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Shifting hotspot of tropical cyclone clusters 
in a warming climate
 

Zheng-Hang Fu    1,2,10, Dazhi Xi    3,4,10, Shang-Ping Xie    5, Wen Zhou    1,2  , 
Ning Lin    4, Jiuwei Zhao    6, Xin Wang    1 & Johnny C. L. Chan    7,8,9

Multiple tropical cyclones can be present concurrently within one ocean 
basin, and these clusters can induce compound hazards within a short time 
window. While the western North Pacific has historically been home to most 
tropical cyclone clusters, how climate change might affect this is unclear. 
Here we use observations and high-resolution climate model simulations to 
develop a probabilistic model, assuming that tropical cyclones are mutually 
independent and occur randomly. Against this baseline, we identify outliers 
as clusters with dynamic interactions between tropical cyclones. We find 
that the recent global warming pattern induces major shifts in tropical 
cyclone cluster hotspots from the western North Pacific to the North 
Atlantic by modulating tropical cyclone frequency and synoptic-scale 
wave activity. Our probabilistic modelling indicates a tenfold increase in 
the likelihood of tropical cyclone cluster frequency in the North Atlantic, 
surpassing that in the western North Pacific, from 1.4 ± 0.4% to 14.3 ± 1.2% 
over the past 46 years.

On 14 September 2020, an extreme tropical cyclone (TC) cluster made 
headlines, with five TCs entrenched over the North Atlantic (NA)1 
(Fig. 1a and Supplementary Fig. 1). That year witnessed an unusually 
active Atlantic hurricane season, with nine storms forming in succes-
sion within 3 weeks (Fig. 1a). Such back-to-back TCs over the NA and 
their threat to the coastal USA have increased in recent decades2–4. 
Here, we define TC clusters as two or more TCs present simultaneously 
within the same basin5,6. Historically, only 40% of TCs appeared alone, 
with the majority of TCs coming in clusters6. Beyond the combined 
impacts of individual TCs, TC clusters can lead to disproportionate 
damage along coastal regions because infrastructure, communi-
ties and restoration resources cannot bounce back from the damage 
from the preceding TC within a short period of time2,7–9. In addition, 
dispatching limited emergency supplies to affected areas is rather 

difficult when multiple TCs impact different regions concurrently, 
as exemplified by the Federal Emergency Management Agency’s 
failure to provide adequate support to Hurricane Maria’s victims in  
Puerto Rico after its overextended responses to hurricanes Harvey 
and Irma in 201710.

Although the extreme TC cluster in 2020 is relatively new to Atlan-
tic coastlines, East and Southeast Asian coastal regions have long suf-
fered from such temporally compound events. In late summer 2004, 
over the western North Pacific (WNP), nine disturbances intensified 
into TCs within 34 days (refs. 11,12), five of which made landfall in East 
Asia (Fig. 1b). While the majority of TC clusters historically occur in the 
WNP, how climate change might affect this preference remains unclear.

Previous studies have analysed large-scale dynamic and thermo-
dynamic conditions that are favourable for TC genesis to investigate 

Received: 27 September 2024

Accepted: 3 July 2025

Published online: 31 July 2025

 Check for updates

1Key Laboratory of Polar Atmosphere-Ocean-Ice System for Weather and Climate, Ministry of Education, Department of Atmospheric and Oceanic 
Sciences and Institute of Atmospheric Sciences, Fudan University, Shanghai, China. 2Key Laboratory for Polar Science MNR, Polar Research Institute 
of China, Shanghai, China. 3Department of Earth and Planetary Sciences, The University of Hong Kong, Hong Kong, China. 4Department of Civil and 
Environmental Engineering, Princeton University, Princeton, NJ, USA. 5Scripps Institution of Oceanography, University of California San Diego, La Jolla, 
CA, USA. 6State Key Laboratory of Climate System Prediction and Risk Management, Institute of Climate and Application Research, Nanjing University of 
Information Science and Technology, Nanjing, China. 7Shanghai Typhoon Institute of China Meteorological Administration, Shanghai, China. 8Asia-Pacific 
Typhoon Collaborative Research Center, Shanghai, China. 9School of Energy and Environment, City University of Hong Kong, Hong Kong, China.  
10These authors contributed equally: Zheng-Hang Fu, Dazhi Xi.  e-mail: wen_zhou@fudan.edu.cn

http://www.nature.com/natureclimatechange
https://doi.org/10.1038/s41558-025-02397-9
http://orcid.org/0000-0001-7154-6025
http://orcid.org/0000-0002-4096-8441
http://orcid.org/0000-0002-3676-1325
http://orcid.org/0000-0002-3297-4841
http://orcid.org/0000-0002-5571-1606
http://orcid.org/0000-0001-9146-7500
http://orcid.org/0009-0009-6169-9680
http://orcid.org/0000-0001-8390-7422
http://crossmark.crossref.org/dialog/?doi=10.1038/s41558-025-02397-9&domain=pdf
mailto:wen_zhou@fudan.edu.cn


Nature Climate Change | Volume 15 | August 2025 | 850–858 851

Article https://doi.org/10.1038/s41558-025-02397-9

TC cluster climatology explained by a 
probabilistic model
Although the WNP has long been home to most TCs globally, recent 
decades have witnessed decreasing trends in both TC and TC cluster 
frequencies in the WNP, accompanied by significant increasing trends 
in the NA (Fig. 1c,d). Meanwhile, the TC cluster frequency in the NA has 
reached or even surpassed that of the WNP nine times since 2005 (red 
dots in Fig. 1c). This indicates that the NA is emerging as a hotspot for 
TC clusters in recent decades.

The TC cluster frequency is not a linear function of TC frequency, 
as confirmed by the low Kendall rank correlation in Fig. 1d. Linking the 
contrasting trends in TC cluster frequency between the two basins 
to the TC frequency trend is thus not straightforward. Therefore, we 
develop a probabilistic framework for stochastic TC cluster simulations 
with TC parameters estimated from observations during 1979–2024 
(Fig. 2 and Methods). Probability density functions (PDFs) of TC genesis 
time are shown in Fig. 2a,b. The window of TC genesis over the NA is 
confined mainly to August–October, with a yearly peak in September, 
whereas the window is much wider for the WNP (Fig. 2a,b). Considering 
the relationship between TC occurrence time and lifespan, we then bin 
the genesis time into deciles and obtain the corresponding conditional 
PDF for TC lifespan for each decile of genesis time (Fig. 2c,d), which 
shows that NA TCs tend to last longer in the TC peak season, and thus 
TC clusters over the NA tend to be concentrated owing to the overlap 
of many long-lived TCs.

TC cluster formation (for example, refs. 4–6,13). Additionally, recent 
studies have highlighted changes in TC climatology features, including 
frequency14,15, seasonality16–18 and duration19,20 under anthropogenic 
warming. However, understanding how these TC climatology features 
besides the mechanisms at TC genesis influence TC cluster activity 
remains a challenge.

Two possible conditions for TC cluster formation exist. First, TC 
genesis may involve physical processes related to pre-existing TC(s), 
thus contributing to TC cluster formation21,22. TC-induced Rossby wave 
dispersion4,5,23,24, synoptic-scale wave trains12,25,26 and other equatorial 
waves21,27,28 can lead to TC cluster formation, when subsequent TCs are 
pre-conditioned by synoptic-scale cyclonic disturbances (hereafter, 
‘dynamically connected events’). Second, the TCs in a TC cluster may 
be independently generated and happen to coincide. Several studies, 
some mutually conflicting, have tried to delineate the two types of 
TC cluster formation on the basis of linear wave theory23,24 or through 
case studies aided by numerical simulations29,30. However, the relative 
importance of the two mechanisms for TC cluster formation remains 
unknown owing to the lack of a robust theoretical framework and reli-
able diagnostic tools.

