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SUMMARY

Glioblastoma (GB) is an aggressive brain tumor with limited treatment options, making it crucial to integrate

genomic and transcriptomic profiling to identify genetic alterations and cellular functional states. We perform

short- and long-read whole-genome sequencing (WGS) and single-nucleus RNA sequencing on 42 Chinese

GB patients to characterize the intra- and extrachromosomal mutation landscape, cell-type composition, and

pathway activity. Our analysis identifies amplified oncogenes, including EGFR, MYC, CDK4, PDGFRA, and

PPARGC1A, localized on extrachromosomal DNA (ecDNA). Notably, EGFR ecDNA harbors distinct struc-

tures that correlate with patient survival and exhibit a unique DNA methylation pattern that influences

gene expression, driving malignant cell differentiation toward MES-like and AC-like subtypes. Specifically,

EGFR ecDNA stabilizes tumor-associated macrophages in a hypoxia- and metabolism-driven state, reinforc-

ing a reciprocal AREG-EGFR signaling loop with mesenchymal-like tumor cells. Together, these findings

uncover a mechanistic link between ecDNA architecture, transcriptional subtypes, and microenvironmental

remodeling, offering critical insights for advancing precision oncology in GB.

INTRODUCTION

Glioblastoma (GB) is the most common adult malignant brain tu-

mor, and its prognosis remains poor, with an annual diagnosis of

80–100 cases in Hong Kong.1 Molecular diagnosis involves the

evaluation of isocitrate dehydrogenase (IDH) mutation, methyl-

guanine methyltransferase promoter methylation (pMGMT),

ATRX chromatin remodeler loss (ATRX LOF), telomerase reverse

transcriptase (TERT) promoter mutation, gain in chromosome 7

and loss of chromosome 10 (Chr7+/Chr10− ), epidermal growth

factor receptor (EGFR) amplification, and cyclin-dependent ki-

nase inhibitor 2A (CDKN2A) deletion.2 Despite these measures,

the prognosis remains poor, with a median overall survival (OS)

of approximately 10.6 months.1 This dismal outcome is largely

attributable to the complex genomic landscape and transcrip-

tomic heterogeneity of GB, which contribute to resistance to

standard therapies. In this study, we identified a cohort of Chi-

nese patients with histologically and molecularly confirmed

IDH-wild-type GB, and we comprehensively characterized the

genomes and transcriptomes of these tumors by short- and

long-read sequencing.

Recent developments in whole-genome sequencing (WGS)

have been crucial for understanding the molecular underpin-

nings of GB.3 WGS has provided detailed insights into the

genetic features of GB, which have been instrumental in under-

standing the prognostic biomarkers and mechanisms of treat-

ment resistance, including a consortium of alterations leading

to poor prognosis.4,5

Extrachromosomal DNA (ecDNA) has garnered increasing

attention as a key driver of tumor heterogeneity and therapeutic

resistance in various cancer types.6 Previous studies have linked

circular ecDNA to poor prognosis due to its capacity to amplify

oncogenes and undergo rapid evolution in response to treat-

ment.7 Cytogenetic or imaging techniques such as DNA fluores-

cence in situ hybridization (FISH) and optical mapping are

employed to visualize ecDNA within cells; however, they rely
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on identifying specific target sequences and present challenges

in manipulating metaphase in clinical samples. Conversely, WGS

facilitates impartial identification of ecDNA, copy number varia-

tions (CNVs), structural variants (SVs), single nucleotide variants

(SNVs), and pan-genomic markers such as tumor mutational

burden (TMB) and homologous recombination deficiency

(HRD).4 This comprehensive methodology enables the charac-

terization of intricate amplicons, thereby aiding in recognizing

potential mutually exclusive and co-occurring driver events

and bolstering the rationale for combination therapies. More-

over, long-read WGS using nanopore technology not only en-

ables accurate detection of large and complex structural

rearrangements but also provides information on epigenetic fea-

tures, specifically DNA methylation, which allows a detailed ex-

amination of methylation patterns on ecDNA.

Although clinical factors such as age, extent of resection, and

genetic factors such as IDH mutations and MGMT promoter

methylation status are well-established predictors of patient

overall survival, transcriptome profiling provides additional valu-

able information by reflecting the gene expression patterns and

the functional state of different cell populations. EGFR amplifica-

tion is a hallmark of GB, yet its role in shaping the malignant cell

subtype and tumor microenvironment (TME), particularly im-

mune and stromal populations, is less well characterized.

Tumor-associated macrophages (TAMs) constitute a major

component of the GB microenvironment and have been impli-

cated in promoting tumor growth, immune evasion, and resis-

tance to therapy. However, the molecular mechanisms by which

ecDNA influences TAM immune-suppressive functions remain

unclear. Understanding how EGFR-driven tumors reshape the

TME and establish reciprocal signaling loops with immune cells

is critical for developing targeted therapies that disrupt tumor-

supportive crosstalk and enhance anti-tumor immunity.

To address the current knowledge gap, we conducted our

study under the precision health theme of the Hong Kong

Genome Project (HKGP), a large-scale genome project in

Hong Kong supported by the Health Bureau of the Hong Kong

SAR Government,8 to provide a detailed multi-omic view of his-

tologically and molecularly confirmed IDH-wildtype GB. We

characterized the single-cell populations within GB tumors

and identified complex amplicons, and other genetic alterations

in GB. Moreover, we highlighted the distinct molecular tumor

subtypes and TAM remodeling processes driven by ecDNA.

The identified ecDNAs provide valuable insights into the biology

of GB and uncover ecDNA vulnerabilities as potential therapeu-

tic avenues for GB treatment. We thus provide a valuable

resource for uncovering the mechanisms of ecDNA-driven

tumorigenesis and identifying therapeutic targets against this

aggressive disease for which limited effective treatments

currently exist.

RESULTS

MES-like tumor cells identified by single-nucleus

transcriptomics predict poor clinical outcomes

A total of 42 patients with histologically confirmed GB were re-

cruited between March 2021 and July 2022. All 42 patients are

IDH1 wild type. Of these, 26 patients were male (61.9%; median

age 63 years) and 16 were female (38.1%, median age 55.5

years). The cohort comprised 34 primary and 8 recurrent cases.

The median OS was 14.79 months (95% confidence interval [CI]:

8.16–21.41 months). Detailed clinical information is presented in

Table S1.

To systematically characterize the cellular heterogeneity and

TME of GB, we performed small nuclear RNA sequencing

(snRNA-seq) on fresh frozen specimens from 40 patients.

Following stringent filtering, we obtained 310,299 cells, with a

median of 3,505 genes detected per cell. Dimensionality reduc-

tion using uniform manifold approximation and projection

(UMAP) revealed seven major cell clusters: malignant cells, oli-

godendrocytes, neurons, TAMs, endothelial cells, pericytes,

and lymphocytes (Figure 1A). To improve the accuracy and

robustness of cell type annotation, we mapped our dataset

onto GBMap,9 a well-curated GBM reference atlas comprising

over 1.1 million single cells (Figure 1B). The results from this

reference-based mapping were highly concordant with our un-

supervised clustering (Figure 1C). Among malignant cells, we

identified four canonical transcriptional states: astrocyte-like

(AC-like), neural precursor cell-like (NPC-like), oligodendrocyte

precursor cell-like (OPC-like), and mesenchymal-like (MES-

like) states (Figures 1C and 1D). AC-like and MES-like cells

were the most prevalent, together accounting for approximately

50% of all malignant cells. AC-like cells were marked by high

expression of astrocytic markers (e.g., SLC4A4, PCAT1), while

MES-like cells expressed mesenchymal and angiogenic genes

such as NAMPT, VEGFA, and CHI3L1 (Figure 1D).

Recognizing the value of pathway-based classification frame-

works in understanding GB cellular states,10 we next sought to

dissect the functional programs underlying different transcrip-

tional states. InferCNV analysis confirming that cells annotated

Figure 1. MES-like tumor cells identified by single-nucleus transcriptomics predict poor clinical outcomes

(A) UMAP projection of 310,299 single cells isolated from 40 in-house GBM tumor tissues, colored by de novo graph-based clustering and inferred cell types.

(B) UMAP projection of the same 310,299 single cells, colored by predicted cell types based on reference-mapping to the GBMap dataset.

(C) Sankey plot illustrating the relationship between graph-based cell clusters and reference-mapping-based cell clusters in the snRNA-seq dataset.

(D) Dot plot showing three canonical markers among the top differentially expressed genes across clusters in the snRNA-seq dataset.

(E) Heatmap of Jaccard similarity depicting robust NMF programs in all malignant cells and their clustering into eight metaprograms.

(F) Violin plots displaying the distribution of metaprogram signature scores across the four malignant cell types.

