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Integrated genomic and transcriptomic profiling of
glioblastoma reveals ecDNA-driven heterogeneity
and microenvironmental reprogramming
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In brief

Tang et al. provide a comprehensive
genomic and transcriptomic
characterization of extrachromosomal
DNA (ecDNA) in glioblastoma. They reveal
that EGFR ecDNA shapes transcriptional
subtypes and reprograms the tumor
microenvironment by stabilizing
metabolically active tumor-associated
macrophages. These findings uncover
mechanistic links between ecDNA
architecture and glioblastoma
progression, highlighting potential
therapeutic vulnerabilities.
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SUMMARY

Glioblastoma (GB) is an aggressive brain tumor with limited treatment options, making it crucial to integrate
genomic and transcriptomic profiling to identify genetic alterations and cellular functional states. We perform
short- and long-read whole-genome sequencing (WGS) and single-nucleus RNA sequencing on 42 Chinese
GB patients to characterize the intra- and extrachromosomal mutation landscape, cell-type composition, and
pathway activity. Our analysis identifies amplified oncogenes, including EGFR, MYC, CDK4, PDGFRA, and
PPARGC1A, localized on extrachromosomal DNA (ecDNA). Notably, EGFR ecDNA harbors distinct struc-
tures that correlate with patient survival and exhibit a unique DNA methylation pattern that influences
gene expression, driving malignant cell differentiation toward MES-like and AC-like subtypes. Specifically,
EGFR ecDNA stabilizes tumor-associated macrophages in a hypoxia- and metabolism-driven state, reinforc-
ing a reciprocal AREG-EGFR signaling loop with mesenchymal-like tumor cells. Together, these findings
uncover a mechanistic link between ecDNA architecture, transcriptional subtypes, and microenvironmental

remodeling, offering critical insights for advancing precision oncology in GB.

INTRODUCTION

Glioblastoma (GB) is the most common adult malignant brain tu-
mor, and its prognosis remains poor, with an annual diagnosis of
80-100 cases in Hong Kong." Molecular diagnosis involves the
evaluation of isocitrate dehydrogenase (IDH) mutation, methyl-
guanine methyltransferase promoter methylation (pMGMT),
ATRX chromatin remodeler loss (ATRX LOF), telomerase reverse
transcriptase (TERT) promoter mutation, gain in chromosome 7
and loss of chromosome 10 (Chr7+/Chr10-), epidermal growth
factor receptor (EGFR) amplification, and cyclin-dependent ki-
nase inhibitor 2A (CDKN2A) deletion.” Despite these measures,
the prognosis remains poor, with a median overall survival (OS)
of approximately 10.6 months." This dismal outcome is largely
attributable to the complex genomic landscape and transcrip-
tomic heterogeneity of GB, which contribute to resistance to
standard therapies. In this study, we identified a cohort of Chi-
nese patients with histologically and molecularly confirmed

IDH-wild-type GB, and we comprehensively characterized the
genomes and transcriptomes of these tumors by short- and
long-read sequencing.

Recent developments in whole-genome sequencing (WGS)
have been crucial for understanding the molecular underpin-
nings of GB.> WGS has provided detailed insights into the
genetic features of GB, which have been instrumental in under-
standing the prognostic biomarkers and mechanisms of treat-
ment resistance, including a consortium of alterations leading
to poor prognosis.*

Extrachromosomal DNA (ecDNA) has garnered increasing
attention as a key driver of tumor heterogeneity and therapeutic
resistance in various cancer types.® Previous studies have linked
circular ecDNA to poor prognosis due to its capacity to amplify
oncogenes and undergo rapid evolution in response to treat-
ment.” Cytogenetic or imaging techniques such as DNA fluores-
cence in situ hybridization (FISH) and optical mapping are
employed to visualize ecDNA within cells; however, they rely
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on identifying specific target sequences and present challenges
in manipulating metaphase in clinical samples. Conversely, WGS
facilitates impartial identification of ecDNA, copy number varia-
tions (CNVs), structural variants (SVs), single nucleotide variants
(SNVs), and pan-genomic markers such as tumor mutational
burden (TMB) and homologous recombination deficiency
(HRD).* This comprehensive methodology enables the charac-
terization of intricate amplicons, thereby aiding in recognizing
potential mutually exclusive and co-occurring driver events
and bolstering the rationale for combination therapies. More-
over, long-read WGS using nanopore technology not only en-
ables accurate detection of large and complex structural
rearrangements but also provides information on epigenetic fea-
tures, specifically DNA methylation, which allows a detailed ex-
amination of methylation patterns on ecDNA.

Although clinical factors such as age, extent of resection, and
genetic factors such as IDH mutations and MGMT promoter
methylation status are well-established predictors of patient
overall survival, transcriptome profiling provides additional valu-
able information by reflecting the gene expression patterns and
the functional state of different cell populations. EGFR amplifica-
tion is a hallmark of GB, yet its role in shaping the malignant cell
subtype and tumor microenvironment (TME), particularly im-
mune and stromal populations, is less well characterized.
Tumor-associated macrophages (TAMs) constitute a major
component of the GB microenvironment and have been impli-
cated in promoting tumor growth, immune evasion, and resis-
tance to therapy. However, the molecular mechanisms by which
ecDNA influences TAM immune-suppressive functions remain
unclear. Understanding how EGFR-driven tumors reshape the
TME and establish reciprocal signaling loops with immune cells
is critical for developing targeted therapies that disrupt tumor-
supportive crosstalk and enhance anti-tumor immunity.

To address the current knowledge gap, we conducted our
study under the precision health theme of the Hong Kong
Genome Project (HKGP), a large-scale genome project in
Hong Kong supported by the Health Bureau of the Hong Kong
SAR Government,® to provide a detailed multi-omic view of his-
tologically and molecularly confirmed IDH-wildtype GB. We
characterized the single-cell populations within GB tumors
and identified complex amplicons, and other genetic alterations
in GB. Moreover, we highlighted the distinct molecular tumor
subtypes and TAM remodeling processes driven by ecDNA.
The identified ecDNAs provide valuable insights into the biology
of GB and uncover ecDNA vulnerabilities as potential therapeu-
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tic avenues for GB treatment. We thus provide a valuable
resource for uncovering the mechanisms of ecDNA-driven
tumorigenesis and identifying therapeutic targets against this
aggressive disease for which limited effective treatments
currently exist.

RESULTS

MES-like tumor cells identified by single-nucleus
transcriptomics predict poor clinical outcomes

A total of 42 patients with histologically confirmed GB were re-
cruited between March 2021 and July 2022. All 42 patients are
IDH1 wild type. Of these, 26 patients were male (61.9%; median
age 63 years) and 16 were female (38.1%, median age 55.5
years). The cohort comprised 34 primary and 8 recurrent cases.
The median OS was 14.79 months (95% confidence interval [Cl]:
8.16-21.41 months). Detailed clinical information is presented in
Table S1.

To systematically characterize the cellular heterogeneity and
TME of GB, we performed small nuclear RNA sequencing
(snRNA-seq) on fresh frozen specimens from 40 patients.
Following stringent filtering, we obtained 310,299 cells, with a
median of 3,505 genes detected per cell. Dimensionality reduc-
tion using uniform manifold approximation and projection
(UMAP) revealed seven major cell clusters: malignant cells, oli-
godendrocytes, neurons, TAMs, endothelial cells, pericytes,
and lymphocytes (Figure 1A). To improve the accuracy and
robustness of cell type annotation, we mapped our dataset
onto GBMap,® a well-curated GBM reference atlas comprising
over 1.1 million single cells (Figure 1B). The results from this
reference-based mapping were highly concordant with our un-
supervised clustering (Figure 1C). Among malignant cells, we
identified four canonical transcriptional states: astrocyte-like
(AC-like), neural precursor cell-like (NPC-like), oligodendrocyte
precursor cell-like (OPC-like), and mesenchymal-like (MES-
like) states (Figures 1C and 1D). AC-like and MES-like cells
were the most prevalent, together accounting for approximately
50% of all malignant cells. AC-like cells were marked by high
expression of astrocytic markers (e.g., SLC4A4, PCAT1), while
MES-like cells expressed mesenchymal and angiogenic genes
such as NAMPT, VEGFA, and CHI3L1 (Figure 1D).

Recognizing the value of pathway-based classification frame-
works in understanding GB cellular states,'® we next sought to
dissect the functional programs underlying different transcrip-
tional states. InferCNV analysis confirming that cells annotated

Figure 1. MES-like tumor cells identified by single-nucleus transcriptomics predict poor clinical outcomes

A) UMAP projection of 310,299 single cells isolated from 40 in-house GBM tumor tissues, colored by de novo graph-based clustering and inferred cell types.
B) UMAP projection of the same 310,299 single cells, colored by predicted cell types based on reference-mapping to the GBMap dataset.

C) Sankey plot illustrating the relationship between graph-based cell clusters and reference-mapping-based cell clusters in the snRNA-seq dataset.