The present study develops a probabilistic model to establish 
a baseline of independent random TC occurrence and then identify 
dynamically connected TC clusters as outliers from the baseline. 
This method enables us to attribute TC cluster trends to the recent La 
Niña-like global warming pattern.
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Fig. 1 | Extreme TC cluster seasons and observed changes in TC frequency 
and TC cluster frequency. a,b, The TC activity from 31 August to 23 September 
2020 in the NA (a) and from 4 August to 7 September 2004 in the WNP (b). The 
histogram shows the daily TC counts within the period, and the map shows 
coloured tracks for each TC. Hurricane Paulette (red line in a) regenerated into 
a TC after its extratropical transition, so we connect the two tracks with a dotted 
line. c,d, Time series of TC frequency (blue lines) and TC cluster frequency 
(orange lines) during 1979–2024 over the NA (c) and WNP (d). Kendall rank 

correlations (Tau) between TC frequency and TC cluster frequency are shown at 
the top left. The linear trends of TC frequency (T1) and TC cluster frequency (T2) 
are plotted as dotted lines, with the associated 10-year trend values presented 
in the top panel. Asterisks denote significance at the 95% confidence level on 
the basis of the 1,000-sample bootstrapping. Bold dots in b indicate that the 
frequency over the NA reaches or exceeds that over the WNP, occurring in 5 years 
for TC frequency and 10 years for TC cluster frequency during 1979–2024.
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According to this framework, we can estimate TC cluster fre-
quency and their total occurrence days (denoted as ‘duration’) under 
the assumption that TCs independently and randomly occur (Fig. 2e–h, 
box plots). The probabilistic model simulates the observed relationship 
between TC frequency and TC cluster activity quite well, with most 
observations (blue dots) falling within the box plots. Both the TC cluster 
frequency and duration increase with the TC frequency.

We further couple the probabilistic model with seven 
high-resolution climate models capable of resolving TC activity 
(CMIP6-HighResMIP; the High Resolution Model Intercomparison Pro-
ject (HighResMIP) within the Coupled Model Intercomparison Project 
Phase 6 (CMIP6)31,32 (Methods and Extended Data Figs. 1 and 2). Simu-
lated TC cluster features from these full-physics high-resolution climate 
models align well with the estimation in the probabilistic modelling. 
Compared with linear regression results (red lines), the probabilistic 
simulations (box plots) better capture the increasing tendency from 
zero at a relatively low TC frequency and the saturation behaviour of TC 

cluster frequency at a higher TC frequency. This saturation is intrinsic 
to the TC cluster definition, as a high TC frequency leads to persistent 
overlap among multiple TCs, causing a level off or even a decline in TC 
cluster frequency (Extended Data Fig. 2a). Thus, TC cluster duration 
may serve as a better indicator of potential TC cluster hazards under 
high TC frequency conditions.

To further validate the model across other basins, we perform 
probabilistic simulations in all six major TC genesis basins on the basis 
of observations and the multi-model ensemble (MME) of the seven 
high-resolution climate models from CMIP6-HighResMIP (Extended 
Data Figs. 3 and 4). The TC cluster frequency and duration are well 
distributed in the box plots generated by Monte Carlo simulations 
across the six basins. This result indicates that the effect of TC clima-
tology in frequency, lifespan and genesis time predominantly govern 
TC cluster climatology, and the probabilistic model can be used to 
decompose the relative contributions of each individual parameter 
to TC cluster changes.
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Fig. 2 | Probabilistic modelling of TC clusters. a,b, Histogram and PDF of TC 
genesis time in the NA (a) and WNP (b) derived from the 6-h best track dataset 
during 1979–2024. c,d, The joint distribution of TC genesis time and lifespan 
in the NA (c) and WNP (d). The average values of TC lifespan in every tenth 
percentile of TC genesis time are plotted as blue lines, and the shaded area 
indicates the range of the first quartile to the third quartile of the data. e,f, The 
relationship between yearly TC frequency and yearly TC cluster frequency 
in the NA (e) and WNP (f) in observations (blue dots) and 1,000 Monte Carlo 
simulations (box plots) during 1979–2024. g,h, The relationship between 

yearly TC frequency and yearly TC cluster duration in the NA (g) and WNP (h) in 
observations (blue dots) and 1,000 Monte Carlo simulations (box plots) during 
1979–2024. Linear regressions between TC frequency and TC cluster frequency/
duration in observations are shown as red lines, with 95% confidence intervals 
shaded on the basis of the two-tailed Student’s t-test. The function, R2, and  
P value (P « 0.01) of the models are presented in the top left of the figure. In each 
box plot, the box spans from the first quartile to the third quartile of the data, 
with a line marking the median. The whiskers extend from the box by 1.2× the 
interquartile range.
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Changing TC cluster activity and its drivers
The quantitative contributions of each parameter in both the observa-
tions and model projections are presented in Fig. 3a–h and Extended 
Data Tables 1 and 2 (Methods). During the recent 46 years, there has 
been an increase in TC cluster frequency by 2.3 events and an increase 
in duration by 7.8 days over the NA. Conversely, the frequency of TC 
clusters has decreased by 1.3 events, and the duration has decreased 
by 11.6 days over the WNP. The contrasting changes in TC cluster activ-
ity between the NA and the WNP are projected to continue through 
mid-twenty first century in the MME and individual model projec-
tions6 (Supplementary Table 1). These changes are well captured by 
the probabilistic modelling, except for a marked underestimation of 
the projected decrease in TC cluster frequency over the WNP (Fig. 3f), 
which explains only 54.7% of the TC cluster changes.

The bias of the probabilistic model arises from both model uncer-
tainty and systematic error, with the latter due to assuming that TCs in 
clusters are generated independently. Intense TCs can induce alternat-
ing cyclonic and anti-cyclonic disturbances, as observed in 2004 over 

the WNP (Fig. 1b), leading to subsequent TCs in the wake of pre-existing 
TCs12. Such dynamic processes, involving enhanced synoptic wave 
trains, are favourable for TC cluster formation5,22,24,33, contributing to 
the systematic underestimation of TC cluster frequency in the proba-
bilistic model (Fig. 3i,j). In contrast to TC cluster frequency, the bias 
distribution of TC cluster duration does not show a robust positive 
shift from zero in the mean value (Fig. 3k,l), probably owing to damping 
effects by the randomized TC lifespan. Especially, the bias distribution 
for TC cluster frequency over the WNP (Fig. 3j) exhibits statistically 
significant differences between the future (2020–2049) and histori-
cal (1981–2010) periods, as shown by the Kolmogorov–Smirnov test 
(P < 0.01), which mainly stems from a shift in the model’s mean bias. 
This significant shift can partially explain the probabilistic model’s 
failure to simulate the projected decrease in TC cluster frequency over 
the WNP (Fig. 3f). The physical processes underlying this discrepancy 
are investigated in the following section.