(G) Dot plot showing the feature scores of four pathway-defined subtypes (PPR, NEU, MTC, GPM) across all malignant cells in the snRNA-seq dataset.

(H) Kaplan-Meier curves depicting overall survival in the CGGA glioma bulk RNA-seq dataset, stratified by high (n = 170) and low (n = 67) marker scores based on

gene TPM. The cut-off point was determined by maximizing the difference between the true positive rate (TPR) and false positive rate (FPR).

(I) Kaplan-Meier survival analysis according to the proportion of MES-like malignant cells in the CGGA bulk RNA-seq dataset, with the median used as the cut-off

for stratification. Statistical significance was calculated using a log-rank test in (H and I).

See also Figure S1.
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as AC-, MES-, OPC-, or NPC-like malignant cells had significantly

higher CNV scores than non-malignant cells (Figures S1A and

S1B). We then applied GeneNMF,11 an NMF approach optimized

for single-cell data to identify robust, shared transcriptional pro-

grams across patients. This method decomposes the gene

expression matrix into eight co-activated metaprograms (MPs),

each representing a distinct set of co-expressed genes associ-

ated with specific biological pathways (Figure 1E; Table S2). Clus-

tering and embedding cells based on metaprogram activity re-

vealed clear segregation of malignant states, with each cell type

occupying a distinct region in metaprogram-based UMAP space

(Figure S1C). This suggests that the major GB cell states are

defined not only by transcriptomic differences but also by distinct

underlying biological programs. Metaprogram analysis revealed

that OPC-like cells primarily activated MP1 and MP4, associated

with cell cycle and proliferation pathways (Figures 1F, S1D, and

S1E). MES-like cells were enriched for MP5 and MP8, highlighting

processes such as epithelial-mesenchymal transition (EMT), hyp-

oxia, and glycolysis, hallmarks of a metabolically reprogrammed,

invasive tumor phenotype. NPC-like cells exhibited high activity in

MP2 and MP6, reflecting oxidative phosphorylation and synaptic

signaling, while AC-like cells activated MP3 and MP7, which were

associated with inflammatory signaling, including interleukin-6

(IL-6)-Janus kinase (JAK)-signal transducer and activator of tran-

scription (STAT) pathway (Figures 1F, S1D, and S1E).

To assess concordance with established pathway-based

GBM subtypes, we scored each malignant cell using gene signa-

tures defined by Garofano et al.10: proliferative/progenitor (PPR),

neuronal (NEU), mitochondrial (MTC), and glycolytic/plurimeta-

bolic (GPM) (Figure 1G). MES-like cells had the highest GPM

scores, consistent with the hypoxia/glycolysis-enriched meta-

programs identified via GeneNMF. NPC-like cells exhibited the

highest NEU scores, consistent with the synaptic signaling iden-

tified in MP6, reaffirming their neurodevelopmental origin. OPC-

like cells were most enriched for the PPR signature, reflecting

their proliferative characteristics and correspondence with the

MP1/MP4 proliferation modules. Together, this dual-layered

classification offers a more biologically grounded understanding

of GB heterogeneity.

To investigate the clinical relevance of the malignant cell states

identified, we assessed the association between their marker

genes and OS in GB patients using bulk RNA-seq data from

the Chinese Glioma Genome Atlas (CGGA; n = 237).12 Notably,

marker genes specific to MES-like malignant cells were signifi-

cantly associated with poor OS (p < 0.05; Figure 1H). Next, we

constructed a GBM-specific reference matrix based on the sin-

gle-nucleus gene expression profiles of each major cell type

identified in our dataset (Figure 1B). Using this reference, we

applied the CIBERSORTx deconvolution algorithm13 to infer

the cellular composition of bulk CGGA tumors, including both

malignant and immune cell populations. This analysis confirmed

that a higher proportion of MES-like tumor cells was significantly

associated with worse patient survival (p < 0.05; Figure 1I). To

validate these findings with an orthogonal approach, we applied

BayesPrism,14 a probabilistic deconvolution framework to pre-

dict cellular composition from bulk RNA-seq data. BayesPrism

independently confirmed the association between MES-like

cell states and adverse survival outcomes in the CGGA cohort

(Figure S1F). Notably, even within our relatively small patient

cohort, we observed that tumors classified as MES- or AC-like

subtypes following gross total resection (GTR) exhibited signifi-

cantly poorer survival than GTR-treated tumors dominated by

the proneural subtype (p = 0.02; Figure S1G). To further elucidate

the molecular subtypes of each patient and assess their risk, we

calculated the proportion of each malignant cell subtype per pa-

tient (Figure S1H). Notably, six out of eight recurrent samples

were dominated by MES-like tumor cell populations, which

exhibited the highest enrichment for the GPM signature

(Figure S1I). These findings reinforce the notion that MES-like

states are not only enriched in recurrent GB but are also associ-

ated with poor clinical outcomes, which provides critical insights

into patient prognosis and highlights the need for tailored thera-

peutic strategies for patients with MES subtypes.

Short- and long-read sequencing uncovers diverse

oncogene-carrying ecDNA architectures

We aimed to explore the role of genetic aberrations in fostering

transcriptional heterogeneity. To this end, short-read WGS was

conducted with tumor and matched germline DNA samples

from 42 GB patients, among which 31 pairs of samples with tu-

mor contents greater than 30% were used for downstream anal-

ysis. The sequencing results revealed an average sequencing

depth of 132.22× for tumor samples and 34.84× for matched

germline samples (Table S3). Additionally, long-read WGS anal-

ysis was performed on 32 tumors, providing a median read

coverage of 98.80× (read length N50 = 10–20 kbp), to obtain

the tumor methylation profile and validate the complex rear-

rangements identified by short-read WGS.

Given the potentially important implication of ecDNA in GB,

we examined the presence of ecDNA and its role in regulating

tumor differentiation and evolution at the transcriptional

level. AmpliconArchitect (AA)15 was applied to the short-read

WGS data to identify the highly amplified regions (copy number

[CN] > 4, region size > 10 kbp) and reconstruct the amplicons in

each sample. The inferred breakpoints that formed the amplicon

structure and the genes involved in ecDNA for each patient were

summarized in Table S4. In summary, ecDNA was detected in 14

of 31 (45.16%) GB tumors, predominantly as circular (Figures 2A

and 2B), with one sample BT019357 carrying MYCN ecDNA

shown as linear structure, consistent with previous observations

from the PCAWG-glioblastoma study.

To validate the complex architecture of these amplicons,

particularly those containing multiple segments, we leveraged

ONT long-read sequencing data. ONT’s longer reads are better

suited to map complex structural variants and resolve rear-

ranged or duplicated regions. We employed two approaches

for ecDNA characterization using long-read sequencing data: a

reference-mapping-based algorithm named CoRAL,16 to recon-

struct heterogeneous ecDNA structures, which is capable of dis-

tinguishing between cyclic and linear architectures; and a

de novo assembly approach, Flye,17,18 to resolve complex am-

plicons. Results from long-read WGS demonstrated strong

concordance with short-read WGS-based predictions in all but

one sample. For sample BT019342, inferred to harbor a circular

FGFR3-TACC3 amplified amplicon by short-read data, long-

read data instead revealed a linear conformation (Figures S2A
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and S2B). The false positive in AA predictions is likely due to a

tandem duplication involving TACC3 and FGFR3 (Figure S2C),

causing low copy number gains, which are frequently observed

in GB. These findings highlight the enhanced accuracy of long-

read methods in distinguishing between circular and linear

DNA structures, which are often challenging to differentiate us-

ing short-read data alone.

Using short-read WGS, we identified ten oncogenes amplified

on ecDNA across the cohort (Figure 2C). Among these, PDGFRA

(Platelet-Derived Growth Factor Receptor Alpha) was amplified

on ecDNA in patient BT019336, as detected by AmpliconArchi-

tect (Figure 2D). The circular structure of this ecDNA was vali-

dated through CoRAL analysis of long-read data (Figure 2E)

and reconstructed using de novo assembly (Figure 2F). Both

short- and long-read data revealed that CHIC2 has a lower

copy number compared to adjacent regions. Long-read data

further revealed two forms of amplicon structures: CHIC2 is ab-

sent in amplicon 1 (cycle 1) but present in amplicon 2 (path 2),

suggesting structural heterogeneity (Figure 2E). This patient ex-

hibited significantly higher expression levels of PDGFRA

(Figure 2G). Furthermore, single-nucleus RNA profiling revealed

clustering toward the pro-neural subtype for cells harboring

PDGFRA ecDNA (Figures 2H, S2D, and S2E), underscoring the

role of PDGFRA ecDNA in driving the differentiation of the pro-

neural subtype of malignant cells.