E) Heatmap of Jaccard similarity depicting robust NMF programs in all malignant cells and their clustering into eight metaprograms.
F) Violin plots displaying the distribution of metaprogram signature scores across the four malignant cell types.
G) Dot plot showing the feature scores of four pathway-defined subtypes (PPR, NEU, MTC, GPM) across all malignant cells in the snRNA-seq dataset.
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(D) Dot plot showing three canonical markers among the top differentially expressed genes across clusters in the snRNA-seq dataset.
(
(
(
(

H) Kaplan-Meier curves depicting overall survival in the CGGA glioma bulk RNA-seq dataset, stratified by high (n = 170) and low (n = 67) marker scores based on
gene TPM. The cut-off point was determined by maximizing the difference between the true positive rate (TPR) and false positive rate (FPR).

(I) Kaplan-Meier survival analysis according to the proportion of MES-like malignant cells in the CGGA bulk RNA-seq dataset, with the median used as the cut-off
for stratification. Statistical significance was calculated using a log-rank test in (H and ).

See also Figure S1.
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as AC-, MES-, OPC-, or NPC-like malignant cells had significantly
higher CNV scores than non-malignant cells (Figures S1A and
S1B). We then applied GeneNMF,"" an NMF approach optimized
for single-cell data to identify robust, shared transcriptional pro-
grams across patients. This method decomposes the gene
expression matrix into eight co-activated metaprograms (MPs),
each representing a distinct set of co-expressed genes associ-
ated with specific biological pathways (Figure 1E; Table S2). Clus-
tering and embedding cells based on metaprogram activity re-
vealed clear segregation of malignant states, with each cell type
occupying a distinct region in metaprogram-based UMAP space
(Figure S1C). This suggests that the major GB cell states are
defined not only by transcriptomic differences but also by distinct
underlying biological programs. Metaprogram analysis revealed
that OPC-like cells primarily activated MP1 and MP4, associated
with cell cycle and proliferation pathways (Figures 1F, S1D, and
S1E). MES-like cells were enriched for MP5 and MP8, highlighting
processes such as epithelial-mesenchymal transition (EMT), hyp-
oxia, and glycolysis, hallmarks of a metabolically reprogrammed,
invasive tumor phenotype. NPC-like cells exhibited high activity in
MP2 and MP6, reflecting oxidative phosphorylation and synaptic
signaling, while AC-like cells activated MP3 and MP7, which were
associated with inflammatory signaling, including interleukin-6
(IL-6)-Janus kinase (JAK)-signal transducer and activator of tran-
scription (STAT) pathway (Figures 1F, S1D, and S1E).

To assess concordance with established pathway-based
GBM subtypes, we scored each malignant cell using gene signa-
tures defined by Garofano et al.'’: proliferative/progenitor (PPR),
neuronal (NEU), mitochondrial (MTC), and glycolytic/plurimeta-
bolic (GPM) (Figure 1G). MES-like cells had the highest GPM
scores, consistent with the hypoxia/glycolysis-enriched meta-
programs identified via GeneNMF. NPC-like cells exhibited the
highest NEU scores, consistent with the synaptic signaling iden-
tified in MP8, reaffirming their neurodevelopmental origin. OPC-
like cells were most enriched for the PPR signature, reflecting
their proliferative characteristics and correspondence with the
MP1/MP4 proliferation modules. Together, this dual-layered
classification offers a more biologically grounded understanding
of GB heterogeneity.

Toinvestigate the clinical relevance of the malignant cell states
identified, we assessed the association between their marker
genes and OS in GB patients using bulk RNA-seq data from
the Chinese Glioma Genome Atlas (CGGA; n = 237)."° Notably,
marker genes specific to MES-like malignant cells were signifi-
cantly associated with poor OS (p < 0.05; Figure 1H). Next, we
constructed a GBM-specific reference matrix based on the sin-
gle-nucleus gene expression profiles of each major cell type
identified in our dataset (Figure 1B). Using this reference, we
applied the CIBERSORTX deconvolution algorithm'® to infer
the cellular composition of bulk CGGA tumors, including both
malignant and immune cell populations. This analysis confirmed
that a higher proportion of MES-like tumor cells was significantly
associated with worse patient survival (p < 0.05; Figure 11). To
validate these findings with an orthogonal approach, we applied
BayesPrism,'* a probabilistic deconvolution framework to pre-
dict cellular composition from bulk RNA-seq data. BayesPrism
independently confirmed the association between MES-like
cell states and adverse survival outcomes in the CGGA cohort
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(Figure S1F). Notably, even within our relatively small patient
cohort, we observed that tumors classified as MES- or AC-like
subtypes following gross total resection (GTR) exhibited signifi-
cantly poorer survival than GTR-treated tumors dominated by
the proneural subtype (o = 0.02; Figure S1G). To further elucidate
the molecular subtypes of each patient and assess their risk, we
calculated the proportion of each malignant cell subtype per pa-
tient (Figure S1H). Notably, six out of eight recurrent samples
were dominated by MES-like tumor cell populations, which
exhibited the highest enrichment for the GPM signature
(Figure S1l). These findings reinforce the notion that MES-like
states are not only enriched in recurrent GB but are also associ-
ated with poor clinical outcomes, which provides critical insights
into patient prognosis and highlights the need for tailored thera-
peutic strategies for patients with MES subtypes.

Short- and long-read sequencing uncovers diverse
oncogene-carrying ecDNA architectures

We aimed to explore the role of genetic aberrations in fostering
transcriptional heterogeneity. To this end, short-read WGS was
conducted with tumor and matched germline DNA samples
from 42 GB patients, among which 31 pairs of samples with tu-
mor contents greater than 30% were used for downstream anal-
ysis. The sequencing results revealed an average sequencing
depth of 132.22x for tumor samples and 34.84x for matched
germline samples (Table S3). Additionally, long-read WGS anal-
ysis was performed on 32 tumors, providing a median read
coverage of 98.80x (read length N50 = 10-20 kbp), to obtain
the tumor methylation profile and validate the complex rear-
rangements identified by short-read WGS.

Given the potentially important implication of ecDNA in GB,
we examined the presence of ecDNA and its role in regulating
tumor differentiation and evolution at the transcriptional
level. AmpliconArchitect (AA)'° was applied to the short-read
WGS data to identify the highly amplified regions (copy number
[CN] > 4, region size > 10 kbp) and reconstruct the amplicons in
each sample. The inferred breakpoints that formed the amplicon
structure and the genes involved in ecDNA for each patient were
summarized in Table S4. In summary, ecDNA was detected in 14
of 31 (45.16%) GB tumors, predominantly as circular (Figures 2A
and 2B), with one sample BT019357 carrying MYCN ecDNA
shown as linear structure, consistent with previous observations
from the PCAWG-glioblastoma study.

To validate the complex architecture of these amplicons,
particularly those containing multiple segments, we leveraged
ONT long-read sequencing data. ONT’s longer reads are better
suited to map complex structural variants and resolve rear-
ranged or duplicated regions. We employed two approaches
for ecDNA characterization using long-read sequencing data: a
reference-mapping-based algorithm named CoRAL, '® to recon-
struct heterogeneous ecDNA structures, which is capable of dis-
tinguishing between cyclic and linear architectures; and a
de novo assembly approach, Flye,'”'® to resolve complex am-
plicons. Results from long-read WGS demonstrated strong
concordance with short-read WGS-based predictions in all but
one sample. For sample BT019342, inferred to harbor a circular
FGFR3-TACC3 amplified amplicon by short-read data, long-
read data instead revealed a linear conformation (Figures S2A
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and S2B). The false positive in AA predictions is likely due to a
tandem duplication involving TACC3 and FGFR3 (Figure S2C),
causing low copy number gains, which are frequently observed
in GB. These findings highlight the enhanced accuracy of long-
read methods in distinguishing between circular and linear
DNA structures, which are often challenging to differentiate us-
ing short-read data alone.

Using short-read WGS, we identified ten oncogenes amplified
on ecDNA across the cohort (Figure 2C). Among these, PDGFRA
(Platelet-Derived Growth Factor Receptor Alpha) was amplified
on ecDNA in patient BT019336, as detected by AmpliconArchi-
tect (Figure 2D). The circular structure of this ecDNA was vali-
dated through CoRAL analysis of long-read data (Figure 2E)
and reconstructed using de novo assembly (Figure 2F). Both
short- and long-read data revealed that CHIC2 has a lower
copy number compared to adjacent regions. Long-read data
further revealed two forms of amplicon structures: CHIC2 is ab-
sent in amplicon 1 (cycle 1) but present in amplicon 2 (path 2),
suggesting structural heterogeneity (Figure 2E). This patient ex-
hibited significantly higher expression levels of PDGFRA
(Figure 2G). Furthermore, single-nucleus RNA profiling revealed
clustering toward the pro-neural subtype for cells harboring
PDGFRA ecDNA (Figures 2H, S2D, and S2E), underscoring the
role of PDGFRA ecDNA in driving the differentiation of the pro-
neural subtype of malignant cells.