An increase in TC frequency can directly enhance TC cluster activ-
ity, as shown in Fig. 2e,f. The TC seasonality and lifespan influence 
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Fig. 3 | Quantifying contributions of TC climatology changes to TC cluster 
changes in probabilistic modelling. a,b, The observed TC cluster frequency 
change (yellow histogram) and the changes simulated by probabilistic modelling 
(box plots) between 1979–2001 and 2002–2024 (the latter minus the former) in 
the NA (a) and WNP (b). Contributions from changes in TC climatology (‘All’) and 
individual parameters (‘Fre.’ denotes TC frequency; ‘Life.’ denotes TC lifespan; 
‘Time’ denotes TC genesis time; and ‘L+T’ is the combinations of TC lifespan and 
genesis time) are simulated by varying the given parameter(s) while keeping the 
other(s) fixed (Methods). The box plots show the averages of every 1,000 Monte 
Carlo simulations (in total, 100 averages). The box spans from the first quartile 
to the third quartile of the data, with a line marking the median. The whiskers 
represent the range from the 5th to the 95th percentile of the data. Asterisks 
indicate that the mean value is significantly different from zero at the 95% 
confidence level based on the 1,000-sample bootstrapping. c,d, The observed TC 
cluster duration and the changes simulated by probabilistic modelling  

(box plots) between 1979–2001 and 2002–2024 (the latter minus the former) in 
the NA (c) and WNP (d). e,f, The observed MME of seven high-resolution climate 
models from CMIP6-HighResMIP and the changes simulated by probabilistic 
modelling (box plots) between 1981–2010 and 2020–2049 (the latter minus the 
former) in the NA (e) and WNP (f). i,j, Deviations of average TC cluster frequency 
in probabilistic modelling from model outputs scaled by the standard deviation 
of residuals in corresponding linear regression models in the NA (i) and WNP (j) 
based on the MME. k,l, Deviations of average TC cluster duration in probabilistic 
modelling from model outputs scaled by the standard deviation of residuals in 
corresponding linear regression models in the NA (k) and WNP (l) based on the 
MME. The blue and red vertical dotted lines in i–l denote the mean bias of the 
probabilistic model during 1981–2010 and 2020–2049, respectively. The P value 
of the Kolmogorov–Smirnov test used to test the statistical difference between 
the bias distributions during the two periods is shown at the top left of i–l.
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the TC cluster activity by modulating the genesis time interval and 
the likelihood of overlap between TCs, respectively. In general, the 
TC frequency change is the primary contributor to the TC cluster 
change, explaining 46.0–128.4% of the TC cluster changes (Fig. 3a–h 
and Extended Data Tables 1 and 2). Changes in the TC lifespan and 
seasonality play a secondary role in regulating the TC cluster activity 
over time. Observed changes in the TC lifespan and seasonality lead 
to a 8.5% reduction in the TC cluster frequency and a 17.5% reduction 
in the TC cluster duration over the NA. These results may be due to 
the recent increase in short-lived TCs over the NA19. The probabilistic 
model explains a larger portion of the changes in TC cluster activities 
when focussing on relatively long-lived TCs (lasting ≥2 days; Extended 
Data Fig. 5).

Note that the relationship between TC lifespan and genesis time 
may introduce additional complexity. However, our decomposition 
results show that the contributions of collaborate changes in TC lifes-
pan and seasonality can be linearly reconstructed on the basis of each 
parameter’s individual contribution (Extended Data Tables 1 and 2, the 
last three columns), thereby enhancing our confidence in the results 
within the probabilistic framework.

Identification of dynamically connected TC 
clusters
In the Northern Hemisphere, TCs typically move northwestward 
owing to climatological steering flow and the Beta effect34. If a TC is 
pre-conditioned by a Rossby wave train or other synoptic-scale dis-
turbance linked to a pre-existing TC; the genesis location of this new 
TC will most probably be in the southeastern quadrant relative to the 
pre-existing one because of the wave energy dispersion under easterly 
vertical wind shear4,5,24. We evaluate the likelihood of a new TC forma-
tion southeast of the pre-existing TC against the random probabilistic 
framework to identify dynamically connected TC clusters.

We begin by comparing the spatial distribution of newly formed 
TCs relative to pre-existing TCs in the outlier group and the normal 
group (Methods). Outliers are defined as TC clusters with yearly fre-
quency or duration (for example, blue dots in Fig. 2e) that is above 
the 95th percentile of the Monte Carlo simulations (for example, box 
plots in Fig. 2e), while events positioned at the median value of the 
Monte Carlo simulations are categorized as the normal group. In both 
groups, the largest proportion of TCs is located in the southeastern 
quadrant of the pre-existing TCs because of the general west-polewards 
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Fig. 4 | Identification of dynamically connected TC clusters. a,b, The relative 
locations between pre-existing TCs (red star) and subsequent TCs (orange 
dots) at the cyclogenesis time of the subsequent TCs in the outlier group (left) 
and normal group (right) categorized by TC cluster frequency in the NA (a) 
and WNP (b) based on the MME of the highresSST-present simulation in seven 
high-resolution climate models from CMIP6-HighResMIP during 1950–2014. c,d, 
The relative locations between pre-existing TCs (red star) and subsequent TCs 
(orange dots) at the cyclogenesis time of the subsequent TCs in the outlier group 
(left) and normal group (right) categorized by TC cluster duration in the NA (c) 
and WNP (d) based on the MME of the highresSST-present simulation in seven 
high-resolution climate models from CMIP6-HighResMIP during 1950–2014. 

Percentages of subsequent TCs in each quadrant are indicated in the four 
corners. Considering wave energy dispersion for limited distance, our analysis 
focusses on a region extending 35° north and south in latitude and 50° east and 
west in longitude from each pre-existing TC. e,f, The percentages of subsequent 
TCs located in the southeastern quadrant with different percentile thresholds 
to define the outlier group in the NA (e) and WNP (f), categorized by TC cluster 
frequency (red lines) and TC cluster duration (blue lines) (Methods). The average 
ratios between the two regimes, separated by a threshold of 50%, are plotted 
as dotted lines. The mean ratios between the two stages (TC cluster frequency 
and TC cluster duration) are statistically different with P < 0.01 based on the 
1,000-sample bootstrapping.
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propagation of TCs (Fig. 4a–d). Notably, however, a higher concen-
tration of TCs is observed within this quadrant in the outlier groups 
in both the NA and WNP, with ratios increasing by 10.53% and 5.12%, 
respectively. These results suggest that the increased TC ratio in 
the wake of pre-existing TCs (that is, the southeastern quadrant) is 

probably associated with active dynamic connections between TCs. 
The enhanced activity of synoptic-scale wave trains may lead to an 
underestimation by the probabilistic model. Similar conclusions are 
drawn from observational data, except for results categorized by TC 
cluster duration over the WNP (Supplementary Fig. 2).
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Fig. 5 | Patterns of SST and synoptic-scale wave activity that are favourable 
for dynamically connected TC clusters. a,b, The composite differences in SST 
(K) between TC cluster outlier group and normal group during 1950–2014 based 
on the MME of the highresSST-present simulations from CMIP6-HighResMIP. To 
isolate the dynamically connected TC clusters from randomly generated events, 
the normal and outlier groups are categorized by the 15th and 95th percentile 
of TC cluster frequency based on the probabilistic modelling in the NA (a) and 
WNP (b) (Methods). c,d, The composite differences in SST (K) between TC cluster 
outlier group and normal group based on observational data, with two groups 
divided by the 50th percentile of TC cluster frequency during 1979–2024 to 
ensure a sufficient and comparable sample size for the two groups, in the NA 
(c) and WNP (d). e,f, The differences in synoptic-scale wave intensity (10−6 s−1) 
between TC cluster outlier group and normal group based on observational data 