In addition, we identified an enrichment of PPARGC1A ecDNA

in patient BT016754 using both short-read and long-read data

(Figures 2I–2K), with correspondingly elevated PPARGC1A

expression in this patient (Figure S2F). PPARGC1A encodes

PPARG Coactivator 1 alpha (PGC1α), a transcriptional coactivator

that interacts with transcription factors (TFs) such as PPARγ/

PPARα and plays a pivotal role in regulating cellular metabolic

pathways such as mitochondrial biogenesis, oxidative phosphor-

ylation, and lipid metabolism.19 Abnormal PGC1α expression en-

hances tumor metabolic flexibility, and its suppression has been

shown to re-sensitize therapeutic-resistant cancer cells to treat-

ment.20 In this patient, the tumor was predominantly composed

of AC-like malignant cells (Figures S2G and S2H). We further

analyzed the signature scores for individual patients and found

that patient BT016754 exhibited significantly higher signature

scores for PPARγ and PPARα target genes, as well as cellular

metabolic pathways compared to other samples (Figure 2L).

Moreover, scoring based on PPR, NEU, MTC, and GPM subtypes

revealed strong enrichment for both PPR and MTC signatures in

this patient (Figure 2M). These findings suggest that ecDNA-medi-

ated PPARGC1A amplification may drive increased metabolic ac-

tivity, providing a potential rationale for therapeutic strategies tar-

geting dysregulated metabolic pathways.

Two other amplicons were identified in this cohort. Patient

BT016755 harbored ecDNA containing both PVT1 (Pvt1 onco-

gene) and MYC (MYC proto-oncogene) (Figures S3A–S3C),

resulting in markedly elevated expression of both genes

(Figure S3D). The promoter of the long non-coding RNA PVT1

has been shown to drive the potent expression of MYC through

enhancer hijacking when both are present on ecDNA, forming

a regulatory hub through interaction with the bromodomain

and extra-terminal (BET) protein BRD4. This could be a

potential genomic target for BET inhibitors, such as JQ1, which

preferentially suppresses transcription of ecDNA-derived onco-

genes.21,22 In addition, we identified ecDNA co-amplifying CDK4

(Cyclin-Dependent Kinase 4) and MDM2 (MDM2 proto-onco-

gene) in patient BT019331 (Figures S3E–S3H). CDK4 regulates

cell cycle progression, while MDM2 negatively regulates the

tumor suppressor p53, highlighting ecDNA as a platform for

co-amplifying key oncogenic drivers in GB.

Complex EGFR-ecDNA structures predict poor clinical

outcomes

Notably, EGFR and its neighboring genes, such as SEC61G

(SEC61 Translocon Subunit Gamma) were the most frequently

amplified genes on ecDNA, identified in 11 out of 31 cases in

our cohort (Figure 2C). Most EGFR amplicons originated exclu-

sively from chromosome 7 (8 out of 11; Figures 3B and S4A),

while some exhibited complex interchromosomal structures,

such as an amplicon spanning both chromosomes 5 and 7 in pa-

tient BT019337 (3 out of 11; Figure S4D). Long-read sequencing

provided critical insights into the proportion and distribution of

various EGFR ecDNA structures within individual samples. We

Figure 2. Short- and long-read sequencing uncovers diverse oncogene-carrying ecDNA architectures

(A) Pie chart showing the distribution of different amplicon types across the patient cohort, categorized as circular, heavily rearranged, linear, or with no amplicon

detected.

(B) Amplicon copy counts detected by short-read sequencing for each patient, colored by amplicon categories. Only patients with detectable amplicons are

shown.

(C) Top frequently amplified genes detected in ecDNA.

(D and I) Two representative ecDNA amplicons involving PDGFRA and PPARGC1A genes, detected in two distinct patients (upper). Read depth from long-read

sequencing of the corresponding genomic regions (lower). The segmentation is based on coverage and copy number estimates. Horizontal black lines represent

segments, with their vertical positions corresponding to estimated copy number. Red arcs indicate orientation-discordant read pairs (e.g., forward-reverse),

which suggest deletion-like rearrangements.

(E and J) PDGFRA and PPARGC1A circular amplicons reconstructed by long-read sequencing. ‘‘Cycle’’ refers to circular DNA structures reconstructed from

long-read sequencing data, in which genomic segments form a closed loop. ‘‘Path’’ denotes linear arrangements of genomic segments that may represent either

linear amplicons or fragmented ecDNAs. Solid blocks indicate genomic segments, while connecting lines or arcs represent structural rearrangements between

them. CN denotes the estimated copy number of the genomic segments.

(F and K) De novo assembly graphs from long-read sequencing illustrating the positions of amplified genes within the cyclic ecDNA structures.

(G) Dot plots illustrating differential levels of amplified genes PDGFRA and PPARGC1A in ecDNA. See also Figures S2 and S3.

(H) UMAP of patient BT019336 showing cell clustering toward pro-neuron-like cell types.

(L) Dot plot scoring gene expression for PPARγ and PPARα target genes, as well as three key metabolic pathways in each patient.

(M) Dot plot showing the feature scores of the four pathway-defined subtypes specifically in the patient harboring PPARGC1A ecDNA.
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present molecular profiles of two patients here (Figures 3A and

3D): patient BT019328 was dominated by a single type of circular

EGFR ecDNA structure, as demonstrated by CoRAL analysis

(Figure 3B). This finding was corroborated by de novo assembly,

which also revealed a clear circular structure (Figure 3C). In

contrast, other samples, such as BT019355 (Figure 3E), dis-

played highly complex rearrangements, as revealed by de

novo assembly (Figure 3F). Structure disentangling with long-

read data uncovered multiple types of EGFR ecDNA structures

within the same sample (Figure 3G). Additional amplicon profiles

illustrating the dominance (Figures S4B and S4C) and co-exis-

tence (Figures S4D–S4I) of EGFR ecDNA structures are shown

in Figure S4 and Table S5.

This observation prompted us to explore whether the pres-

ence of multiple EGFR ecDNA structure types reflect greater

chromosomal dysregulation and its potential association with

clinical outcomes. Although our sample size was limited, we

found that patients whose tumors harbored multiple co-existing

EGFR ecDNA structures experienced poor survival outcomes

compared to those with a single dominant ecDNA type or very

low copy numbers, which showed survival outcomes similar to

patients without EGFR ecDNA (p = 0.065, Figure 3H). These find-

ings emphasize the prognostic importance of ecDNA complexity

and the need to differentiate EGFR ecDNA structures when as-

sessing patient prognosis.

EGFR ecDNA co-occurs with EGFRvIII and is associated

with low homologous recombination deficiency scores

We next explored whether intrachromosomal genetic alterations

are associated with extrachromosomal genomic events. Inter-

estingly, EGFR mutations, including SNVs and the EGFRvIII

variant, were more frequently observed in EGFR ecDNA-positive

tumors, with EGFRvIII almost exclusively found in EGFR ecDNA-

positive tumors. This supports the notion that EGFRvIII-bearing

ecDNA structures may confer a selective advantage under ther-

apeutic pressure (Figure 4A).

Chromosomal arm-level alterations, such as the gain of chro-

mosome 7 (n = 17) and loss of chromosome 10 (n = 18), were

frequently observed in our cohort (Figure S5A). Overexpression

and downregulation of multiple genes on chromosomes 7 and

10 were confirmed through InferCNV analysis of the snRNA-

seq data (Figure S5B). Using the GISTIC223 algorithm to identify

recurrent sites of DNA copy number alterations in 31 samples, 46

amplification peaks and 37 deletion peaks were identified (false

discovery rate [FDR] < 0.25) (Figure S5D; Table S6). The most

common amplification events were at 7p11.2 (EGFR), 12q14.1

(CDK4), and 4q12 (PDGFRA), which was consistent with the

presence of ecDNA. Patients with ecDNA exhibit markedly

elevated copy numbers of gene segments enriched in ecDNA,

with 7p11.2 (EGFR) ranging from 22 to 166, 12q13.3–q14.1

(CDK4-MDM2) at 30, 4p15.2 (PPARGC1A) at 27, and 4q12

(PDGFRA) at 13.

HRD and aneuploidy are both known to propagate genomic

instability by failing to repair DNA breaks and disrupting normal

cell cycle regulation, leading to mutation accumulation and

fostering tumor evolution.24,25 In this cohort, 4 out of 31 samples

exhibited genome-wide aneuploidy, with estimated ploidy

ranging from 3.39 to 6.71 (Figure S5C; Table S7), and frequent

focal deletions at 9p21.3 (CDKN2A/B) and 10q23.31 (PTEN)

(Figure S5D).

