO for the WNP). Dots indicate statistically
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Extended Data Fig. 8| TC cluster responses to different warming patternsin global warming pattern (red shading) compared to the CTRL simulation. The
HIRAM experiments. a, b, Differences in TC cluster frequency (a) and duration error bars represent the 95% confidence interval, calculated using 1000-sample
(b) over the NA (red bars) and WNP (blue bars) between simulations forced bootstrapping. The black dots denote the average value of the differences.

withaLaNina-like global warming pattern (blue shading) and an EI Nifo-like
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