during 1979–2024, with two groups divided by the 50th percentile of TC cluster 
frequency, over the NA (e) and WNP (f). g,h, Effects of long-term La Niña-like 
warming in the tropical Pacific on synoptic-scale wave activity (shading) and TC 
track density (contour) in the MRI-AGCM3-2-H experiments in the NA (g; (0.5, 
1) red contours) and WNP (h; (−1.5, −0.5) blue contours). As the SST trend in the 
experiments between the periods 1981–2010 and 2020–2049 shows a cooling 
in the tropical Pacific (Extended Data Fig. 7), the differences in synoptic-scale 
wave intensity and TC track density are considered to be forced by La Niña-like 
global warming pattern. The averages of changes are shown for TC peak seasons 
in each basin (that is, JAS for the NA and JASO for the WNP). In all panels, the dots 
indicate statistically significant differences at a 95% confidence interval based 
on the 1,000-sample bootstrapping and false discovery rate test. Basemaps from 
Natural Earth (https://www.naturalearthdata.com).
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To validate robustness of the contribution from dynamic connec-
tions, we gradually increase the threshold used to define outliers from 
the 0th to the 95th percentile (Methods) and investigated the changes 
in TC ratio in the southeastern quadrant (Fig. 4e,f). The ratios remain 
nearly unchanged at lower percentile thresholds and rapidly increase 
once the threshold reaches the 70th percentile. Ratios calculated on 
the basis of data below the 50th percentile are significantly different 
from those in the second half, indicating a robust signal of dynamic 
connections. Previous attempts to detect dynamically connected 
events by comparing differences between TC clusters conditions with 
a climatological base state12,33 and single TC conditions5,24 suffer from 
an inaccurate baseline, while numerical case studies29,30 are limited by 
insufficient sample sizes. Our study sidesteps these issues, presenting 
a more accurate baseline from the probabilistic model with adequate 
samples based on the MME with seven full-physics climate model simu-
lations. Systematic deviations from this baseline arise from neglecting 
dynamically connected events. This approach identifies the role of 
dynamic connections in TC clusters and their underlying physical 
drivers as demonstrated below.

Shifting hotspot driven by the surface warming 
pattern
Local and remote SST forcings modulate synoptic-scale wave variability 
through large-scale circulations12,35,36 (Methods). We investigate the 
SST patterns that favour dynamic connections between TCs (Fig. 5a–d 
and Methods). The enhanced dynamic connections between TCs over 
the WNP and NA are associated with El Niño and La Niña conditions, 
as evidenced by both climate model simulations and observations 
(Fig. 5a–d). Observational composites of synoptic-scale wave inten-
sity for the corresponding groups of years (categorized into outlier 
years and normal years) support the linkage between dynamically 
connected TC clusters and enhanced synoptic disturbance activity 
(Fig. 5e,f and Supplementary Fig. 3 for validation in another reanalysis). 
Synoptic-scale wave activities strengthened over the broad subtropical 
NA, while synoptic-scale wave intensity anomalies are characterized 
by a northwest–southeast-oriented band in the WNP. In these regions 
with large zonal wind shear, synoptic-scale wave trains can develop by 
converting barotropic energy from the mean flow13. Similar patterns 
are observed when composites are grouped on the basis of TC cluster 
duration (Supplementary Fig. 4).

La Niña events can increase TC frequency in the NA by reducing 
the vertical wind shear37,38, whereas they primarily redistribute TC 
genesis locations in the WNP with a slight decrease in TC frequency39,40. 
In addition to direct TC frequency changes, we show that the contrast-
ing effects of ENSO on TC cluster frequency and duration over the two 
basins can be further reinforced by changes in dynamically connected 
events, especially for the WNP. The lower Kendall rank correlation 
between TC frequency and TC cluster frequency over the WNP, com-
pared with the NA, also confirms the weaker influence of TC climatology 
features on TC cluster formation in this basin (Fig. 1c,d).

Recent decades have witnessed a cooling trend over the tropical 
Pacific, known as La Niña-like warming41. While it is known that inter-
annual ENSO causes seesaw changes in TC cluster activity between 
the two basins, the impacts of La Niña-like global warming pattern on 
TC cluster activity need to be further qualified. We take daily outputs 
of the highresSST-present and highresSST-future simulations from 
MRI-AGCM3-2-H, whose results show good agreement with the MME in 
projected changes in TC clusters over the NA and WNP (Supplementary 
Table 1). As the forced warming pattern between the two periods (1981–
2010 and 2020–2049) after tropical mean warming rate subtracted 
is similar to the observed cooling in tropical Pacific (Extended Data 
Fig. 6), the differences in synoptic-scale wave intensity are taken as the 
responses to the recent La Niña-like global warming pattern (Fig. 5g,h). 
The synoptic-scale wave intensity is projected to increase across the 
NA (Fig. 5g), indicative of enhanced dynamic connections. Meanwhile, 

there is a significant decrease in synoptic-scale wave intensity over 
the mean flow confluence regions in the WNP (Fig. 5h), indicating 
that the La Niña-like global warming pattern will lead to suppression 
of the dynamically connected TC clusters over the WNP by reducing 
barotropic energy conversion. In addition, the widespread increase 
and decrease synoptic-scale wave intensity over the two basins agree 
well with TC track density changes (Fig. 5g,h), suggesting contrasting 
trends in TC frequency by changes in pre-TC synoptic-scale distur-
bances, which are typically referred to as ‘TC seeds’35,42–44. Observa-
tional evidence confirms that the increase in TC frequency over the 
NA and decrease over WNP are associated with tropical Pacific cooling 
and warming elsewhere, including the positive Atlantic Multidecadal 
Oscillation (AMO)-like anomalies45–48 (Extended Data Fig. 7). These 
results, together with findings in Fig. 5e–h, suggest that long-term La 
Niña-like global warming pattern (Extended Data Fig. 6) contributes 
to contrasting changes in TC clusters over the NA and WNP in both 
observations and model projections through modulating TC frequency 
and synoptic-scale wave intensity.

The above analysis shows that changes in synoptic-scale wave 
intensity driven by the recent La Niña-like global warming pattern can 
further increase (decrease) dynamically connected TC cluster activity 
over the NA (WNP), leading to a systematic bias in the probabilistic 
model (Fig. 3i–k). The significant decrease in model bias in projected 
TC cluster frequency in the WNP is closely related to the suppression 
of dynamically connected events under forced La Niña-like warming 
conditions (Fig. 3j).

Discussion
We have developed a probabilistic model to investigate changes in TC 
cluster activity over the NA and WNP and disentangle the individual con-
tributions of changes in TC climatology features to TC cluster changes. 
This model is used as a baseline for random occurring independent TCs, 
against which we identify outliers as dynamically connected TC clusters. 
We reveal that the NA has recently emerged as a TC cluster hotspot 
owing primarily to the increased TC frequency and dynamically con-
nected TC clusters driven by the recent La Niña-like global warming pat-
tern. Whether this warming pattern is internally generated or externally 
forced remains an open question and warrants further investigations. 
Nonetheless, we find that the contrasting trends in TC cluster frequency 
between the NA and WNP remain robust even when the study period is 
extended to 1961 (Supplementary Fig. 5), suggesting the presence of a 
long-term change signal that goes beyond the impacts of inter-decadal 
variability. We perform a suite of high-resolution climate model experi-
ments with different global warming patterns to test the hypothesis 
(Methods). When forced with the observed La Niña-like global warming 
pattern over 1960–2014, the hotspot for TC clusters shifts from the WNP 
to the NA basin (Extended Data Fig. 8). When forced with the projected 
El Niño-like warming, the TC cluster activities are suppressed in both 
basins, with a larger decrease occurring over the WNP.