Since DNA damage repair (DDR) pathway plays an important

role in preserving human genomic stability, we further explored

how the copy number alterations affect genes involved in the

DDR pathway, such as ATM, BRCA1, BRCA2, and CHEK2. We

analyzed the number of affected DDR genes in each patient us-

ing a comprehensive gene list containing 280 DDR genes from a

previous study (Figure S5E).26 Expression changes were then

examined based on each patient’s specific set of deleted DDR

genes (Table S8). We found that gene expression levels were

strongly associated with CNV deletions, with each patient

consistently showing markedly reduced expression of the DDR

genes affected by copy number loss. In most cases, the deleted

genes ranked among the lowest expressed DDR genes within

that patient, supporting a direct link between genomic deletion

and transcriptional downregulation (Figure S5F). Patients with

deletions affecting a higher number of DDR genes showed a

higher HRD score, as determined by the loss of heterozygosity,

telomeric-allelic imbalance, and large-scale state transition

scores (Figure S5G; Table S9). Interestingly, we observed an in-

verse association between ecDNA presence and HRD score,

suggesting that ecDNA maintenance may be favored in genomi-

cally stable backgrounds. Furthermore, patients with tumors

dominated by a single type of EGFR ecDNA exhibited the lowest

HRD scores compared to those with multiple co-existing EGFR

ecDNA structures (p < 0.05; Figure 4B).

Genome-wide mutational signature analysis revealed nine

distinct single-base substitutions (SBSs) and four small inser-

tion-and-deletion (ID) signatures (Figures 4C and 4D). The

most prevalent signature was SBS5, which was typically linked

to the aging process (Figure 4C). In comparison to COSMICv3.4,

Figure 3. Complex EGFR-ecDNA structures predict poor clinical outcomes

(A and D) Representative Circos plots displaying the genome-wide mutational landscape of BT019328 (A) and BT019355 (D). From the outermost to innermost

circles: somatic exonic SNVs, copy number gains (red), loss of heterozygosity (gray), copy number losses (green), copy number changes represented as his-

tograms, and structural variants in the central line.

(B and E) The SV view of breakpoints and reconstructed amplicon structures of ecDNA amplicons involving EGFR in BT019328 and BT019355 by CoRAL. Arcs

represent discordant read pair clusters, colored by orientation: red, deletion-like (length-discordant in expected orientation); brown: duplication-like (everted read

pairs); teal, left inversion-like; magenta, right inversion-like. The thickness of each arc qualitatively reflects the amount of supporting paired-end reads.

(C and F) De novo assembly graphs from long-read sequencing illustrating the positions of amplified genes within the ecDNA structures.

(G) Reconstructed cyclic ecDNA structure in BT019355 by CoRAL.

(H) Kaplan-Meier survival curves stratified by patients with or without multiple ecDNA structures versus those with a single dominant ecDNA structure. The

numbers at risk table indicates how many patients in each classification group (co-exist, dominant, and neg) remained at risk of the death event at specific time

points (0, 20, 50, 75, and 100 months). Statistical significance was calculated using a log-rank test.

See also Figure S4.
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an unreported ID signature (ID83C) was observed, featuring 1 bp

deletions and >5 bp insertions at repeats (Figure 4D). ID83C was

strongly associated with SBS5, suggesting its potential rele-

vance in aging (p < 0.05; Figure 4E). SBS8, which has been sug-

gested to be related to late replication errors based on recent ev-

idence,27 was more frequent in primary cases than in recurrent

cases (Figure 4C). SBS11 associated with temozolomide (TMZ)

treatment was observed in one hypermutated recurrent tumor

sample from patient BT019346, who received 18 cycles of adju-

vant TMZ. Mutational signatures related to POLE mutations

(SBS10a, SBS10b, and SBS14) were detected in patient

BT019346, who harbored an oncogenic POLE S297Y somatic

mutation. Additionally, signatures associated with defective

DNA mismatch repair, including SBS15, ID1, and ID2, were

found in three cases (BT019344, BT019346, and BT019358), all

of which displayed MSH2 mutations (Figure 4D). Notably, two

patients (BT019344, BT019358) carried the germline pathogenic

variant MSH2 N486*. Both have a family history of colon cancer,

suggesting a potential link to cancer predisposition Lynch syn-

drome and indicating potential responsiveness to immuno-

therapy.28 Interestingly, tumors with MSH2/MSH6/POLE muta-

tions exhibiting mismatch repair deficiency signatures seldom

contain ecDNA, implying distinct mechanisms of tumor

evolution.

EGFR ecDNA is associated with hypomethylation region

and facilitates transformation to MES- and AC-like

tumor subtypes

To discern the epigenetic landscape in patients with and without

EGFR ecDNA, we analyzed DNA methylation profiles by assess-

ing 5mCpG signal from long-read WGS data. Interestingly,

an open chromatin region in intron 1 of EGFR, evidenced by hy-

pomethylated CpG sites, was consistently observed in all pa-

tients harboring EGFR ecDNA, but not in their counterparts

(Figures 5A–5C). While a significantly lower frequency of

5mCpG was observed in patients with EGFR ecDNA compared

to those without (p < 0.05), no significant differences were de-

tected between patients with coexistent or dominant EGFR

ecDNA (Figure 5B). Leveraging a public single-cell assay for

transposase accessible chromatin using sequencing (scATAC-

seq) dataset from GB patients,29 we observed pronounced dif-

ferences in ATAC-seq signal across the EGFR locus when strat-

ifying patients by EGFR copy number, using a threshold of six

copies (Figure 5C). Additionally, this hypomethylated region

not only overlaps with ATAC-seq peaks but also with H3K27ac

enrichment signal from another GB cohort,30 suggesting its

role as an accessible cis-regulatory element that may drive tran-

scriptional activation of EGFR (Figure 5C). Consistently, snRNA-

seq data revealed significantly higher expression levels of EGFR

and its neighboring gene SEC61G in patients with EGFR ecDNA

(Figure 5D). Notably, EGFR expression was the highest in AC-like

and MES-like cells (Figure S6A). Furthermore, analysis of the

TME revealed that patients with EGFR ecDNA exhibited tran-

scriptional profiles enriched for MES-like or AC-like signatures

or a combination of both compared to those without EGFR

ecDNA (Figures 5E and S6B). These findings suggest a potential

regulatory effect of EGFR ecDNA on determining the transcrip-

tome of the tumor cells.

To understand the transcriptional regulatory effect of EGFR

ecDNA, integrative analysis of EGFR ecDNA, methylation, and

gene expression were performed. First, we computed a high-

dimensional gene expression network using weighted correla-

tion network analysis (hdWGCNA) to identify modules of co-ex-

pressed genes in this GB dataset (Figure S6C). Next, these

modules were correlated with four traits: the presence of EGFR

ecDNA, the copy number of EGFR, methylation score of the pre-

viously identified region in EGFR intron 1, and EGFR expression

level. By quantifying the correlation among these traits and the

gene expression signatures derived from individual modules,

we identified three differentially expressed modules (Figures 5F

and S6D) that were positively correlated with EGFR ecDNA,

EGFR copy number, and EGFR expression while being nega-

tively correlated with the methylation level in EGFR intron 1:

module purple, magenta, and tan (Figure 5G).

Notably, Gene Ontology analysis revealed that the purple

module was associated with EMT, tumor necrosis factor alpha

(TNF-α) signaling via nuclear factor κB (NF-κB), and angiogen-

esis, and the magenta module was linked to an inflammatory

response (Figure 5H). Furthermore, the top hub genes within

the purple and magenta modules, which are highly connected

genes within each module, were found to be significantly corre-

lated with worse survival in patients from CGGA (p < 0.05;

Figure 5I). We next projected module signatures onto the

snRNA-seq dataset and observed significant enrichment of

the purple and magenta expression modules in MES-like and

AC-like cell lineages (Figure 5J). MES-like malignant cells from

EGFR ecDNA-positive patients exhibited the strongest activa-

tion of EMT and TNF-α signaling pathways compared to EGFR

ecDNA-negative patients (Figure 5K). Interestingly, although

the abundance of TAM-BDM (bone marrow-derived macro-

phages) and TAM-MG (microglia) did not differ significantly

between EGFR ecDNA-positive and -negative patients

(Figure S6B), marked transcriptomic differences were observed.

NF-κB signaling, a key downstream effector of TNF-α, regulates

the expression of various targets, including pro-inflammatory cy-

tokines, chemokines, and cell adhesion molecules. To evaluate

NF-κB pathway activity, we assessed the expression scores

based on 46 cytokine or chemokine markers and 11 cell

Figure 4. EGFR ecDNA co-occurs with EGFRvIII and is associated with low homologous recombination deficiency scores

(A) Bar plot showing the proportion of EGFRvIII and other EGFR mutations among patients with or without EGFR ecDNA.

(B) Top: dot plot showing HRD score for each patient, colored by EGFR ecDNA status. Bottom: HRD score difference between multiple ecDNA structures versus

those with a single dominant ecDNA structure. Data are represented as mean ± SD.