In addition, we identified an enrichment of PPARGC1A ecDNA
in patient BT016754 using both short-read and long-read data
(Figures 2I-2K), with correspondingly elevated PPARGC1A
expression in this patient (Figure S2F). PPARGC1A encodes
PPARG Coactivator 1 alpha (PGC1a), a transcriptional coactivator
that interacts with transcription factors (TFs) such as PPARy/
PPARa and plays a pivotal role in regulating cellular metabolic
pathways such as mitochondrial biogenesis, oxidative phosphor-
ylation, and lipid metabolism.'® Abnormal PGC1a expression en-
hances tumor metabolic flexibility, and its suppression has been
shown to re-sensitize therapeutic-resistant cancer cells to treat-
ment.”® In this patient, the tumor was predominantly composed
of AC-like malignant cells (Figures S2G and S2H). We further
analyzed the signature scores for individual patients and found

Cell Reports

that patient BT016754 exhibited significantly higher signature
scores for PPARy and PPARa target genes, as well as cellular
metabolic pathways compared to other samples (Figure 2L).
Moreover, scoring based on PPR, NEU, MTC, and GPM subtypes
revealed strong enrichment for both PPR and MTC signatures in
this patient (Figure 2M). These findings suggest that ecDNA-medi-
ated PPARGC1A amplification may drive increased metabolic ac-
tivity, providing a potential rationale for therapeutic strategies tar-
geting dysregulated metabolic pathways.

Two other amplicons were identified in this cohort. Patient
BT016755 harbored ecDNA containing both PVT1 (Pvt1 onco-
gene) and MYC (MYC proto-oncogene) (Figures S3A-S3C),
resulting in markedly elevated expression of both genes
(Figure S3D). The promoter of the long non-coding RNA PVT1
has been shown to drive the potent expression of MYC through
enhancer hijacking when both are present on ecDNA, forming
a regulatory hub through interaction with the bromodomain
and extra-terminal (BET) protein BRD4. This could be a
potential genomic target for BET inhibitors, such as JQ1, which
preferentially suppresses transcription of ecDNA-derived onco-
genes.”"?? In addition, we identified ecDNA co-amplifying CDK4
(Cyclin-Dependent Kinase 4) and MDM2 (MDM2 proto-onco-
gene) in patient BT019331 (Figures SSE-S3H). CDK4 regulates
cell cycle progression, while MDM2 negatively regulates the
tumor suppressor p53, highlighting ecDNA as a platform for
co-amplifying key oncogenic drivers in GB.

Complex EGFR-ecDNA structures predict poor clinical
outcomes

Notably, EGFR and its neighboring genes, such as SEC61G
(SEC61 Translocon Subunit Gamma) were the most frequently
amplified genes on ecDNA, identified in 11 out of 31 cases in
our cohort (Figure 2C). Most EGFR amplicons originated exclu-
sively from chromosome 7 (8 out of 11; Figures 3B and S4A),
while some exhibited complex interchromosomal structures,
such as an amplicon spanning both chromosomes 5 and 7 in pa-
tient BT019337 (3 out of 11; Figure S4D). Long-read sequencing
provided critical insights into the proportion and distribution of
various EGFR ecDNA structures within individual samples. We

Figure 2. Short- and long-read sequencing uncovers diverse oncogene-carrying ecDNA architectures
(A) Pie chart showing the distribution of different amplicon types across the patient cohort, categorized as circular, heavily rearranged, linear, or with no amplicon

detected.

(B) Amplicon copy counts detected by short-read sequencing for each patient, colored by amplicon categories. Only patients with detectable amplicons are

shown.
(C) Top frequently amplified genes detected in ecDNA.

(D and I) Two representative ecDNA amplicons involving PDGFRA and PPARGC1A genes, detected in two distinct patients (upper). Read depth from long-read
sequencing of the corresponding genomic regions (lower). The segmentation is based on coverage and copy number estimates. Horizontal black lines represent
segments, with their vertical positions corresponding to estimated copy number. Red arcs indicate orientation-discordant read pairs (e.g., forward-reverse),
which suggest deletion-like rearrangements.

(E and J) PDGFRA and PPARGC1A circular amplicons reconstructed by long-read sequencing. “Cycle” refers to circular DNA structures reconstructed from
long-read sequencing data, in which genomic segments form a closed loop. “Path” denotes linear arrangements of genomic segments that may represent either
linear amplicons or fragmented ecDNAs. Solid blocks indicate genomic segments, while connecting lines or arcs represent structural rearrangements between
them. CN denotes the estimated copy number of the genomic segments.

(F and K) De novo assembly graphs from long-read sequencing illustrating the positions of amplified genes within the cyclic ecDNA structures.

(G) Dot plots illustrating differential levels of amplified genes PDGFRA and PPARGC1A in ecDNA. See also Figures S2 and S3.

(H) UMAP of patient BT019336 showing cell clustering toward pro-neuron-like cell types.

(L) Dot plot scoring gene expression for PPARy and PPAR« target genes, as well as three key metabolic pathways in each patient.

(M) Dot plot showing the feature scores of the four pathway-defined subtypes specifically in the patient harboring PPARGC1A ecDNA.
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present molecular profiles of two patients here (Figures 3A and
3D): patient BT019328 was dominated by a single type of circular
EGFR ecDNA structure, as demonstrated by CoRAL analysis
(Figure 3B). This finding was corroborated by de novo assembly,
which also revealed a clear circular structure (Figure 3C). In
contrast, other samples, such as BT019355 (Figure 3E), dis-
played highly complex rearrangements, as revealed by de
novo assembly (Figure 3F). Structure disentangling with long-
read data uncovered multiple types of EGFR ecDNA structures
within the same sample (Figure 3G). Additional amplicon profiles
illustrating the dominance (Figures S4B and S4C) and co-exis-
tence (Figures S4D-S4l) of EGFR ecDNA structures are shown
in Figure S4 and Table S5.

This observation prompted us to explore whether the pres-
ence of multiple EGFR ecDNA structure types reflect greater
chromosomal dysregulation and its potential association with
clinical outcomes. Although our sample size was limited, we
found that patients whose tumors harbored multiple co-existing
EGFR ecDNA structures experienced poor survival outcomes
compared to those with a single dominant ecDNA type or very
low copy numbers, which showed survival outcomes similar to
patients without EGFR ecDNA (p = 0.065, Figure 3H). These find-
ings emphasize the prognostic importance of ecDNA complexity
and the need to differentiate EGFR ecDNA structures when as-
sessing patient prognosis.

EGFR ecDNA co-occurs with EGFRVIII and is associated
with low homologous recombination deficiency scores
We next explored whether intrachromosomal genetic alterations
are associated with extrachromosomal genomic events. Inter-
estingly, EGFR mutations, including SNVs and the EGFRuvIIl
variant, were more frequently observed in EGFR ecDNA-positive
tumors, with EGFRVIII almost exclusively found in EGFR ecDNA-
positive tumors. This supports the notion that EGFRvIII-bearing
ecDNA structures may confer a selective advantage under ther-
apeutic pressure (Figure 4A).

Chromosomal arm-level alterations, such as the gain of chro-
mosome 7 (n = 17) and loss of chromosome 10 (n = 18), were
frequently observed in our cohort (Figure S5A). Overexpression
and downregulation of multiple genes on chromosomes 7 and
10 were confirmed through InferCNV analysis of the snRNA-
seq data (Figure S5B). Using the GISTIC2?® algorithm to identify
recurrent sites of DNA copy number alterations in 31 samples, 46
amplification peaks and 37 deletion peaks were identified (false
discovery rate [FDR] < 0.25) (Figure S5D; Table S6). The most
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common amplification events were at 7p11.2 (EGFR), 12q14.1
(CDK4), and 4912 (PDGFRA), which was consistent with the
presence of ecDNA. Patients with ecDNA exhibit markedly
elevated copy numbers of gene segments enriched in ecDNA,
with 7p11.2 (EGFR) ranging from 22 to 166, 12913.3—q14.1
(CDK4-MDM?2) at 30, 4p15.2 (PPARGC1A) at 27, and 4q12
(PDGFRA) at 13.

HRD and aneuploidy are both known to propagate genomic
instability by failing to repair DNA breaks and disrupting normal
cell cycle regulation, leading to mutation accumulation and
fostering tumor evolution.?*?® In this cohort, 4 out of 31 samples
exhibited genome-wide aneuploidy, with estimated ploidy
ranging from 3.39 to 6.71 (Figure S5C; Table S7), and frequent
focal deletions at 9p21.3 (CDKN2A/B) and 10923.31 (PTEN)
(Figure S5D).