Estimated based on TC climatology feature changes, the possibil-
ity for TC cluster frequency over the NA to exceed that of the WNP has 
sharply increased by as much as tenfold from 1.4 ± 0.4% to 14.3 ± 1.2% 
over the past 46 years (Methods). With the ongoing Pacific decadal 
cooling, this likelihood will further increase when changes in dynami-
cally connected TC clusters are considered, highlighting a rapidly 
growing TC cluster threat to the coastal NA.

Investigating systematic biases in probabilistic modelling based 
on seven full-physics high-resolution climate models, we robustly 
identify the role of enhanced synoptic-scale wave intensity in dynami-
cally connected TC clusters. However, quantifying this contribution 
from dynamically connected events remains a challenge and should be 
further pursued. Regardless, our research highlights the importance of 
TC clusters for hazard assessment, which often assumes independent 
TC events. Future research could explore more sophisticated model-
ling to explicitly capture dynamic interactions within TC clusters and 
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investigate the landfall phase of TC clusters to support hazard assess-
ment frameworks towards better representation of such temporally 
compound events.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41558-025-02397-9.
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Methods
Probabilistic TC cluster model
To statistically analyse the climatology of TC clusters, we design a 
probabilistic TC cluster model based on a probabilistic TC occurrence 
model developed from refs. 2,3. Within this modelling framework, we 
do not account for the dynamic connections between TCs in a TC clus-
ter; that is, the occurrence of each TC is assumed to be independent of 
the occurrence of the others. Thus, the probabilistic model can serve 
as a TC cluster baseline contributed by randomly occurring independ-
ent TCs. The deviations from this baseline can be used to identify the 
dynamically connected TC clusters.

The model consists of three parameters, namely the annual 
basin-wide TC genesis frequency n, the date of TC genesis T and the TC 
lifespan D. Here the genesis frequency n is a deterministic value either 
obtained from historical observations and simulations or prescribed 
as a given value, while the genesis date T and the duration D of each of 
the n TCs are considered to be random variables. The genesis date and 
duration of TCs are shown to be correlated (Fig. 2c,d). However, limited 
historical observations and climate simulations prevent a robust esti-
mation of the joint probability distribution of the two variables. Instead, 
we first obtain the kernel density estimations (KDE) of TC genesis time 
T. Then, we bin every tenth percentile of T and obtain the conditional 
PDF of TC lifespan D for each bin of T using the KDE. The estimation is 
performed for historical observations in each basin, and for two peri-
ods (1950–2014 and 2015–2050) for each climate model simulation.

For each year, with a fixed number of TCs, we apply the KDE of T and 
the conditional KDE of D to perform 1,000 Monte Carlo simulations of 
the genesis date and duration of TCs in that year. In each Monte Carlo 
simulation, when two or more TCs co-exist simultaneously, we count 
it as one TC cluster event (frequency) and document the duration of 
the co-existence as the duration of the TC cluster (days). The simulated 
TC cluster frequency and duration of the 1,000 Monte Carlo members 
are used to represent the climatology of the TC cluster.

Decomposing the contribution to TC cluster changes from TC 
climatology features
The abovementioned probabilistic model enables the flexibility to 
investigate the influence of the change in each individual feature of 
TC climatology on changes in the frequency and duration of TC cluster 
activity. We perform sensitivity tests to decompose the impact from 
genesis frequency n (‘Fre.’), date of TC genesis T (‘Time’) and TC lifespan 
D (‘Life’) individually, as well as the joint impact from the changes in T 
and D together (‘L + T’) on TC cluster changes. To study the individual 
influences in MME, we change one parameter at a time from its histori-
cal probability distribution during 1981–2010 to its future probability 
distribution during 2020–2049 estimated from climate model out-
puts, while keeping the other parameters the same as their historical 
values. We also investigate the individual influence of the changes in 
observations between 1979–2001 and 2002–2024. We repeat these 
sensitivity experiments 100 times (that is, 100,000 simulations in 
total) for every parameter to obtain statistically robust results. The 
differences between the estimated probability distributions of the 
simulated TC cluster frequency or duration and the historical prob-
ability distributions are used to represent the influence of the selected 
parameter(s). To estimate the change in the possibility of NA TC cluster 
frequency exceeding that of the WNP in observations, we compare 
the simulated TC cluster frequency over the NA and WNP in the two 
periods (1979–2001 and 2002–2024) by the probabilistic model. The 
possibility is calculated as the percentage of instances where the TC 
cluster frequency over the NA surpasses that of the WNP.

Observational data
TC best-track data are obtained from the International Best Track 
Archive for Climate Stewardship (IBTrACS)49, which is compiled by 
six Regional Specialized Meteorological Centres and four Tropical 

Cyclone Warning Centres affiliated with the World Meteorological 
Organization. We use 6-h TC records for the period of 1979–2024 
in the NA and WNP, as data quality before 1979 is poor owing to the 
absence of routinely used geostationary satellites for monitoring. 
Thus, pre-1979 records should be interpreted with caution owing to 
observational limitations. Nevertheless, extending the TC dataset to 
the 1950s will not alter the contrasting TC cluster trends between the 
NA and WNP (Supplementary Fig. 5). TC records from 1979 to 2022 are 
also analysed for the other four basins: the East Pacific, North Indian, 
South Indian and South Pacific. Since our focus is on TC genesis and 
its persistence in a basin rather than its intensity—a parameter that 
suffers from substantial uncertainty50—our probabilistic model results 
are not sensitive to the dataset selection. We considered only TCs that 
reached at least tropical storm intensity (≥35 kt) during their lifetime. 
However, our conclusions remain unchanged when tropical depres-
sions, extratropical cyclones and subtropical storms are included 
(Supplementary Fig. 6).

Monthly SST data are obtained from the Extended Reconstructed 
Sea Surface Temperature version 5 (ERSST.v5)51 during 1950–2024. To 
calculate synoptic-scale wave intensity, we use 6-h zonal and meridional 
wind data at 850 hPa during 1979–2024 based on the fifth-generation 
atmospheric reanalysis from the European Centre for Medium-Range 
Weather Forecasts (ERA5)52. We also analyse the results using daily 
reanalysis data from the National Centres for Environmental Predic-
tion–Department of Energy (NCEP/DOE Reanalysis II) during 1979–
2020. Consistent with the findings from ERA5, the synoptic-scale wave 
intensity patterns exhibit a northwest–southeast oriented enhanced 
band over the WNP and a uniformly enhanced band over the NA in the 
NCEP/DOE dataset (Supplementary Fig. 3). We exclude the linear trends 
of the data to eliminate the possible influence of global warming when 
investigating the favourable SST pattern for dynamically connected 
TC clusters.