(C and D) Upper panels: Composition of SBS (C) and ID (D) mutational signatures in each patient. Lower panels: Stage (P-primary, R-recurrent), EGFR ecDNA

status and all ecDNA status of each patient.

(E) Correlation between SBS5 and ID83C mutational signatures. Statistical significance was calculated using the Wilcoxon rank-sum test in (B) and Spearman’s

correlation coefficient test in (E). *p < 0.05. See also Figure S5.
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adhesion molecule markers that are regulated by NF-κB in

different subtypes of myeloid lineage cells. Notably, NF-κB

signaling exhibited the highest activation in TAM-BDM from

EGFR ecDNA-positive patients compared to their EGFR

ecDNA-negative counterparts (Figure 5K). These findings under-

score the potential role of ecDNA-bearing tumors in shaping

the TME.

EGFR ecDNA reprograms TAM-BDM toward hypoxia/

MES differentiation and establishes reciprocal signaling

in positive tumors

To further elucidate the role of EGFR ecDNA in modulating the

TME, we focused on myeloid cell populations and categorized

them into five major subtypes: dendritic cells (DCs), monocytes,

TAM-BDM (anti-inflammatory), TAM-BDM (hypoxia/MES), and

TAM-microglia (MG) (Figure 6A). We then examined the cellular

dynamics of these myeloid populations between EGFR

ecDNA-positive versus -negative tumors. RNA velocity analysis

was performed to capture dynamic states of myeloid cells, fol-

lowed by random walk simulation modeling starting from mono-

cytes, which are known to serve as precursors for bone-marrow-

derived macrophages. Notably, in EGFR ecDNA-negative

tumors, terminal cell states were distributed across multiple

myeloid subtypes, whereas in EGFR ecDNA-positive patients,

terminal cells were predominantly enriched in the TAM-BDM

(hypoxia/MES) population, suggesting a lineage bias toward sta-

bly differentiated cells (Figure 6B).

To further resolve these dynamic transitions, we applied

CellRank231 to infer macrostates, defined as clusters of cells ex-

hibiting similar differentiation trajectories. Macrostates were

identified using Schur decomposition of the transition matrix

and classified as initial, intermediate, or terminal states based

on transition probabilities, with the state with highest incoming

transition probabilities automatically assigned as the terminal

state. Visualization of fate probabilities per terminal state re-

vealed that monocytes predominantly occupied the naive state,

positioned centrally within the transition circle (Figure 6C). Cells

from EGFR ecDNA-negative tumors exhibited a heterogeneous

transition profile with four distinct terminal macrostates: TAM-

MG, TAM-BDM (anti-inflammatory 1 and 3), and TAM-BDM

(hypoxia/MES) (Figure 6C, left). In contrast, EGFR ecDNA-posi-

tive tumors displayed three terminal macrostates: TAM-BDM

(hypoxia/MES), TAM-BDM (anti-inflammatory), and TAM-MG

(Figure 6C, right). Importantly, in the EGFR ecDNA-positive

group, myeloid cells exhibited a higher long-term probability of

transitioning and residing in the TAM-BDM (hypoxia/MES) state,

as shown by a stationary distribution score of 0.86 (Figure 6E).

This was in stark contrast to the EGFR ecDNA-negative group,

which retained a more diverse transition potential across multi-

ple myeloid subtypes (Figure 6D).

Given the preferential differentiation and stabilization of TAM-

BDM (hypoxia/MES) cells in EGFR ecDNA-positive tumors, we

further investigated their transcriptional signatures. Notably,

this cell population displayed upregulation of metabolic path-

ways, including hypoxia signaling, mTORC1 activation, and

glycolysis, alongside TNF-α-NF-κB signaling as shown earlier

(Figures 5K and 6F). Additionally, this subset exhibited the high-

est scores when assessed with signatures from recently re-

ported detrimental myeloid cell populations, including early

myeloid-derived suppressor cells (E-MDSCs)32 and tumor-asso-

ciated foam cells (TAFs)33 in GB, characterized by enhanced

metabolic and hypoxic activity, tumor-promoting properties,

and immunosuppressive effects (Figure 6G).

Latent time analysis further highlighted distinct transcriptional

dynamics in TAM-BDM (hypoxia/MES) cells from EGFR ecDNA-

positive tumors, marked by increased expression of NF-κB-

regulated cytokines and chemokines, including ANGPTL4,

CXCL8, CCL20, CXCL2, IL1RN, CD44, FN1, IL-6, and IL-10

alongside differentiation trajectory (Figure 6H). These findings

suggest that EGFR ecDNA might reprogram TAM-BDM cells

toward an immunosuppressive state via NF-κB-driven transcrip-

tional activation.

To assess potential signaling interactions between TAM-

BDM (hypoxia/MES) cells and tumor cells, we applied

CellPhoneDB34 and identified a selective enrichment of

AREG-EGFR signaling between TAM-BDM (hypoxia/MES) cells

and MES-like tumor cells in EGFR ecDNA-positive tumors

(p < 0.05). This signaling axis, which has been reported to

Figure 5. EGFR ecDNA characterization by integrated epigenome and transcriptome profiling

(A) Methylation profiles across the EGFR locus, ranging from the transcription start sites (TSS) to the transcription end sites (TES), in four GB patients. The arrow

highlights a peak indicating a differentially methylated region between patients with and without EGFR ecDNA.

(B) Dot plot illustrating the differential levels of 5-methylcytosine (5mCpG) between patients harboring EGFR ecDNA and those without.

(C) Top: representative 5mCpG methylation profile of the region indicated in (E) from two patients. Middle: genome track of aggregated scATAC-seq data around

the EGFR locus, normalized by ReadsInTSS. The tracks are colored by EGFR copy number (CN ≤ 6, 6 patients, red; CN ≥ 38, 3 patients, dark blue). Differentially

enriched peaks (FDR ≤ 0.000001 and log2FC ≥ 3) in patients with EGFR amplification are highlighted by red lines below the track. Lower: genome track of

aggregated H3K27ac histone modification signals normalized to reads per million from 34 GB patients, spanning all exons and introns of EGFR.

(D) Dot plot showing the expression levels of EGFR and SEC61G across patients in the GB snRNA-seq dataset.

(E) Pie chart illustrating the cellular composition of AC-like, MES-like, NPC-like, and OPC-like cells in all malignant cells from each patient who was positive for

EGFR ecDNA.

(F) Differential co-expression analysis of module eigengenes reveals modules that are upregulated or downregulated in patients with or without EGFR ecDNA.

(G) UMAP visualization of three key gene expression modules (magenta, purple, and tan) that showed significant associations with the presence of EGFR ecDNA.

(H) Gene Ontology analysis of the top 100 genes enriched within the three identified gene expression modules.

(I) Kaplan-Meier survival curves stratified by the expression of the top 10 genes in each module, calculated based on gene TPM values in CGGA glioblastoma

patients. The cut-off is selected using the point that maximizes the difference between TPR and FPR.

(J) UMAP visualization of purple and magenta eigengene expression in the snRNA-seq dataset.

(K) Dot plot elucidating the expression activity of EMT (200 genes), TNF-α (200 genes), and NF-κB signaling (57 genes). Statistical significance was calculated

using a log-rank test in (I).

See also Figure S6.

12 Cell Reports 44, 116426, October 28, 2025

Article
ll

OPEN ACCESS



(legend on next page)

Cell Reports 44, 116426, October 28, 2025 13

Article
ll

OPEN ACCESS



promote glioma invasion,35 was absent in EGFR ecDNA-nega-

tive tumors, suggesting a potential feedforward loop wherein

TAM-BDM (hypoxia/MES) cells reinforce mesenchymal tumor

states via EGFR activation (Figure 6I). Consistently, AREG

expression within TAM-BDM (hypoxia/MES) cells exhibited dy-

namic regulation along the differentiation trajectory, supporting

their role as a source of EGFR ligands (Figure 6J). Together,

these findings indicate that EGFR ecDNA not only skews

myeloid cell fate toward a hypoxia/metabolism-driven pheno-

type but also establishes a reciprocal signaling axis with

MES-like tumor cells via AREG-EGFR crosstalk, ultimately

fostering an aggressive and immunosuppressive TME.

DISCUSSION

This study presents a comprehensive exploration of the genomic

and transcriptomic landscape of GB. We elucidate the complex

structures of ecDNA through both short- and long-read

sequencing, uncovering a unique DNA methylation profile within

EGFR ecDNA. This methylation pattern and ecDNA are linked to

gene expression programs that drive cell differentiation into

specific transcriptomic subtypes, including MES-like and AC-

like tumor cells. Furthermore, our analysis uncovers a previously

unrecognized role of EGFR ecDNA in reprogramming the TME by

modulating TAM-BDM (hypoxia/MES) function through elevated

NF-κB-regulated cytokine and chemokine expression, high-

lighting a potential mechanism of ecDNA-driven tumor progres-

sion and immune evasion.