Since DNA damage repair (DDR) pathway plays an important
role in preserving human genomic stability, we further explored
how the copy number alterations affect genes involved in the
DDR pathway, such as ATM, BRCA1, BRCA2, and CHEK2. We
analyzed the number of affected DDR genes in each patient us-
ing a comprehensive gene list containing 280 DDR genes from a
previous study (Figure S5E).?® Expression changes were then
examined based on each patient’s specific set of deleted DDR
genes (Table S8). We found that gene expression levels were
strongly associated with CNV deletions, with each patient
consistently showing markedly reduced expression of the DDR
genes affected by copy number loss. In most cases, the deleted
genes ranked among the lowest expressed DDR genes within
that patient, supporting a direct link between genomic deletion
and transcriptional downregulation (Figure S5F). Patients with
deletions affecting a higher number of DDR genes showed a
higher HRD score, as determined by the loss of heterozygosity,
telomeric-allelic imbalance, and large-scale state transition
scores (Figure S5G; Table S9). Interestingly, we observed an in-
verse association between ecDNA presence and HRD score,
suggesting that ecDNA maintenance may be favored in genomi-
cally stable backgrounds. Furthermore, patients with tumors
dominated by a single type of EGFR ecDNA exhibited the lowest
HRD scores compared to those with multiple co-existing EGFR
ecDNA structures (p < 0.05; Figure 4B).

Genome-wide mutational signature analysis revealed nine
distinct single-base substitutions (SBSs) and four small inser-
tion-and-deletion (ID) signatures (Figures 4C and 4D). The
most prevalent signature was SBS5, which was typically linked
to the aging process (Figure 4C). In comparison to COSMICv3.4,

Figure 3. Complex EGFR-ecDNA structures predict poor clinical outcomes

(A and D) Representative Circos plots displaying the genome-wide mutational landscape of BT019328 (A) and BT019355 (D). From the outermost to innermost
circles: somatic exonic SNVs, copy number gains (red), loss of heterozygosity (gray), copy number losses (green), copy number changes represented as his-
tograms, and structural variants in the central line.

(B and E) The SV view of breakpoints and reconstructed amplicon structures of ecDNA amplicons involving EGFR in BT019328 and BT019355 by CoRAL. Arcs
represent discordant read pair clusters, colored by orientation: red, deletion-like (length-discordant in expected orientation); brown: duplication-like (everted read
pairs); teal, left inversion-like; magenta, right inversion-like. The thickness of each arc qualitatively reflects the amount of supporting paired-end reads.

(C and F) De novo assembly graphs from long-read sequencing illustrating the positions of amplified genes within the ecDNA structures.

(G) Reconstructed cyclic ecDNA structure in BT019355 by CoRAL.

(H) Kaplan-Meier survival curves stratified by patients with or without multiple ecDNA structures versus those with a single dominant ecDNA structure. The
numbers at risk table indicates how many patients in each classification group (co-exist, dominant, and neg) remained at risk of the death event at specific time
points (0, 20, 50, 75, and 100 months). Statistical significance was calculated using a log-rank test.

See also Figure S4.
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an unreported ID signature (ID83C) was observed, featuring 1 bp
deletions and >5 bp insertions at repeats (Figure 4D). ID83C was
strongly associated with SBS5, suggesting its potential rele-
vance in aging (p < 0.05; Figure 4E). SBS8, which has been sug-
gested to be related to late replication errors based on recent ev-
idence,”” was more frequent in primary cases than in recurrent
cases (Figure 4C). SBS11 associated with temozolomide (TMZ)
treatment was observed in one hypermutated recurrent tumor
sample from patient BT019346, who received 18 cycles of adju-
vant TMZ. Mutational signatures related to POLE mutations
(SBS10a, SBS10b, and SBS14) were detected in patient
BT019346, who harbored an oncogenic POLE S297Y somatic
mutation. Additionally, signatures associated with defective
DNA mismatch repair, including SBS15, ID1, and ID2, were
found in three cases (BT019344, BT019346, and BT019358), all
of which displayed MSH2 mutations (Figure 4D). Notably, two
patients (BT019344, BT019358) carried the germline pathogenic
variant MSH2 N486*. Both have a family history of colon cancer,
suggesting a potential link to cancer predisposition Lynch syn-
drome and indicating potential responsiveness to immuno-
therapy.”® Interestingly, tumors with MSH2/MSH6/POLE muta-
tions exhibiting mismatch repair deficiency signatures seldom
contain ecDNA, implying distinct mechanisms of tumor
evolution.

EGFR ecDNA is associated with hypomethylation region
and facilitates transformation to MES- and AC-like
tumor subtypes

To discern the epigenetic landscape in patients with and without
EGFR ecDNA, we analyzed DNA methylation profiles by assess-
ing 5mCpG signal from long-read WGS data. Interestingly,
an open chromatin region in intron 1 of EGFR, evidenced by hy-
pomethylated CpG sites, was consistently observed in all pa-
tients harboring EGFR ecDNA, but not in their counterparts
(Figures 5A-5C). While a significantly lower frequency of
5mCpG was observed in patients with EGFR ecDNA compared
to those without (p < 0.05), no significant differences were de-
tected between patients with coexistent or dominant EGFR
ecDNA (Figure 5B). Leveraging a public single-cell assay for
transposase accessible chromatin using sequencing (sSCATAC-
seq) dataset from GB patients,?® we observed pronounced dif-
ferences in ATAC-seq signal across the EGFR locus when strat-
ifying patients by EGFR copy number, using a threshold of six
copies (Figure 5C). Additionally, this hypomethylated region
not only overlaps with ATAC-seq peaks but also with H3K27ac
enrichment signal from another GB cohort,*® suggesting its
role as an accessible cis-regulatory element that may drive tran-
scriptional activation of EGFR (Figure 5C). Consistently, snRNA-
seq data revealed significantly higher expression levels of EGFR
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and its neighboring gene SEC61G in patients with EGFR ecDNA
(Figure 5D). Notably, EGFR expression was the highest in AC-like
and MES-like cells (Figure S6A). Furthermore, analysis of the
TME revealed that patients with EGFR ecDNA exhibited tran-
scriptional profiles enriched for MES-like or AC-like signatures
or a combination of both compared to those without EGFR
ecDNA (Figures 5E and S6B). These findings suggest a potential
regulatory effect of EGFR ecDNA on determining the transcrip-
tome of the tumor cells.

To understand the transcriptional regulatory effect of EGFR
ecDNA, integrative analysis of EGFR ecDNA, methylation, and
gene expression were performed. First, we computed a high-
dimensional gene expression network using weighted correla-
tion network analysis (hdWGCNA) to identify modules of co-ex-
pressed genes in this GB dataset (Figure S6C). Next, these
modules were correlated with four traits: the presence of EGFR
ecDNA, the copy number of EGFR, methylation score of the pre-
viously identified region in EGFR intron 1, and EGFR expression
level. By quantifying the correlation among these traits and the
gene expression signatures derived from individual modules,
we identified three differentially expressed modules (Figures 5F
and S6D) that were positively correlated with EGFR ecDNA,
EGFR copy number, and EGFR expression while being nega-
tively correlated with the methylation level in EGFR intron 1:
module purple, magenta, and tan (Figure 5G).

Notably, Gene Ontology analysis revealed that the purple
module was associated with EMT, tumor necrosis factor alpha
(TNF-a) signaling via nuclear factor kB (NF-xB), and angiogen-
esis, and the magenta module was linked to an inflammatory
response (Figure 5H). Furthermore, the top hub genes within
the purple and magenta modules, which are highly connected
genes within each module, were found to be significantly corre-
lated with worse survival in patients from CGGA (p < 0.05;
Figure 5l). We next projected module signatures onto the
snRNA-seq dataset and observed significant enrichment of
the purple and magenta expression modules in MES-like and
AC-like cell lineages (Figure 5J). MES-like malignant cells from
EGFR ecDNA-positive patients exhibited the strongest activa-
tion of EMT and TNF-a signaling pathways compared to EGFR
ecDNA-negative patients (Figure 5K). Interestingly, although
the abundance of TAM-BDM (bone marrow-derived macro-
phages) and TAM-MG (microglia) did not differ significantly
between EGFR ecDNA-positive and -negative patients
(Figure S6B), marked transcriptomic differences were observed.
NF-kB signaling, a key downstream effector of TNF-«, regulates
the expression of various targets, including pro-inflammatory cy-
tokines, chemokines, and cell adhesion molecules. To evaluate
NF-xB pathway activity, we assessed the expression scores
based on 46 cytokine or chemokine markers and 11 cell

Figure 4. EGFR ecDNA co-occurs with EGFRVvIII and is associated with low homologous recombination deficiency scores

(A) Bar plot showing the proportion of EGFRVIII and other EGFR mutations among patients with or without EGFR ecDNA.

(B) Top: dot plot showing HRD score for each patient, colored by EGFR ecDNA status. Bottom: HRD score difference between multiple ecDNA structures versus
those with a single dominant ecDNA structure. Data are represented as mean + SD.

(C and D) Upper panels: Composition of SBS (C) and ID (D) mutational signatures in each patient. Lower panels: Stage (P-primary, R-recurrent), EGFR ecDNA

status and all ecDNA status of each patient.