High-resolution climate simulations
The CMIP6-HighResMIP initiative uses a multi-model framework 
to evaluate the regional impacts of climate change on TC activity53. 
In this study, we analyse tier 1 and tier 3 simulations from seven 
high-resolution climate models: CNRM-CM6-1-HR54, EC-Earth3P-HR55, 
HadGEM3-GC31-HM56, MRI-AGCM3-2-S57, MRI-AGCM3-2-H57, NICAM16-
8S58 and NICAM16-7S58 (detailed in Supplementary Table 2). Coupled 
models are not included, as they are limited in simulating the observed 
warming pattern and generally perform poorly in reproducing TC cli-
matology and the observed interannual variability of TC activity.59,60. 
Tier 1 comprises atmosphere-only simulations forced by observed daily 
SST and sea ice concentration from HadISST2 spanning 1950–2014 
(referred to as ‘highresSST-present’). Tier 3 extends tier 1 simulations 
through 2049 or 2050, with an option to continue to 2100 under sce-
nario SSP585 (referred to as ‘highresSST-future’). For tier 3, SST forc-
ing incorporates the local warming rates derived from an ensemble 
mean of CMIP5 RCP8.5 simulations and includes interannual vari-
ability from observational data. Model resolutions are set at 50 km or 
finer to capture key statistics of TC climate and variability, such as 
genesis frequency, spatial distribution and intensity32. Original TC 
tracks are identified by the TRACK algorithm in ref. 61, which detects 
TCs by tracking vorticity features on a common T63 spectral grid and 
accounting for warm-core criteria and storm lifespan. We focus on the 
first ensemble member from each model and compare the differences 
between 1981–2010 and 2020–2049 on the basis of the MME results.

As HighResMIP simulations do not provide the SST variable online, 
we use variable surface air temperature (SAT) as a substitute6 to show 
long-term changes in SST patterns. To ensure data reliability, we assess 
the Niño3.4 index derived from both observed SST and SAT in the 
highresSST-present simulation spanning 1979–2014 (Supplementary 
Fig. 7). The high correlation coefficient between the indices suggests 
that the SAT serves as a reliable proxy for SST.
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The SST patterns in Fig. 5a,b are composited on a year-to-year 
timescale without any trend information, and therefore the intensified 
synoptic-scale wave in the dynamic connections cannot be directly 
attributed to the decadal SST warming pattern in the tropical Pacific 
(Extended Data Fig. 6). To confirm the effects of surface warming 
patterns on dynamically connected events, we use daily outputs from 
the MRI-AGCM3-2-H model to calculate the changes in synoptic-scale 
wave intensity. This model has good agreement with the MME in 
projected changes in the NA and WNP (Supplementary Table 1). In 
highresSST-future simulations, the model is forced by patterned warm-
ing from an ensemble mean of CMIP5 to 2050 plus observed inter-
annual variability. The differences between the periods 1981–2010 
and 2020–2049 are a La Niña-like warming pattern after the tropical 
mean warming rate is subtracted (shown in Extended Data Fig. 6a,b). 
Therefore, the changes in synoptic-scale wave intensity between the 
two chosen periods can be considered as the responses to La Niña-like 
global warming patterns.

Constraint detection for simulated TC tracks
In this study, we define TC track density at a grid point with a 1° resolu-
tion as the number of TCs passing through a 15° longitude × 15° latitude 
area centred at that grid point. We select a 15° × 15° box to capture syn-
optic waves (such as equatorial Rossby waves, mixed Rossby–gravity 
waves and easterly waves) that could trigger TC genesis62.

The simulated global distribution of TC track density without 
constraints is shown in Supplementary Fig. 8a, which shows large 
overestimations, particularly in the WNP, North Indian and Southern 
Hemisphere. These overestimations stem from uniform detection param-
eters and wind speed thresholds, leading to excessive TC frequency in 
very-high-resolution climate models6. To mitigate the bias and ensure 
equitable representation of each model in the MME, we implement addi-
tional constraints on the basis of the TRACK algorithm, detailed in Supple-
mentary Table 2. Owing to the different parameterization schemes used 
in simulating the planetary boundary layer, some high-resolution models 
tend to artificially reach very strong wind speeds (such as NICAM16-8S 
and NICAM16-7S)63. We increase the wind speed thresholds in these 
models since our focus is TC frequency rather than intensity. Further-
more, we use a relatively weak constraint on lifespan to retain short-lived 
TCs, which might become more prevalent in the future19. Besides the 
traditional wind speed and duration criteria, we further filter out storms 
generated in the region where climatological SST is lower than 26 °C, 
which are often misinterpreted as TCs in the TRACK algorithm64.

The bias of TC track density is largely reduced after the constraint 
detection methods are implemented, although an overabundance 
of TCs persists in the NI, probably owing to the misidentification 
of monsoonal low-pressure systems65,66 (Supplementary Fig. 8b,c). 
TC frequency across six basins agrees better with the observations, 
particularly for the WNP. Additionally, the standard deviations of TC 
frequency in the MME are reduced to levels comparable to the obser-
vations, indicative of the improvement of the constrained results 
(Supplementary Table 3).

Outlier analysis
The observed and simulated TC cluster frequencies and durations 
(Fig. 2e–h, blue dots) that exceed the 95th percentile of the respec-
tive Monte Carlo simulations (box plots) are defined as outliers. To 
maintain an adequate sample size, events falling within the 5th to 
95th percentiles of the simulations are included in the normal group 
for comparison with the outlier group, as depicted in Supplementary 
Fig. 2. In the Monte Carlo simulations based on climate model outputs, 
events positioned at the median value of the box plots are considered 
as the normal group for comparison (Fig. 4a–d), ensuring a comparable 
sample size with outlier groups.

We investigate the relative locations between pre-existing TCs 
and subsequent TCs within TC clusters and quantify the TC ratio in 

each quadrant. The wave energy dispersion in synoptic trains cannot 
extend beyond 5,000 km owing to its decaying feature and basin size67, 
and thus we only utilize the results within a 35° latitudinal and 50° lon-
gitudinal distance. The different ratios between the abovementioned 
outlier and normal groups are attributed not to the co-occurrence of 
independent stochastic arrivals but to dynamic connections between 
TCs, as evidenced by enhanced synoptic wave intensity (Fig. 5e,f). Fur-
thermore, we modify the threshold for defining outliers, incrementally 
increasing from the 0 to the 95th percentile (in 5-percentile intervals) 
of the Monte Carlo simulations, and calculate the corresponding ratio 
of subsequent TCs located in the southeastern quadrant to confirm 
the role of dynamic interactions in increasing TC cluster activity. The 
sample sizes of the outlier group at each percentile threshold in the 
climate simulations are sufficiently large to yield robust conclusions 
(Supplementary Fig. 9). The conclusions remain unchanged when no 
constraints on distance are applied (Supplementary Fig. 10).

To determine the underlying mechanisms for dynamically 
connected TC clusters, we composite the differences in SST and 
synoptic-scale wave intensity according to the deviations of the 
probabilistic model as follows. In the highresSST-present simulations 
(1950–2014), we classify the two groups as above the 95th percentile 
and below 15th percentile. In observations, we divide the years into two 
groups on the basis of whether the TC cluster frequency reaches the 
50th percentile of the probabilistic simulations, to ensure a sufficient 
and comparable sample size for the two groups, and the results remain 
consistent when using TC cluster duration for classification (Supple-
mentary Fig. 4). We compute the differences in SST and synoptic-scale 
wave intensity during the TC season from July to October ( JASO) for the 
WNP68 and from August to October (ASO) for the NA69.