Leveraging the snRNA-seq dataset, we performed a detailed

characterization of GB cell states through gene- and pathway-

based clustering. Our results consistently identified MES-like

malignant cells as the subtype most strongly associated with

poor overall survival, as supported by both single-cell profiles

and deconvolution analysis of bulk RNA-seq data from the

CGGA cohort. By applying GeneNMF across multiple patients,

we identified metaprograms that reflect recurrent biological

pathways, highlighting core functional modules that define

distinct cellular states. MES-like cells were enriched for hallmark

processes including EMT, hypoxia, and glycolysis, which are

features of a metabolically reprogrammed, invasive tumor

phenotype. These cells also exhibited the highest GPM scores

as defined by Garofano et al.10 Notably, we observed a shift to-

ward reduced PPR and increased GPM states in recurrent tu-

mors, suggesting dynamic transcriptional reprogramming asso-

ciated with recurrence and therapeutic resistance.

We identified an association between the EGFR ecDNA and

specific transcriptional subtypes. Gene expression modules

that significantly correlate with the presence of EGFR ecDNA,

hypomethylation in intron 1 of EGFR, and increased EGFR

copy number are highly expressed in MES- or AC-like malignant

cells. Moreover, our findings revealed a previously unrecognized

role of EGFR ecDNA in shaping the GB microenvironment by

driving a preferential transition of metabolically active TAM-

BDM (hypoxia/MES) and establishing a reciprocal signaling

loop with mesenchymal-like tumor cells. The observed transcrip-

tomic differences in TAMs between EGFR ecDNA-positive and

-negative patients provide insights into the immunoregulatory

role of ecDNA. TAM-BDM cells are known for their immunosup-

pressive role in promoting tumor progression.36,37 Through fate-

mapping analyses, we observed that EGFR ecDNA-positive tu-

mors exhibit a distinct myeloid cell landscape, with TAM-BDM

(hypoxia/MES) cells emerging as the predominant terminal state.

These results suggest that EGFR ecDNA play a dual role in tumor

and immune modulation, not only driving tumor-intrinsic tran-

scriptional programs but also promoting an immunosuppressive

TME.

Interestingly, we observed that the presence of ecDNA is

nearly mutually exclusive of certain genetic alterations. ecDNA

is almost absent in tumors with a high number of DDR gene de-

letions, hypermutated tumors, and mismatch repair deficiency

(MMRd) tumors carrying mutations in MSH2/MSH6 and POLE.

This observation aligns with findings from a recent study, which

revealed an inverse correlation between ecDNA and hypermuta-

tion, with MMRd or DNA polymerase deficiency (POLD1/POLEd)

signatures being more negatively associated with ecDNA in hy-

permutated tumors.38 On the other hand, we observed a reverse

association between the presence of ecDNA and a high number

of DDR-related gene deletions. The biogenesis of ecDNA is

thought to be a follow-up event from double-strand breaks

(DSBs) in tumor cells but comparably rare in normal cells, poten-

tially arising from mechanisms like chromothripsis and

breakage-fusion-bridge (BFB) cycles.6 Given the role of DSBs

in ecDNA formation, the DDR pathway may provide evidence

of ecDNA maintenance in tumor cells.39 This suggests that

DDR/MMR genes may play a role in conferring positive selection

preference over replication and progression stress during the tu-

mor cell cycle, potentially influencing ecDNA prevalence. For

instance, a functional DDR/MMR gene may allow ecDNA-con-

taining tumors to evade from cell cycle checkpoints and pro-

motes higher heterogeneity coupled with uneven segregation.

Figure 6. EGFR ecDNA reprograms TAM-BDM toward hypoxia/MES differentiation and establishes reciprocal signaling in positive tumors

(A) UMAP projection of myeloid cell subtypes, colored by graph-based clustering.

(B) UMAP visualization of the differentiation hierarchy of myeloid cells in EGFR ecDNA-negative and -positive patients. Black and yellow dots indicate the starting

and terminal cells of random walks, respectively.

(C) Circular projections of myeloid cells, depicting fate probabilities toward terminal macrostates. Cells biased toward a specific fate are positioned near the

corresponding corner, while naive cells are centered.

(D and E) Heatmap illustrating the classification of macrostates as either initial or terminal, with transitions visualized based on the macrostate-level transition

matrix. Macrostates with high diagonal values and strong stationary distribution are defined as stable terminal states.

(F) Gene set enrichment analysis (GSEA) highlighting pathways enriched in marker genes of the TAM-BDM (hypoxia/MES) population.

(G) Violin plot displaying the signature scores of E-MDSC (n = 33 genes) and TAF cells (n = 54 genes) across five myeloid cell subsets.

(H) Heatmap showing gene expression trends of NF-κB-regulated cytokines and chemokines, ordered by latent time.

(I) Dot plot depicting significantly enriched ligand-receptor interactions in the EGFR signaling pathway between EGFR ecDNA-negative and -positive groups.

(J) Trajectory-specific dynamics of AREG in EGFR ecDNA-negative and -positive groups, colored by terminal macrostates.
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Our findings revealed that ecDNA is almost absent in patients

with relatively higher HRD scores; this aligns with recent retro-

spective machine-learning studies in pan-cancer analyses,

which demonstrated the upregulation of DSB-related DDR

genes in ecDNA-positive samples.40 Additionally, these findings

are supported by evidence from other studies showing that inhi-

bition of DNA repair pathways using a DNA-PKCS inhibitor can

significantly reduce the frequency of ecDNA formation.41 Inter-

estingly, tumors classified as having a dominant ecDNA subtype

showed the lowest HRD scores, suggesting that a relatively

intact homologous recombination pathway may contribute to

their comparatively better survival outcomes.

The identification of PGC-1α amplification via ecDNA in our

dataset represents a rare but potentially significant event. While

PGC-1α overexpression has been linked to GB, its genomic

drivers remain unclear. A review of published datasets, including

the Genomics England cohort (n = 291),38 did not report PGC-1α
ecDNA events, though other rare ecDNA amplifications (e.g.,

MET, MYCN, PSIP1) were noted, highlighting the heterogeneous

nature of ecDNA in GB. In our case, the patient harbored PGC-1α
ecDNA and showed the highest enrichment for both PPR and

MTC pathway signatures, consistent with the gene’s known

role in mitochondrial biogenesis and oxidative phosphorylation.

Although this represents a single case, it points to a possible

ecDNA-driven mechanism of metabolic reprogramming in

GBM. Larger studies with integrated ecDNA profiling are needed

to determine whether PGC-1α amplification recurs in additional

patients.

While extensive genomic studies on GB exist, they primarily

focus on retrospective populations with The Cancer Genome

Atlas (TCGA) and International Cancer Genome Consortium

(ICGC). This study addresses this gap by providing a detailed

characterization of ecDNA and other complex genomic alter-

ations in a Hong Kong prospective patient cohort. Notably, pa-

tients with tumors enriched in MES-like, potentially driven by

NF1 mutations and EGFR ecDNA, exhibited worse survival out-

comes. Given that ecDNA is increasingly recognized as the

driver of therapy resistance, the data suggest a more carefully

selected targeted therapy approach and offer opportunities for

targeted therapy such as the S-phase checkpoint kinase CHK1

inhibitor, which has shown sensitivity toward ecDNA-amplified

tumor cells.42 These findings underscore the need for tailored

therapeutic approaches based on distinct molecular subtypes.