(E) Correlation between SBS5 and ID83C mutational signatures. Statistical significance was calculated using the Wilcoxon rank-sum test in (B) and Spearman’s

correlation coefficient test in (E). *p < 0.05. See also Figure S5.
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adhesion molecule markers that are regulated by NF-xB in
different subtypes of myeloid lineage cells. Notably, NF-xB
signaling exhibited the highest activation in TAM-BDM from
EGFR ecDNA-positive patients compared to their EGFR
ecDNA-negative counterparts (Figure 5K). These findings under-
score the potential role of ecDNA-bearing tumors in shaping
the TME.

EGFR ecDNA reprograms TAM-BDM toward hypoxia/
MES differentiation and establishes reciprocal signaling
in positive tumors

To further elucidate the role of EGFR ecDNA in modulating the
TME, we focused on myeloid cell populations and categorized
them into five major subtypes: dendritic cells (DCs), monocytes,
TAM-BDM (anti-inflammatory), TAM-BDM (hypoxia/MES), and
TAM-microglia (MG) (Figure 6A). We then examined the cellular
dynamics of these myeloid populations between EGFR
ecDNA-positive versus -negative tumors. RNA velocity analysis
was performed to capture dynamic states of myeloid cells, fol-
lowed by random walk simulation modeling starting from mono-
cytes, which are known to serve as precursors for bone-marrow-
derived macrophages. Notably, in EGFR ecDNA-negative
tumors, terminal cell states were distributed across multiple
myeloid subtypes, whereas in EGFR ecDNA-positive patients,
terminal cells were predominantly enriched in the TAM-BDM
(hypoxia/MES) population, suggesting a lineage bias toward sta-
bly differentiated cells (Figure 6B).

To further resolve these dynamic transitions, we applied
CellRank2®" to infer macrostates, defined as clusters of cells ex-
hibiting similar differentiation trajectories. Macrostates were
identified using Schur decomposition of the transition matrix
and classified as initial, intermediate, or terminal states based
on transition probabilities, with the state with highest incoming
transition probabilities automatically assigned as the terminal
state. Visualization of fate probabilities per terminal state re-
vealed that monocytes predominantly occupied the naive state,
positioned centrally within the transition circle (Figure 6C). Cells
from EGFR ecDNA-negative tumors exhibited a heterogeneous
transition profile with four distinct terminal macrostates: TAM-
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MG, TAM-BDM (anti-inflammatory 1 and 3), and TAM-BDM
(hypoxia/MES) (Figure 6C, left). In contrast, EGFR ecDNA-posi-
tive tumors displayed three terminal macrostates: TAM-BDM
(hypoxia/MES), TAM-BDM (anti-inflammatory), and TAM-MG
(Figure 6C, right). Importantly, in the EGFR ecDNA-positive
group, myeloid cells exhibited a higher long-term probability of
transitioning and residing in the TAM-BDM (hypoxia/MES) state,
as shown by a stationary distribution score of 0.86 (Figure 6E).
This was in stark contrast to the EGFR ecDNA-negative group,
which retained a more diverse transition potential across multi-
ple myeloid subtypes (Figure 6D).

Given the preferential differentiation and stabilization of TAM-
BDM (hypoxia/MES) cells in EGFR ecDNA-positive tumors, we
further investigated their transcriptional signatures. Notably,
this cell population displayed upregulation of metabolic path-
ways, including hypoxia signaling, mTORC1 activation, and
glycolysis, alongside TNF-a-NF-xB signaling as shown earlier
(Figures 5K and 6F). Additionally, this subset exhibited the high-
est scores when assessed with signatures from recently re-
ported detrimental myeloid cell populations, including early
myeloid-derived suppressor cells (E-MDSCs)** and tumor-asso-
ciated foam cells (TAFs)*® in GB, characterized by enhanced
metabolic and hypoxic activity, tumor-promoting properties,
and immunosuppressive effects (Figure 6G).

Latent time analysis further highlighted distinct transcriptional
dynamics in TAM-BDM (hypoxia/MES) cells from EGFR ecDNA-
positive tumors, marked by increased expression of NF-«kB-
regulated cytokines and chemokines, including ANGPTL4,
CXCL8, CCL20, CXCL2, IL1RN, CD44, FN1, IL-6, and IL-10
alongside differentiation trajectory (Figure 6H). These findings
suggest that EGFR ecDNA might reprogram TAM-BDM cells
toward an immunosuppressive state via NF-kB-driven transcrip-
tional activation.

To assess potential signaling interactions between TAM-
BDM (hypoxia/MES) cells and tumor cells, we applied
CellPhoneDB** and identified a selective enrichment of
AREG-EGFR signaling between TAM-BDM (hypoxia/MES) cells
and MES-like tumor cells in EGFR ecDNA-positive tumors
(p < 0.05). This signaling axis, which has been reported to

Figure 5. EGFR ecDNA characterization by integrated epigenome and transcriptome profiling

(A) Methylation profiles across the EGFR locus, ranging from the transcription start sites (TSS) to the transcription end sites (TES), in four GB patients. The arrow
highlights a peak indicating a differentially methylated region between patients with and without EGFR ecDNA.

(B) Dot plot illustrating the differential levels of 5-methylcytosine (5mCpG) between patients harboring EGFR ecDNA and those without.

(C) Top: representative 5SmCpG methylation profile of the region indicated in (E) from two patients. Middle: genome track of aggregated scATAC-seq data around
the EGFR locus, normalized by ReadsInTSS. The tracks are colored by EGFR copy number (CN < 6, 6 patients, red; CN > 38, 3 patients, dark blue). Differentially
enriched peaks (FDR < 0.000001 and log2FC > 8) in patients with EGFR amplification are highlighted by red lines below the track. Lower: genome track of
aggregated H3K27ac histone modification signals normalized to reads per million from 34 GB patients, spanning all exons and introns of EGFR.

(D) Dot plot showing the expression levels of EGFR and SEC61G across patients in the GB snRNA-seq dataset.

(E) Pie chart illustrating the cellular composition of AC-like, MES-like, NPC-like, and OPC-like cells in all malignant cells from each patient who was positive for
EGFR ecDNA.

(F) Differential co-expression analysis of module eigengenes reveals modules that are upregulated or downregulated in patients with or without EGFR ecDNA.
(G) UMAP visualization of three key gene expression modules (magenta, purple, and tan) that showed significant associations with the presence of EGFR ecDNA.
(H) Gene Ontology analysis of the top 100 genes enriched within the three identified gene expression modules.

(l) Kaplan-Meier survival curves stratified by the expression of the top 10 genes in each module, calculated based on gene TPM values in CGGA glioblastoma
patients. The cut-off is selected using the point that maximizes the difference between TPR and FPR.

(J) UMAP visualization of purple and magenta eigengene expression in the snRNA-seq dataset.

(K) Dot plot elucidating the expression activity of EMT (200 genes), TNF-a (200 genes), and NF-kB signaling (57 genes). Statistical significance was calculated
using a log-rank test in (1).

See also Figure S6.
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promote glioma invasion,®® was absent in EGFR ecDNA-nega-
tive tumors, suggesting a potential feedforward loop wherein
TAM-BDM (hypoxia/MES) cells reinforce mesenchymal tumor
states via EGFR activation (Figure 6l). Consistently, AREG
expression within TAM-BDM (hypoxia/MES) cells exhibited dy-
namic regulation along the differentiation trajectory, supporting
their role as a source of EGFR ligands (Figure 6J). Together,
these findings indicate that EGFR ecDNA not only skews
myeloid cell fate toward a hypoxia/metabolism-driven pheno-
type but also establishes a reciprocal signaling axis with
MES-like tumor cells via AREG-EGFR crosstalk, ultimately
fostering an aggressive and immunosuppressive TME.

DISCUSSION

This study presents a comprehensive exploration of the genomic
and transcriptomic landscape of GB. We elucidate the complex
structures of ecDNA through both short- and long-read
sequencing, uncovering a unique DNA methylation profile within
EGFR ecDNA. This methylation pattern and ecDNA are linked to
gene expression programs that drive cell differentiation into
specific transcriptomic subtypes, including MES-like and AC-
like tumor cells. Furthermore, our analysis uncovers a previously
unrecognized role of EGFR ecDNA in reprogramming the TME by
modulating TAM-BDM (hypoxia/MES) function through elevated
NF-kB-regulated cytokine and chemokine expression, high-
lighting a potential mechanism of ecDNA-driven tumor progres-
sion and immune evasion.

Leveraging the snRNA-seq dataset, we performed a detailed
characterization of GB cell states through gene- and pathway-
based clustering. Our results consistently identified MES-like
malignant cells as the subtype most strongly associated with
poor overall survival, as supported by both single-cell profiles
and deconvolution analysis of bulk RNA-seq data from the
CGGA cohort. By applying GeneNMF across multiple patients,
we identified metaprograms that reflect recurrent biological
pathways, highlighting core functional modules that define
distinct cellular states. MES-like cells were enriched for hallmark
processes including EMT, hypoxia, and glycolysis, which are
features of a metabolically reprogrammed, invasive tumor
phenotype. These cells also exhibited the highest GPM scores
as defined by Garofano et al.'® Notably, we observed a shift to-
ward reduced PPR and increased GPM states in recurrent tu-
mors, suggesting dynamic transcriptional reprogramming asso-
ciated with recurrence and therapeutic resistance.