Synoptic-scale wave activity
The lower-tropospheric synoptic-scale wave train favours dynamically 
connected TCs12,24. To quantify the synoptic-scale wave activity, we 
apply a Butterworth bandpass filter to daily zonal and meridional wind 
data at 850 hPa, with half power at 3 and 7 days (denoted as us and vs, 
respectively). The standard deviation of the synoptic-scale relative 
vorticity (ζs) is subsequently utilized as a metric for the intensity of the 
wave train. The synoptic-scale relative vorticity in the spherical coor-
dinate system can be calculated as follows25,70:

ζs = ∂vs
∂x

− ∂us

∂y
+ us

a
tanφ (1)

where ζs indicates the synoptic-scale relative vorticity (in s−1), a is the 
radius of the Earth (in metres) and φ is the latitude (in radians).

To assess the intensity of the synoptic-scale wave train for a specific 
month, we compute the s.d. of the synoptic-scale relative vorticity in 
that month in a given grid. This approach allows a detailed analysis of 
wave train intensity month by month.

HIRAM experiments
To confirm the effects of long-term warming patterns on TC clus-
ters, we conducted numerical experiments using the high-resolution 
atmospheric general circulation model (HIRAM-C180) developed by 
the Geophysical Fluid Dynamics Laboratory (detailed in ref. 71). The 
model features a horizontal resolution of approximately 50 km with 
32 vertical levels, making it comparable to the high-resolution climate 
models used in this study.

We design three experiments, a control (CTRL) run and two future 
climate (GWLA and GWEL) runs, to elucidate the influence of different 
warming patterns. The CTRL run is forced by the observed monthly 
mean SST. The GWLA run is driven by a La Niña-like global warming 
pattern, represented by the SST in the CTRL run plus the observed 
SST trend over 1960–2014. In the GWEL run, the model is forced by the 
SST from the CTRL run combined with an El Niño-like global warming 

http://www.nature.com/natureclimatechange


Nature Climate Change

Article https://doi.org/10.1038/s41558-025-02397-9

pattern, derived from the MME of 12 CMIP5 models for the 2006–2099 
period under the RCP8.5 scenario (similar to CMIP6-HighResMIP and 
refs. 72,73). A widely used TC detection algorithm74 for global climate 
models is used to detect TCs in the simulations. The model simulations 
were conducted from January 1990 to December 2009 for each run. 
In our analysis, differences in TC cluster activity between the GWLA 
(GWEL) and CTRL runs, evaluated through 55-year resampling repeated 
1,000 times, are taken as the response to the La Niña-like (El Niño-like) 
global warming pattern (Extended Data Fig. 8).

It is important to note that inter-decadal variability in SST may 
influence the results. To minimize this impact, we selected the period 
1960–2014, during which the positive and negative phases of the AMO 
and Inter-decadal Pacific Oscillation are largely offset73. Neverthe-
less, we found that the La Niña-like global warming pattern persists 
regardless of the chosen periods (Supplementary Fig. 11), consistent 
with ref. 41.

Statistical significance test
In our study, all significance tests are conducted at the 95% confidence 
level. Kendall rank correlation is used to evaluate the correspondence 
of TC cluster frequency and TC frequency, which measures the similar-
ity of the ordering of the two series when ranked by each of the quanti-
ties75. Before coupling the probabilistic model with observations and 
model simulations, we evaluate the independence of TC frequency, 
duration and genesis time distributions using the chi-squared test. 
We use the deviations of the probabilistic model from model outputs 
scaled by the s.d. of residuals in the linear regression model in TC cluster 
frequency/duration to represent the normalized bias distribution. This 
approach enables inter-basin comparisons of bias distributions in the 
probabilistic modelling. To determine the changes in bias distribution 
between the two periods in the probabilistic model, we conduct a 
Kolmogorov–Smirnov test. A 1,000-sample bootstrapping approach 
is applied to evaluate the linear trends in both TC frequency and TC 
cluster frequency, as well as the differences in TC ratio, SST and syn-
optic wave intensity between two given periods76. The false discovery 
rate test is also used to assess the significance of grid points in the 
spatial pattern77,78. The uncertainty of the linear regression model is 
represented by the s.d.

Data availability
The data that support the findings of this study are all openly avail-
able online. The best-track TC data with 6-h temporal resolution 
are available via NCEI at https://www.ncei.noaa.gov/products/
international-best-track-archive. The CMIP6-HighResMIP data are 
openly available via CEDA at https://data.ceda.ac.uk/badc/cmip6/
data/CMIP6/HighResMIP. The daily wind fields at pressure levels 
from MRI-AGCM3-2-H in CMIP6-HighResMIP are available via ESGF 
at https://aims2.llnl.gov/search/cmip6/. The tropical storm tracks 
calculated by the TRACK algorithm are available via CEDA at https://
catalogue.ceda.ac.uk/uuid/0b42715a7a804290afa9b7e31f5d7753. 
Hourly reanalysis data on pressure levels from the ERA5 are avail-
able via Copernicus at https://cds.climate.copernicus.eu/cdsapp#!/
dataset/reanalysis-era5-single-levels?tab=overview and via NCEP/
DOE Reanalysis II at https://psl.noaa.gov/data/gridded/data.ncep.
reanalysis2.html. ERSST.v5 data from NOAA are available via NOAA at 
https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html. All the map 
figures (Fig. 5, Extended Data Figs. 6 and 7 and Supplementary Figs. 3, 
4, 8 and 11) were generated using Python Cartopy v.0.22.0 (https://doi.
org/10.5281/zenodo.1182735) (ref. 79). The data necessary to reproduce 
the main results are available via Zenodo at https://doi.org/10.5281/
zenodo.15383539 (ref. 80).

Code availability
Analysis and figure generation were performed using Python (ver-
sion 3.9.7). The code and scripts used to calculate the tropical cyclone 

clusters, perform the probabilistic modelling and generate the 
figures in the main text are available via Code Ocean at https://doi.
org/10.24433/CO.0176970.v2 (ref. 81).
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Extended Data Table 1 | Quantified contributions (%) of changes in TC statistics to TC cluster changes based on observations

All Frequency Lifespan Genesis time Lifespan + Genesis time

TC cluster frequency

NA 61.9, [57.2, 67.5] 68.7, [64.1, 74.0] −1.5, [−5.5, 2.8] −6.1, [−10.1, −1.5] −8.5, [−12.3, −4.3]

WNP 87.1, [75.2, 99.4] 70.4, [60.3, 80.9] 10.9, [−0.8, 22.8] 6.8, [−4.3, 18.2] 18.7, [7.6, 29.5]

TC cluster duration

NA 99.3, [90.4, 107.9] 128.4, [118.2, 137.6] −6.2, [−13.6, 0.9] −11.8, [−19.9, −4.5] −17.5, [−23.3, −10.4]

WNP 81.6, [72.2, 88.6] 55.8, [48.2, 62.8] 25.4, [19.0, 33.4] 5.8, [−1.9, 12.1] 30.8, [23.0, 38.3]

The contribution is calculated by dividing the TC cluster changes estimated through probabilistic modeling by the observed or modeled changes. Square brackets represent the 5th to 95th 
percentile of the quantified contributions in the probabilistic simulations.
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Extended Data Table 2 | Quantified contributions (%) of changes in TC statistics to TC cluster changes based on the MME in 
seven high-resolution climate models from CMIP6-HighResMIP

All Frequency Lifespan Genesis time Lifespan + Genesis time

TC cluster frequency

NA 84.5, [73.2, 97.2] 53.4, [38.6, 66.9] 14.1, [1.0, 27.6] 9.7, [−4.9, 22.6] 25.4, [13.2, 38.3]