Limitations of the study

Our research revealed the role of ecDNA in driving tumor hetero-

geneity and reprogramming the TME. Nonetheless, several limi-

tations should be acknowledged. Experimental validation is

essential to establish the causal contribution of ecDNA to tumor

evolution and immune modulation. In vitro perturbation assays

and in vivo models that directly target ecDNA-associated vulner-

abilities will be critical to demonstrate the mechanistic link and

therapeutic relevance. Moreover, translating these insights into

actionable clinical strategies remains a major challenge. Future

studies incorporating molecular stratification and prospective

patient recruitment will be required to enable the application of

ecDNA biology toward improved patient management and treat-

ment outcomes in glioblastoma.
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○ Long-read WGS sample processing and sequencing

○ Single-nucleus RNA sequencing sample processing and sequencing

○ Short-read WGS data processing and analysis

○ ecDNA detection and characterization

○ Long-read WGS data processing and analysis

○ Single nucleus transcriptomic analysis

○ hdWGCNA analysis

○ Cell abundance calculation in bulk RNA-seq data

○ ATAC-seq signal comparison between ecDNA-positive and ecDNA-

negative tumors

○ Cellular dynamics analysis

○ Cell-cell interaction analysis

○ Survival analysis
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STAR★METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

GB patients’ tumor tissue and blood This study N/A

Critical commercial assays

QIAsymphony SP DNA Midi Kit Qiagen Cat# 937255

KAPA HyperPlus kit PCR-free Roche Cat# 07962436001

KAPA Unique Dual-Indexed Adapter kit Roche Cat# 08861919702

KAPA HyperPure Beads Roche Cat# 08963860001

NovaSeq 6000 S4 Reagent kit v1.5 (300 cycles) Illumina Cat# 20028312

MagAttract HMW DNA Kit Qiagen Cat# 67563

Ligation Sequencing Kit Oxford Nanopore Technologies Cat# SQK-LSK114

PromethION Flow Cell R10 Oxford Nanopore Technologies Cat# FLO-PRO114M

Nuclei Extraction Buffer Miltenyi Biotec Cat# 130-128-024

Anti-Nucleus MicroBeads Miltenyi Biotec Cat# 130-132-997

Chromium Next GEM Single Cell 3′ Kit v3.1 10x Genomics Cat# PN-1000268

Chromium Next GEM Chip G Single Cell Kit 10x Genomics Cat# PN-1000120

Dual Index Kit TT Set A 10x Genomics Cat# PN-1000215

Deposited data

snRNA-seq data This study https://hkgi-gbm-ecdna-study.s3.ap-east-1.

amazonaws.com/GBM_cellranger_output.zip

https://hkgi-gbm-ecdna-study.s3.ap-east-1.

amazonaws.com/Metadata.pdf

Reference scRNA-seq data: GBMap Moreno et al.9 https://cellxgene.cziscience.com/collections/

999f2a15-3d7e-440b-96ae-2c806799c08c

scATAC-seq Sundaram et al.29 https://gdc.cancer.gov/about-data/

publications/TCGA-ATAC-Seq-2024

H3K27Ac ChIP-seq Xu et al.30 GEO: GSE145646

CGGA bulk RNA-seq data Zhao et al.12 http://www.cgga.org.cn/

Software and algorithms

DRAGEN (v4.0.3) Illumina https://sapac.illumina.com/products/by-type/

informatics-products/dragen-secondary-analysis.html

CellRanger (v7.1.0) 10x Genomics http://www.10xgenomics.com

fgsea (v1.20.0) Korotkevich et al.43 https://github.com/alserglab/fgsea

ggplot2 (v3.4.2) Wickham et al.44 https://ggplot2.tidyverse.org/

infercnvpy (v0.4.3) Tickle et al.45 https://github.com/broadinstitute/inferCNV

SigProfilerExtractor Islam et al.46 https://github.com/AlexandrovLab/SigProfilerExtractor

Maftools (v2.16.0) Mayakonda et al.47 https://bioconductor.org/packages/devel/bioc/

vignettes/maftools/inst/doc/maftools.html

R (v4.1.3) R Core Team https://www.r-project.org/

GISTIC2.0 Mermel et al.23 https://broadinstitute.github.io/gistic2/

Ampliconsuite (v1.2.2) Luebeck et al.48 https://github.com/AmpliconSuite

CNVkit (v0.9.10) Talevich et al.49 https://cnvkit.readthedocs.io/

Minimap2 (v2.24-r1122) Li et al.50 https://github.com/lh3/minimap2

wf-human-variation (v1.8.3) EPI2ME https://github.com/epi2me-labs/wf-human-variation

CoRAL Zhu et al.16 https://github.com/AmpliconSuite/CoRAL

Flye (v2.9.3) Kolmogorov et al.18 https://github.com/mikolmogorov/Flye
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Frozen surgical specimens from 42 IDH wild-type GB patients (age 22–81 years; 26 male, 16 female; all self-identified as Asian) were

included in this study. Paired blood samples from 41 patients were collected as germline controls. All patients provided written

informed consent, and the study was approved by the Institutional Ethics Review Board of the University of Hong Kong and Hong

Kong West Cluster (UW 07–273). Detailed clinical data, including patient demographics, treatment history, tumor characteristics,

and survival outcomes, were collected from the electronic health record system. Due to the limited sample size, sex- and gender-

based analyses were not performed.

METHOD DETAILS

Short-read WGS sample processing and sequencing

Samples were prepared and sequenced at the Hong Kong Genome Institute.8 High-quality genomic DNA was extracted from fresh

frozen tumor tissues and paired blood samples using the QIAsymphony SP system and QIAsymphony SP DNA Midi Kit (Qiagen).

PCR-free WGS libraries were prepared using the KAPA HyperPlus kit and the KAPA Unique Dual-Indexed Adapter kit (Roche),

following the manufacturer’s protocol. Briefly, 1 μg of gDNA was enzymatically fragmented at 37◦C for 15 min, end-repaired,

3′dA-tailed, ligated to dual-index adapters, and size-selected. The libraries were quantified by quantitative PCR using the KAPA

Library Quantification Kit (Roche) and then sequenced on an Illumina NovaSeq 6000 platform to reach an average coverage of

100x for tumor samples and 30x for blood samples. The median insert size was 525 bp.

Long-read WGS sample processing and sequencing

High-molecular-weight genomic DNA was extracted from frozen tumor tissues using the MagAttract HMW DNA Kit (Qiagen). Library

preparation was performed using a Ligation Sequencing Kit (SQK-LSK114, Oxford Nanopore Technologies, ONT) according to the

manufacturer’s protocol. Sequencing was performed using PromethION Flow Cell R10 (M Version) (FLO-PRO114M) on the ONT

PromethION platform.

Single-nucleus RNA sequencing sample processing and sequencing

Approximately 25 mg of fresh-frozen tumor tissue was transferred from dry ice into pre-chilled gentleMACS C Tubes containing

1.5 mL of ice-cold Nuclei Extraction Buffer supplemented with 0.2 U/μL RNase inhibitor. Fresh frozen tumor samples were dissoci-

ated using gentleMACS Dissociator. Nuclei were isolated using Anti-Nucleus MicroBeads and magnetic separation with LS columns

according to the manufacturer’s protocol. The isolated nuclei were counted, and loaded onto the Chromium Controller X (10x Ge-

nomics) using Chromium Chip G to capture approximately 5,000–10,000 nuclei per sample. Nuclei were encapsulated in gel beads

to form gel bead-in-emulsions (GEMs). After reverse transcription within the GEMs, the emulsions were broken, and the barcoded

complementary DNA (cDNA) was purified and amplified. The cDNA was fragmented, A-tailed, ligated with adapters, and indexed.

The resulting libraries were sequenced on an Illumina NovaSeq 6000 platform with a minimum sequencing depth of 50,000 reads

per nucleus.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Bandange_ubuntu (v0.8.1) Wick et al.51 https://github.com/rrwick/Bandage

Seurat (v4.3.0) Hao et al.52 https://satijalab.org/seurat/

Harmony (v0.1) Korsunsky et al.53 https://github.com/immunogenomics/harmony

hdWGCNA (v0.3.3) Morabito et al.54 https://smorabit.github.io/hdWGCNA/

CIBERSORTx Newman et al.13 https://cibersortx.stanford.edu/

BayesPrism Chu et al.14 https://github.com/Danko-Lab/BayesPrism

velocyto.py (v0.17.17) Manno et al.55 https://velocyto2.org/

Scvelo (v0.2.5) Bergen et al.56 https://scvelo.readthedocs.io/

CellRank (v2.0.6) Weiler et al.31 https://cellrank.readthedocs.io/

CellphonedDB (v5.0.1) Troulé et al.57 https://github.com/ventolab/CellphoneDB

ktplotspy (v0.2.4) Troulé et al.57 https://ktplotspy.readthedocs.io/

survival (v3.5.3) Terry et al.58 https://cran.r-project.org/web/packages/survival/

index.html

survminer (v0.4.9) Kassambara et al.59 https://cran.r-project.org/web/packages/survminer/

index.html

ArchR (v1.0.2) Granja et al.60 https://www.archrproject.com/
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Short-read WGS data processing and analysis

The Illumina Dragen platform (v4.0.3) was utilized for base-calling and variant calling, which ranked top as the best-performing short-

read call set in the precision FDA Truth Challenge and is widely used in large genome projects.4,61–64 Briefly, reads were demulti-

plexed, mapped, and aligned to the human reference genome (GRCh38), followed by SNV, SV, and CNV calling. The DRAGEN pipe-

line produced sample-level metrics, such as mapping quality, ploidy estimation, SV, and CNV metrics.