Cell Reports

We identified an association between the EGFR ecDNA and
specific transcriptional subtypes. Gene expression modules
that significantly correlate with the presence of EGFR ecDNA,
hypomethylation in intron 1 of EGFR, and increased EGFR
copy number are highly expressed in MES- or AC-like malignant
cells. Moreover, our findings revealed a previously unrecognized
role of EGFR ecDNA in shaping the GB microenvironment by
driving a preferential transition of metabolically active TAM-
BDM (hypoxia/MES) and establishing a reciprocal signaling
loop with mesenchymal-like tumor cells. The observed transcrip-
tomic differences in TAMs between EGFR ecDNA-positive and
-negative patients provide insights into the immunoregulatory
role of ecDNA. TAM-BDM cells are known for their immunosup-
pressive role in promoting tumor progression.®*” Through fate-
mapping analyses, we observed that EGFR ecDNA-positive tu-
mors exhibit a distinct myeloid cell landscape, with TAM-BDM
(hypoxia/MES) cells emerging as the predominant terminal state.
These results suggest that EGFR ecDNA play a dual role in tumor
and immune modulation, not only driving tumor-intrinsic tran-
scriptional programs but also promoting an immunosuppressive
TME.

Interestingly, we observed that the presence of ecDNA is
nearly mutually exclusive of certain genetic alterations. ecDNA
is almost absent in tumors with a high number of DDR gene de-
letions, hypermutated tumors, and mismatch repair deficiency
(MMRd) tumors carrying mutations in MSH2/MSH6 and POLE.
This observation aligns with findings from a recent study, which
revealed an inverse correlation between ecDNA and hypermuta-
tion, with MMRd or DNA polymerase deficiency (POLD1/POLEd)
signatures being more negatively associated with ecDNA in hy-
permutated tumors.>® On the other hand, we observed a reverse
association between the presence of ecDNA and a high number
of DDR-related gene deletions. The biogenesis of ecDNA is
thought to be a follow-up event from double-strand breaks
(DSBs) in tumor cells but comparably rare in normal cells, poten-
tially arising from mechanisms like chromothripsis and
breakage-fusion-bridge (BFB) cycles.® Given the role of DSBs
in ecDNA formation, the DDR pathway may provide evidence
of ecDNA maintenance in tumor cells.®® This suggests that
DDR/MMR genes may play a role in conferring positive selection
preference over replication and progression stress during the tu-
mor cell cycle, potentially influencing ecDNA prevalence. For
instance, a functional DDR/MMR gene may allow ecDNA-con-
taining tumors to evade from cell cycle checkpoints and pro-
motes higher heterogeneity coupled with uneven segregation.

Figure 6. EGFR ecDNA reprograms TAM-BDM toward hypoxia/MES differentiation and establishes reciprocal signaling in positive tumors
(A) UMAP projection of myeloid cell subtypes, colored by graph-based clustering.
(B) UMAP visualization of the differentiation hierarchy of myeloid cells in EGFR ecDNA-negative and -positive patients. Black and yellow dots indicate the starting

and terminal cells of random walks, respectively.

(C) Circular projections of myeloid cells, depicting fate probabilities toward terminal macrostates. Cells biased toward a specific fate are positioned near the

corresponding corner, while naive cells are centered.

(D and E) Heatmap illustrating the classification of macrostates as either initial or terminal, with transitions visualized based on the macrostate-level transition
matrix. Macrostates with high diagonal values and strong stationary distribution are defined as stable terminal states.

(F) Gene set enrichment analysis (GSEA) highlighting pathways enriched in marker genes of the TAM-BDM (hypoxia/MES) population.

(G) Violin plot displaying the signature scores of E-MDSC (n = 33 genes) and TAF cells (n = 54 genes) across five myeloid cell subsets.

(H) Heatmap showing gene expression trends of NF-kB-regulated cytokines and chemokines, ordered by latent time.

(I) Dot plot depicting significantly enriched ligand-receptor interactions in the EGFR signaling pathway between EGFR ecDNA-negative and -positive groups.
(J) Trajectory-specific dynamics of AREG in EGFR ecDNA-negative and -positive groups, colored by terminal macrostates.
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Our findings revealed that ecDNA is almost absent in patients
with relatively higher HRD scores; this aligns with recent retro-
spective machine-learning studies in pan-cancer analyses,
which demonstrated the upregulation of DSB-related DDR
genes in ecDNA-positive samples.*? Additionally, these findings
are supported by evidence from other studies showing that inhi-
bition of DNA repair pathways using a DNA-PKCS inhibitor can
significantly reduce the frequency of ecDNA formation.*" Inter-
estingly, tumors classified as having a dominant ecDNA subtype
showed the lowest HRD scores, suggesting that a relatively
intact homologous recombination pathway may contribute to
their comparatively better survival outcomes.

The identification of PGC-1a amplification via ecDNA in our
dataset represents a rare but potentially significant event. While
PGC-1a overexpression has been linked to GB, its genomic
drivers remain unclear. A review of published datasets, including
the Genomics England cohort (n = 291),%® did not report PGC-1a
ecDNA events, though other rare ecDNA amplifications (e.g.,
MET, MYCN, PSIP1) were noted, highlighting the heterogeneous
nature of ecDNA in GB. In our case, the patient harbored PGC-1a
ecDNA and showed the highest enrichment for both PPR and
MTC pathway signatures, consistent with the gene’s known
role in mitochondrial biogenesis and oxidative phosphorylation.
Although this represents a single case, it points to a possible
ecDNA-driven mechanism of metabolic reprogramming in
GBM. Larger studies with integrated ecDNA profiling are needed
to determine whether PGC-1a amplification recurs in additional
patients.

While extensive genomic studies on GB exist, they primarily
focus on retrospective populations with The Cancer Genome
Atlas (TCGA) and International Cancer Genome Consortium
(ICGC). This study addresses this gap by providing a detailed
characterization of ecDNA and other complex genomic alter-
ations in a Hong Kong prospective patient cohort. Notably, pa-
tients with tumors enriched in MES-like, potentially driven by
NF1 mutations and EGFR ecDNA, exhibited worse survival out-
comes. Given that ecDNA is increasingly recognized as the
driver of therapy resistance, the data suggest a more carefully
selected targeted therapy approach and offer opportunities for
targeted therapy such as the S-phase checkpoint kinase CHK1
inhibitor, which has shown sensitivity toward ecDNA-amplified
tumor cells.*” These findings underscore the need for tailored
therapeutic approaches based on distinct molecular subtypes.

Limitations of the study

Our research revealed the role of ecDNA in driving tumor hetero-
geneity and reprogramming the TME. Nonetheless, several limi-
tations should be acknowledged. Experimental validation is
essential to establish the causal contribution of ecDNA to tumor
evolution and immune modulation. In vitro perturbation assays
and in vivo models that directly target ecDNA-associated vulner-
abilities will be critical to demonstrate the mechanistic link and
therapeutic relevance. Moreover, translating these insights into
actionable clinical strategies remains a major challenge. Future
studies incorporating molecular stratification and prospective
patient recruitment will be required to enable the application of
ecDNA biology toward improved patient management and treat-
ment outcomes in glioblastoma.
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publication page (https://gdc.cancer.gov/about-data/publications/TCGA-
ATAC-Seq-2024)>°

® This paper analyzes existing, publicly available ChlP-seq datasets of
H3K27Ac, accessible at GEO (GEO: GSE145646).%°

@ This paper analyzes existing, publicly available RNA-seq data, acces-
sible at the CGGA database (http://www.cgga.org.cn/).

® Raw sequencing data derived from human samples have been depos-
ited at the Hong Kong Genome Institute’s Synergistic Research Environ-
ment (SRE). In accordance with the data-sharing policy of the Hong
Kong Genome Project (HKGP), the raw sequencing data are made avail-
able to researchers upon request to the Hong Kong Genome Institute
(hkgi_gc_team@genomics.org.hk). In addition, both the snRNA-seq
raw count matrix for each sample and the corresponding metadata
have been deposited in a secure AWS environment hosted in
Hong Kong (https://hkgi-gbm-ecdna-study.s3.ap-east-1.amazonaws.
com/GBM_cellranger_output.zip;  https://hkgi-gbm-ecdna-study.s3.
ap-east-1.amazonaws.com/Metadata.pdf) and are publicly available
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER
Biological samples

GB patients’ tumor tissue and blood This study N/A

Critical commercial assays

QIAsymphony SP DNA Midi Kit Qiagen Cat# 937255
KAPA HyperPlus kit PCR-free Roche Cat# 07962436001
KAPA Unique Dual-Indexed Adapter kit Roche Cat# 08861919702
KAPA HyperPure Beads Roche Cat# 08963860001
NovaSeq 6000 S4 Reagent kit v1.5 (300 cycles) lllumina Cat# 20028312
MagAttract HMW DNA Kit Qiagen Cat# 67563

Ligation Sequencing Kit

PromethlON Flow Cell R10

Nuclei Extraction Buffer

Anti-Nucleus MicroBeads

Chromium Next GEM Single Cell 3’ Kit v3.1
Chromium Next GEM Chip G Single Cell Kit
Dual Index Kit TT Set A

Oxford Nanopore Technologies
Oxford Nanopore Technologies

Miltenyi Biotec
Miltenyi Biotec
10x Genomics
10x Genomics
10x Genomics

Cat# SQK-LSK114
Cat# FLO-PRO114M
Cat# 130-128-024
Cat# 130-132-997
Cat# PN-1000268
Cat# PN-1000120
Cat# PN-1000215

Deposited data

snRNA-seq data

Reference scRNA-seq data: GBMap

SCATAC-seq

This study

Moreno et al.’