WNP 54.7, [46.8, 62.2] 46.0, [37.0, 53.9] 5.3, [−3.8, 13.5] 3.7, [−4.7, 11.1] 9.7, [2.6, 16.8]

TC cluster duration

NA 111.6, [97.4, 124.9] 50.2, [34.5, 62.7] 29.1, [18.1, 41.5] 14.1, [2.6, 26.0] 47.1, [29.8, 62.3]

WNP 89.7, [80.4, 99.2] 63.2, [53.5, 73.2] 23.4, [14.0, 34.8] 8.4, [−3.3, 20.1] 32.3, [23.2, 43.3]

The contribution is calculated by dividing the TC cluster changes estimated through probabilistic modeling by the observed or modeled changes. Square brackets represent the 5th to 95th 
percentile of the quantified contributions in the probabilistic simulations.
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Extended Data Fig. 1 | Performance of the TC cluster probabilistic model in 
individual models and their MME in the NA. Relationship between yearly TC 
frequency and yearly TC cluster activity (a, frequency; b, duration) in model 
outputs (blue dots) and 1000 Monte Carlo simulations (boxplots) during 
1950–2050 in the NA based on seven high-resolution climate models and 
their MME from CMIP6-HighResMIP. The linear regression models between 

TC frequency and TC cluster frequency/duration are shown as red lines, with 
95% confidence intervals shaded based on the two tailed Student’s t-test. The 
function, R-squared (R2), and p-value of the models are presented at the upper 
left. In each boxplot, the box spans from the first quartile to the third quartile of 
the data, with a line marking the median. The whiskers extend from the box by 
1.2× the interquartile range.
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Extended Data Fig. 2 | Performance of the TC cluster probabilistic model in 
individual models and their MME in the WNP. Relationship between yearly TC 
frequency and yearly TC cluster activity (a, frequency; b, duration) in model 
outputs (blue dots) and 1000 Monte Carlo simulations (boxplots) during 
1950–2050 in the WNP based on seven high-resolution climate models and 
their MME from CMIP6-HighResMIP. The linear regression models between 

TC frequency and TC cluster frequency/duration are shown as red lines, with 
95% confidence intervals shaded based on the two tailed Student’s t-test. The 
function, R-squared (R2), and p-value of the models are presented at the upper 
left. In each boxplot, the box spans from the first quartile to the third quartile of 
the data, with a line marking the median. The whiskers extend from the box by 
1.2× the interquartile range.
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Extended Data Fig. 3 | Performance of the TC cluster probabilistic model in 
global basins. a–f, Relationship between yearly TC frequency and yearly TC 
cluster frequency in observations (blue dots) and 1000 Monte Carlo simulations 
(boxplots) in the six major basins (1979–2024 for the NA and WNP, and 1979–2022 
for the other four basins). The linear regression models between TC frequency 
and TC cluster frequency/duration are shown as red lines, with 95% confidence 
intervals shaded based on the two tailed Student’s t-test. The function, R-squared 
(R2), and p-value of the models are presented at the upper left. g–l, Same as in a–f 
but for TC cluster duration. In each boxplot, the box spans from the first quartile 

to the third quartile of the data, with a line marking the median. The whiskers 
extend from the box by 1.2× the interquartile range. When extending the analysis 
to the basins in the Southern Hemisphere (that is, South Indian (SI) and South 
Pacific (SP)), the data are shifted by 182 days (approximately 6 months) to obtain 
a unimodal distribution of genesis time. Due to the limited sample size and 
bimodal distribution of TC genesis time in the North Indian (NI) in observations, 
we divide the TC genesis time based on the median and obtain the corresponding 
PDF of TC lifespan.
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Extended Data Fig. 4 | Performance of the TC cluster probabilistic model 
in climate models. a–f, Relationship between yearly TC frequency and yearly 
TC cluster frequency in the model outputs (blue dots) and 1000 Monte Carlo 
simulations (boxplots) during 1950–2050 in the six major basins based on the 
MME of seven high-resolution climate models from CMIP6-HighResMIP. The 
linear regression models between TC frequency and TC cluster frequency/

duration are shown as red lines, with 95% confidence intervals shaded based 
on the two tailed Student’s t-test. The function, R-squared (R2), and p-value of 
the models are presented at the upper left. g–l, Same as in a–f but for TC cluster 
duration. In each boxplot, the box spans from the first quartile to the third 
quartile of the data, with a line marking the median. The whiskers extend from 
the box by 1.2× the interquartile range.
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Extended Data Fig. 5 | Quantifying contributions of TC climatology changes to 
TC cluster changes focusing on long-lived TCs (lasting ≥ 2days). a, b, Observed 
TC cluster frequency change (yellow histogram) and the changes simulated by 
probabilistic modeling (boxplots) between 1979–2001 and 2002–2024 (the latter 
minus the former) in the NA (a) and WNP (b). The contributions from changes 
in TC climatology (‘All’) and individual parameters (‘Fre.’ for TC frequency, ‘Life.’ 
for TC lifespan, ‘Time.’ for TC genesis time, and ‘L + T’ for the combinations of 
TC lifespan and genesis time) are simulated by varying the given parameter(s) 

while keeping the other(s) fixed (Methods). The boxplots show the averages of 
every 1000 Monte Carlo simulations (in total, 100 averages). The box spans from 
the first quartile to the third quartile of the data, with a line marking the median. 
The whiskers represent the range from the 5th to the 95th percentile of the data. 
Asterisks indicate that the mean value is significantly different from zero at the 
95% confidence level based on the 1000-sample bootstrapping. c, d, Same as in a, 
b but for TC cluster duration with periods between 1979–2001 and 2002–2024.
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Extended Data Fig. 6 | Patterns of SST changes in observations and climate 
models. a, b, Differences in SAT (K) between 1981–2010 and 2020–2049 based 
on the MME of the highresSST-present and highresSST-future simulations from 
CMIP6-HighResMIP. We subtract the tropical mean changes (20°S-20°N) to 
eliminate the signal of uniform warming. c, d, Differences in SST (K) between 

1979–2001 and 2002–2024 in observations. Averages of changes are shown for 
TC peak seasons in each basin (that is, JAS for the NA and JASO for the WNP). Dots 
indicate statistically significant differences at a 95% confidence interval based 
on the 1000-sample bootstrapping and false discovery rate test. Basemaps from 
Natural Earth (https://www.naturalearthdata.com).
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Extended Data Fig. 7 | Patterns of SST that favorable for TC genesis in the NA 
and WNP. a, b, Linear regression coefficients (K) between TC frequency in the NA 
(a) and WNP (b; multiplied by −1) with global SST during 1979–2024. The SST are 
analyzed for TC peak seasons in each basin, indicative of concurrent influences 
(that is, JAS for the NA and JASO for the WNP). Dots indicate statistically 

significant differences at a 95% confidence interval based on the 1000-sample 
bootstrapping and false discovery rate test. The data are not detrended to 
include the possible influences from recent global warming. Basemaps from 
Natural Earth (https://www.naturalearthdata.com).
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Extended Data Fig. 8 | TC cluster responses to different warming patterns in 
HIRAM experiments. a, b, Differences in TC cluster frequency (a) and duration 
(b) over the NA (red bars) and WNP (blue bars) between simulations forced 
with a La Niña–like global warming pattern (blue shading) and an El Niño–like 

global warming pattern (red shading) compared to the CTRL simulation. The 
error bars represent the 95% confidence interval, calculated using 1000-sample 
bootstrapping. The black dots denote the average value of the differences.
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