The HRD score was computed using the Illumina DRAGEN Somatic pipeline (v4.0.3). This workflow uses tumor and matched

normal BAM files to generate copy number calls. Based on these, the following three genomic instability metrics were calculated:

LOH; TAI; LST. The total HRD score is defined as the sum of these three metrics, consistent with the original definition by Telli et al.65

SigProfilerExtractor46 was used to analyze the mutational signatures and extract the SBS, DBS, and ID signatures. One hundred

iterations were performed for the SigProfiler signature extraction. A signature was considered true if it was similar to a COSMIC V3.4

signature (cosine similarity ≥0.90) or if it could be reconstructed using multiple COSMIC V3.4 signatures with a reconstruction cosine

similarity ≥0.90. Maftools (2.16.0)47 and ComplexHeatmap (v2.16.0)66 were used to visualize SNVs. GISTIC2.0 was used to identify

focal gain and loss regions.23

ecDNA detection and characterization

Ampliconsuite (v1.2.2)15 was employed to detect ecDNA. Initially, regions with copy numbers greater than four and sizes exceeding

10kbp were defined as regions of interest (ROIs) (CNVkit, v0.9.10). Breakpoints within these ROIs were identified using a combination

of CNV and SV analysis. AmpliconArchitect then automatically searches for other intervals participating in the amplicon and performs

breakpoint graph construction. This process partitions all intervals into segments and builds an amplicon graph, optimizing a

balanced flow on the graph to account for the copy numbers in each segment. Subsequently, AmpliconClassifier (v1.1.2)48 was

used to categorize the amplicons into different types, including circular amplicons, breakage–fusion–bridge amplifications, heavily

rearranged amplifications, and linear amplifications, as previously described.67

Long-read WGS data processing and analysis

For long-read data, whole-genome sequences were mapped to the reference genome hg38 using Minimap2 (v2.24-r1122). Struc-

tural variant calling and modified base calling were carried out using Sniffles2 (v2.0.7) and Modkit that implemented in the human

variation workflow (v1.8.3) from Nanopore.

CoRAL16 was utilized to analyze ecDNA structures with long-read sequencing data. Initially, segmenting intervals at positions with

an increase in copy number (CN > 6) were identified. Subsequently, a breakpoint graph was constructed, and cycle decomposition

was performed on the amplified seeds. To conduct de novo assembly, we extracted reads mapping to the amplified regions and

employed the long-read assembly algorithm Flye (v2.9.3-b1797)18 to create an assembly map for each amplicon, as previously

described.17 Subsequently, we annotated each graph using the genes identified in the amplicons. The assembled graph was visu-

alized using Bandange_ubuntu (v0.8.1).51 Dominant ecDNA is defined as a single ecDNA species constituting more than 80% of the

total ecDNA population within a sample. Low count is defined as a total ecDNA copy number less than 11. Co-existence refers to the

presence of multiple ecDNA species within a sample, with no single species exceeding 80% of the total ecDNA population.

Single nucleus transcriptomic analysis

snRNA-seq data were obtained by aligning the reads to the human genome (GRCh38 Ensemble: v98) using CellRanger v7.1.0, with a

median of 90,462 mean reads per cell. Nuclei with fewer than 200 detected genes, more than 100,000 UMIs, or over 15% mitochon-

drial genes were filtered out. Dimension reduction and unsupervised clustering were performed according to the standard workflow

in Seurat (v4.3.0).52 Harmony (v0.1) was used to perform batch-effect correction. The snRNA-seq data were then mapped onto a

publicly available GB atlas (GBMap)9 by identifying the anchors and integrating the data. Large-scale copy number alterations

were inferred using inferCNVpy (v0.4.3), with tumor cells defined by a CNV score over 0.02.

hdWGCNA analysis

Weighted Gene Co-expression Network Analysis (hdWGCNA) was conducted utilizing the hdWGCNA (v0.3.3).54 The presence of

EGFR ecDNA, copy number of EGFR, and methylation score of EGFR intron 1 [chr7: 55109000–55112000] were considered as three

traits. The optimal soft power was determined as 13. Dimensionality reduction and visualization of the co-expression network were

achieved using the ModuleUMAPPlot function. Subsequently, Gene Ontology analysis was performed on the top 100 genes asso-

ciated with the module, employing the compareCluster function. The module scores were projected onto a UMAP using the

FeaturePlot function.

Cell abundance calculation in bulk RNA-seq data

To infer cell type composition from bulk RNA-seq profiles, we employed two independent deconvolution methods: CIBERSORTx13

and BayesPrism,14 using custom single-nucleus-derived reference matrices constructed from our GBM snRNA-seq dataset. We

generated a reference matrix using gene expression counts from 17 annotated clusters in the snRNA-seq dataset. To ensure robust

and specific gene signatures, we filtered genes expressed in at least 200 cells within each cluster. The minimum expression threshold

for inclusion in the reference matrix was set to 0.25. CIBERSORTx deconvolution was then performed on transcript-per-million (TPM)
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normalized CGGA GBM bulk RNA-seq data using ‘‘S-mode’’ for batch correction and ‘‘absolute’’ mode for estimating absolute cell

type fractions, as previously described.37,68

The CGGA TPM data also underwent deconvolution using the BayesPrism algorithm. Initially, the model was set up with the new.

prism function. Subsequently, deconvolution was performed using the run.prism function. The final cell type fractions were derived

from the posterior estimates utilizing the get.fraction function.

ATAC-seq signal comparison between ecDNA-positive and ecDNA-negative tumors

ATAC-seq signal comparison between ecDNA-positive and ecDNA-negative tumors was conducted using scATAC-seq data pro-

cessed with the ArchR framework (v1.0.2).60 An ArchRProject was constructed, and doublets were filtered out. Sample-specific meta-

data, including ecDNA status and cell type annotations, were incorporated using addCellColData(). Samples were stratified based on

copy number: ≤6 (n = 6) and >6 (n = 3). To assess chromatin accessibility differences between ecDNA-positive and ecDNA-negative

tumors, cells were grouped by ecDNA status, and pseudo-bulk replicates were constructed using addGroupCoverages(). Peak calling

was performed using addReproduciblePeakSet() for each ecDNA group. The accessibility of EGFR and peak regions was visualized

with plotBrowserTrack(), stratified by ecDNA status.

Cellular dynamics analysis

RNA velocity analysis of the snRNA-seq dataset was performed using ‘velocyto.py’ (v0.17.17)55 and ‘scvelo’ (v0.2.5).56 BAM files

generated by the 10x CellRanger pipeline were sorted and processed using ‘velocyto run10x’ to generate loom file, which were sub-

sequently merged across EGFR ecDNA positive and negative patient groups. Cellular dynamics were analyzed using ‘CellRank’

(v2.0.6),31 with Markov Affinity-based Graph Imputation of Cells (MAGIC) applied via ‘magic-impute’ (v3.0.0)69 to enhance transcript

smoothing. For each patient group (EGFR ecDNA-positive and -negative), a Velocity Kernel was computed separately. A Generalized

Perron Cluster Cluster Analysis (GPCCA) estimator was employed to infer macrostates. The number of macrostates was determined

using CellRank’s Schur decomposition method. Fate probabilities were estimated by aggregating over all random walks, utilizing the

‘direct’ solver with the ‘‘ilu’’ preconditioner and use_petsc = True. Circular projections were used to visualize transitions toward

different terminal states. This analysis generated a transition matrix representing the probability of each cell transitioning to another.

Macrostates with the highest incoming or self-transition probabilities were designated as terminal macrostates. Gene expression

dynamics along pseudotime were visualized using heatmaps and trajectory-based gene trend analysis.

Cell-cell interaction analysis

CellphonedDB (v5.0.1)57 was used to analyze cell-cell interactions between TAM and malignant cells. Cell barcodes and correspond-

ing cell type annotations were extracted from the single-cell dataset and formatted as metadata for the analysis. To identify signif-

icantly enriched ligand-receptor pairs, we applied cpdb_statistical_analysis_method.call, which performs permutation-based statis-

tical analysis to detect significantly enriched interactions within the given cell type. For visualization, ktplotspy (v0.2.4) was used to

generate interaction networks, with a specific focus on the ‘‘Signaling by Epidermal Growth Factor’’ pathway.

Survival analysis

The patients’ overall survival across different levels of MES-like cells and gene signature scores among various patient subgroups,

was evaluated using Mantel-Cox Log Rank tests with the ‘survival’ (v3.5.3). Survival curves were visualized using Kaplan–Meier plots

with the ‘survminer’ (v0.4.9).

QUANTIFICATION AND STATISTICAL ANALYSIS

Data were analyzed using the R software (v4.1.3) for all the statistical analyses. Kaplan–Meier analysis with log rank test was used to

determine survival differences between the groups. Statistical comparisons between two groups were evaluated using two-tailed

Wilcoxon rank-sum test. Correlation analysis was performed using Spearman’s or Pearson’s correlation coefficient test. Significance

was defined as p value <0.05.
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