Sundaram et al.”®

https://hkgi-gbm-ecdna-study.s3.ap-east-1.
amazonaws.com/GBM_cellranger_output.zip
https://hkgi-gbm-ecdna-study.s3.ap-east-1.
amazonaws.com/Metadata.pdf
https://cellxgene.cziscience.com/collections/
999f2a15-3d7e-440b-96ae-2c806799c08c

https://gdc.cancer.gov/about-data/
publications/TCGA-ATAC-Seq-2024

H3K27Ac ChIP-seq Xu et al.*° GEO: GSE145646

CGGA bulk RNA-seq data Zhao et al.’? http://www.cgga.org.cn/

Software and algorithms

DRAGEN (v4.0.3) lllumina https://sapac.illumina.com/products/by-type/

CellRanger (v7.1.0)
fgsea (v1.20.0)
ggplot2 (v3.4.2)
infercnvpy (v0.4.3)
SigProfilerExtractor
Maftools (v2.16.0)

R (v4.1.3)

GISTIC2.0

Ampliconsuite (v1.2.2)
CNVkit (v0.9.10)

Minimap2 (v2.24-r1122)
wf-human-variation (v1.8.3)
CoRAL

Flye (v2.9.3)

10x Genomics
Korotkevich et al.**
Wickham et al.**

Tickle et al.*®

Islam et al.*®

Mayakonda et al.*’

R Core Team
Mermel et al.”®
Luebeck et al.*®

Talevich et al.*®

Li et al.*®
EPI2ME
Zhuetal.’®

Kolmogorov et al.'®

informatics-products/dragen-secondary-analysis.html
http://www.10xgenomics.com
https://github.com/alserglab/fgsea
https://ggplot2.tidyverse.org/
https://github.com/broadinstitute/inferCNV
https://github.com/AlexandrovLab/SigProfilerExtractor

https://bioconductor.org/packages/devel/bioc/
vignettes/maftools/inst/doc/maftools.html

https://www.r-project.org/
https://broadinstitute.github.io/gistic2/
https://github.com/AmpliconSuite
https://cnvkit.readthedocs.io/
https://github.com/Ih3/minimap2
https://github.com/epi2me-labs/wf-human-variation
https://github.com/AmpliconSuite/CoRAL
https://github.com/mikolmogorov/Flye

(Continued on next page)

Cell Reports 44, 116426, October 28, 2025 19


https://hkgi-gbm-ecdna-study.s3.ap-east-1.amazonaws.com/GBM_cellranger_output.zip
https://hkgi-gbm-ecdna-study.s3.ap-east-1.amazonaws.com/GBM_cellranger_output.zip
https://hkgi-gbm-ecdna-study.s3.ap-east-1.amazonaws.com/Metadata.pdf
https://hkgi-gbm-ecdna-study.s3.ap-east-1.amazonaws.com/Metadata.pdf
https://cellxgene.cziscience.com/collections/999f2a15-3d7e-440b-96ae-2c806799c08c
https://cellxgene.cziscience.com/collections/999f2a15-3d7e-440b-96ae-2c806799c08c
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REAGENT or RESOURCE SOURCE IDENTIFIER

Bandange_ubuntu (v0.8.1) Wick et al.” https://github.com/rrwick/Bandage
Seurat (v4.3.0) Hao et al.” https://satijalab.org/seurat/

Harmony (v0.1)
hdWGCNA (v0.3.3)
CIBERSORTx
BayesPrism
velocyto.py (v0.17.17)
Scvelo (v0.2.5)
CellRank (v2.0.6)
CellphonedDB (v5.0.1)
ktplotspy (v0.2.4)

Korsunsky et al.”®
Morabito et al.>*
Newman et al.’®
Chuetal.®
Manno et al.>®
Bergen et al.*®
Weiler et al.*’

Troulé et al.®”

Troulé et al.®”

https://github.com/immunogenomics/harmony
https://smorabit.github.io/hdWGCNA/
https://cibersortx.stanford.edu/
https://github.com/Danko-Lab/BayesPrism
https://velocyto2.org/
https://scvelo.readthedocs.io/
https://cellrank.readthedocs.io/
https://github.com/ventolab/CellphoneDB
https://ktplotspy.readthedocs.io/

survival (v3.5.3) Terry et al.*® https://cran.r-project.org/web/packages/survival/
index.html

survminer (v0.4.9) Kassambara et al.® https://cran.r-project.org/web/packages/survminer/
index.html

ArchR (v1.0.2) Granja et al.®° https://www.archrproject.com/

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Frozen surgical specimens from 42 IDH wild-type GB patients (age 22-81 years; 26 male, 16 female; all self-identified as Asian) were
included in this study. Paired blood samples from 41 patients were collected as germline controls. All patients provided written
informed consent, and the study was approved by the Institutional Ethics Review Board of the University of Hong Kong and Hong
Kong West Cluster (UW 07-273). Detailed clinical data, including patient demographics, treatment history, tumor characteristics,
and survival outcomes, were collected from the electronic health record system. Due to the limited sample size, sex- and gender-
based analyses were not performed.

METHOD DETAILS

Short-read WGS sample processing and sequencing

Samples were prepared and sequenced at the Hong Kong Genome Institute.® High-quality genomic DNA was extracted from fresh
frozen tumor tissues and paired blood samples using the QlAsymphony SP system and QIAsymphony SP DNA Midi Kit (Qiagen).
PCR-free WGS libraries were prepared using the KAPA HyperPlus kit and the KAPA Unique Dual-Indexed Adapter kit (Roche),
following the manufacturer’s protocol. Briefly, 1 pg of gDNA was enzymatically fragmented at 37°C for 15 min, end-repaired,
3'dA-tailed, ligated to dual-index adapters, and size-selected. The libraries were quantified by quantitative PCR using the KAPA
Library Quantification Kit (Roche) and then sequenced on an lllumina NovaSeq 6000 platform to reach an average coverage of
100x for tumor samples and 30x for blood samples. The median insert size was 525 bp.

Long-read WGS sample processing and sequencing

High-molecular-weight genomic DNA was extracted from frozen tumor tissues using the MagAttract HMW DNA Kit (Qiagen). Library
preparation was performed using a Ligation Sequencing Kit (SQK-LSK114, Oxford Nanopore Technologies, ONT) according to the
manufacturer’s protocol. Sequencing was performed using PromethlON Flow Cell R10 (M Version) (FLO-PRO114M) on the ONT
PromethlON platform.

Single-nucleus RNA sequencing sample processing and sequencing

Approximately 25 mg of fresh-frozen tumor tissue was transferred from dry ice into pre-chilled gentleMACS C Tubes containing
1.5 mL of ice-cold Nuclei Extraction Buffer supplemented with 0.2 U/uL RNase inhibitor. Fresh frozen tumor samples were dissoci-
ated using gentleMACS Dissociator. Nuclei were isolated using Anti-Nucleus MicroBeads and magnetic separation with LS columns
according to the manufacturer’s protocol. The isolated nuclei were counted, and loaded onto the Chromium Controller X (10x Ge-
nomics) using Chromium Chip G to capture approximately 5,000-10,000 nuclei per sample. Nuclei were encapsulated in gel beads
to form gel bead-in-emulsions (GEMs). After reverse transcription within the GEMs, the emulsions were broken, and the barcoded
complementary DNA (cDNA) was purified and amplified. The cDNA was fragmented, A-tailed, ligated with adapters, and indexed.
The resulting libraries were sequenced on an lllumina NovaSeq 6000 platform with a minimum sequencing depth of 50,000 reads
per nucleus.
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Short-read WGS data processing and analysis

The lllumina Dragen platform (v4.0.3) was utilized for base-calling and variant calling, which ranked top as the best-performing short-
read call set in the precision FDA Truth Challenge and is widely used in large genome projects.”'~** Briefly, reads were demulti-
plexed, mapped, and aligned to the human reference genome (GRCh38), followed by SNV, SV, and CNV calling. The DRAGEN pipe-
line produced sample-level metrics, such as mapping quality, ploidy estimation, SV, and CNV metrics.

The HRD score was computed using the lllumina DRAGEN Somatic pipeline (v4.0.3). This workflow uses tumor and matched
normal BAM files to generate copy number calls. Based on these, the following three genomic instability metrics were calculated:
LOH; TAI; LST. The total HRD score is defined as the sum of these three metrics, consistent with the original definition by Telli et al.®®

SigProfilerExtractor’® was used to analyze the mutational signatures and extract the SBS, DBS, and ID signatures. One hundred
iterations were performed for the SigProfiler signature extraction. A signature was considered true if it was similar to a COSMIC V3.4
signature (cosine similarity >0.90) or if it could be reconstructed using multiple COSMIC V3.4 signatures with a reconstruction cosine
similarity >0.90. Maftools (2.16.0)*” and ComplexHeatmap (v2.16.0)°® were used to visualize SNVs. GISTIC2.0 was used to identify
focal gain and loss regions.”®

ecDNA detection and characterization

Ampliconsuite (v1.2.2)'° was employed to detect ecDNA. Initially, regions with copy numbers greater than four and sizes exceeding
10kbp were defined as regions of interest (ROls) (CNVkit, v0.9.10). Breakpoints within these ROIs were identified using a combination
of CNV and SV analysis. AmpliconArchitect then automatically searches for other intervals participating in the amplicon and performs
breakpoint graph construction. This process partitions all intervals into segments and builds an amplicon graph, optimizing a
balanced flow on the graph to account for the copy numbers in each segment. Subsequently, AmpliconClassifier (v1.1.2)*® was
used to categorize the amplicons into different types, including circular amplicons, breakage—fusion-bridge amplifications, heavily
rearranged amplifications, and linear amplifications, as previously described.®”

Long-read WGS data processing and analysis

For long-read data, whole-genome sequences were mapped to the reference genome hg38 using Minimap2 (v2.24-r1122). Struc-
tural variant calling and modified base calling were carried out using Sniffles2 (v2.0.7) and Modkit that implemented in the human
variation workflow (v1.8.3) from Nanopore.

CoRAL'® was utilized to analyze ecDNA structures with long-read sequencing data. Initially, segmenting intervals at positions with
an increase in copy number (CN > 6) were identified. Subsequently, a breakpoint graph was constructed, and cycle decomposition
was performed on the amplified seeds. To conduct de novo assembly, we extracted reads mapping to the amplified regions and
employed the long-read assembly algorithm Flye (v2.9.3-b1797)'® to create an assembly map for each amplicon, as previously
described."” Subsequently, we annotated each graph using the genes identified in the amplicons. The assembled graph was visu-
alized using Bandange_ubuntu (v0.8.1).>" Dominant ecDNA is defined as a single ecDNA species constituting more than 80% of the
total ecDNA population within a sample. Low count is defined as a total ecDNA copy number less than 11. Co-existence refers to the
presence of multiple ecDNA species within a sample, with no single species exceeding 80% of the total ecDNA population.

Single nucleus transcriptomic analysis

snRNA-seq data were obtained by aligning the reads to the human genome (GRCh38 Ensemble: v98) using CellRanger v7.1.0, with a
median of 90,462 mean reads per cell. Nuclei with fewer than 200 detected genes, more than 100,000 UMIs, or over 15% mitochon-
drial genes were filtered out. Dimension reduction and unsupervised clustering were performed according to the standard workflow
in Seurat (v4.3.0).° Harmony (v0.1) was used to perform batch-effect correction. The snRNA-seq data were then mapped onto a
publicly available GB atlas (GBMap)® by identifying the anchors and integrating the data. Large-scale copy number alterations
were inferred using inferCNVpy (v0.4.3), with tumor cells defined by a CNV score over 0.02.

hdWGCNA analysis

Weighted Gene Co-expression Network Analysis (\dWGCNA) was conducted utilizing the hdWGCNA (v0.3.3).°* The presence of
EGFR ecDNA, copy number of EGFR, and methylation score of EGFR intron 1 [chr7: 55109000-55112000] were considered as three
traits. The optimal soft power was determined as 13. Dimensionality reduction and visualization of the co-expression network were
achieved using the ModuleUMAPPIot function. Subsequently, Gene Ontology analysis was performed on the top 100 genes asso-
ciated with the module, employing the compareCluster function. The module scores were projected onto a UMAP using the
FeaturePlot function.

Cell abundance calculation in bulk RNA-seq data

To infer cell type composition from bulk RNA-seq profiles, we employed two independent deconvolution methods: CIBERSORTx'®
and BayesPrism,'* using custom single-nucleus-derived reference matrices constructed from our GBM snRNA-seq dataset. We
generated a reference matrix using gene expression counts from 17 annotated clusters in the snRNA-seq dataset. To ensure robust
and specific gene signatures, we filtered genes expressed in at least 200 cells within each cluster. The minimum expression threshold
for inclusion in the reference matrix was set to 0.25. CIBERSORTXx deconvolution was then performed on transcript-per-million (TPM)
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normalized CGGA GBM bulk RNA-seq data using “S-mode” for batch correction and “absolute” mode for estimating absolute cell
type fractions, as previously described.®”:%

The CGGA TPM data also underwent deconvolution using the BayesPrism algorithm. Initially, the model was set up with the new.
prism function. Subsequently, deconvolution was performed using the run.prism function. The final cell type fractions were derived
from the posterior estimates utilizing the get.fraction function.

ATAC-seq signal comparison between ecDNA-positive and ecDNA-negative tumors

ATAC-seq signal comparison between ecDNA-positive and ecDNA-negative tumors was conducted using scATAC-seq data pro-
cessed with the ArchR framework (v1.0.2).°° An ArchRProject was constructed, and doublets were filtered out. Sample-specific meta-
data, including ecDNA status and cell type annotations, were incorporated using addCellColData(). Samples were stratified based on
copy number: <6 (n = 6) and >6 (n = 3). To assess chromatin accessibility differences between ecDNA-positive and ecDNA-negative
tumors, cells were grouped by ecDNA status, and pseudo-bulk replicates were constructed using addGroupCoverages(). Peak calling
was performed using addReproduciblePeakSet() for each ecDNA group. The accessibility of EGFR and peak regions was visualized
with plotBrowserTrack(), stratified by ecDNA status.

Cellular dynamics analysis

RNA velocity analysis of the snRNA-seq dataset was performed using ‘velocyto.py’ (v0.17.17)°° and ‘scvelo’ (v0.2.5).°° BAM files
generated by the 10x CellRanger pipeline were sorted and processed using ‘velocyto run10x’ to generate loom file, which were sub-
sequently merged across EGFR ecDNA positive and negative patient groups. Cellular dynamics were analyzed using ‘CellRank’
(v2.0.6),°" with Markov Affinity-based Graph Imputation of Cells (MAGIC) applied via ‘magic-impute’ (v3.0.0)°° to enhance transcript
smoothing. For each patient group (EGFR ecDNA-positive and -negative), a Velocity Kernel was computed separately. A Generalized
Perron Cluster Cluster Analysis (GPCCA) estimator was employed to infer macrostates. The number of macrostates was determined
using CellRank’s Schur decomposition method. Fate probabilities were estimated by aggregating over all random walks, utilizing the
‘direct’ solver with the “ilu” preconditioner and use_petsc = True. Circular projections were used to visualize transitions toward
different terminal states. This analysis generated a transition matrix representing the probability of each cell transitioning to another.
Macrostates with the highest incoming or self-transition probabilities were designated as terminal macrostates. Gene expression
dynamics along pseudotime were visualized using heatmaps and trajectory-based gene trend analysis.

Cell-cell interaction analysis

CellphonedDB (v5.0.1)°” was used to analyze cell-cell interactions between TAM and malignant cells. Cell barcodes and correspond-
ing cell type annotations were extracted from the single-cell dataset and formatted as metadata for the analysis. To identify signif-
icantly enriched ligand-receptor pairs, we applied cpdb_statistical_analysis_method.call, which performs permutation-based statis-
tical analysis to detect significantly enriched interactions within the given cell type. For visualization, ktplotspy (v0.2.4) was used to
generate interaction networks, with a specific focus on the “Signaling by Epidermal Growth Factor” pathway.

Survival analysis

The patients’ overall survival across different levels of MES-like cells and gene signature scores among various patient subgroups,
was evaluated using Mantel-Cox Log Rank tests with the ‘survival’ (v3.5.3). Survival curves were visualized using Kaplan—Meier plots
with the ‘survminer’ (v0.4.9).

QUANTIFICATION AND STATISTICAL ANALYSIS
Data were analyzed using the R software (v4.1.3) for all the statistical analyses. Kaplan—Meier analysis with log rank test was used to
determine survival differences between the groups. Statistical comparisons between two groups were evaluated using two-tailed

Wilcoxon rank-sum test. Correlation analysis was performed using Spearman’s or Pearson’s correlation coefficient test. Significance
was defined as p value <0.05.
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