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We present a novel quantum Monte Carlo method for evaluating the «-stabilizer Rényi entropy (SRE)
for any integer o > 2. By interpreting the «-SRE as partition-function ratios, we eliminate the sign prob-
lem in the imaginary-time path integral by sampling reduced Pauli strings within a reduced configuration
space, which enables efficient classical computations of the «-SRE and its derivatives to explore magic
in previously inaccessible two- or higher-dimensional systems. We first isolate the free-energy part in 2-
SRE, which is a trivial term. Notably, at quantum critical points in one-dimensional or two-dimensional
transverse-field Ising (TFI) models, we reveal nontrivial singularities associated with the characteristic
function contribution, directly tied to magic. Their interplay leads to complicated behaviors of 2-SRE,
avoiding extrema at critical points generally. In contrast, analyzing the volume-law correction to SRE
reveals a discontinuity tied to criticalities, suggesting that it is more informative than the full-state magic.
For conformal critical points, we claim that it could reflect nonlocal magic residing in correlations. Finally,
we verify that 2-SRE fails to characterize magic in mixed states (e.g., Gibbs states), yielding nonphysical
results. This work provides a powerful tool for exploring the roles of magic in large-scale many-body

systems and reveals the intrinsic relation between magic and many-body physics.
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I. INTRODUCTION

Characterizing many-body behaviors in quantum sys-
tems has been a central task since the last century [1,2].
Despite the locality of interactions in most quantum mat-
ters, the intricate correlations that give rise to rich and
exotic collective phenomena present formidable theoreti-
cal and computational hurdles for physicists. During recent
decades, remarkable headway has been made by introduc-
ing the theory of quantum information into many-body
physics. Quantum entanglement, with its quantum nature,
and as probably the most representative quantum resource
[3], has turned out to relate closely to phase transitions,
conformal field theories and topological orders [4—6].

In recent years, another quantum resource called magic
or nonstabilizerness, which is closely associated with the
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stabilizer formalism [7,8], has also entered the field of
view in many-body physics [9—11]. According to the cel-
ebrated Gottesman-Knill theorem [12—14], magic, rather
than merely entanglement, is what necessarily enables
quantum computation to outperform classical computa-
tion, as simulating a highly entangled stabilizer state
requires only polynomial resources on a classical computer
with Clifford protocols.

From the aspect of computational complexity, magic
captures a distinctive dimension of quantumness, which
may reveal information of quantum states that goes beyond
what entanglement alone can describe. Recent studies
have shed light on the connections between magic and
quantum criticality [9—11,15-20], quantum chaos [21-23],
and the anti-de Sitter—conformal field theory (AdS-CFT)
correspondence [9,24,25], yet much about the nature of
magic remains unexplored. In addition, the investiga-
tions on many-body magic align with the perspective that
“entanglement is not enough” in exploring the intricate
global properties of the internal geometry of black holes
[26-29].

To quantify magic in the many-body context, an “appro-
priate” measure of magic is required. First, it should be
monotone, which means that it does not increase under
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Clifford protocols [7,10,16]. Second, it should have good
computability to enable analytical and numerical calcula-
tions. Consequently, measures such as the robustness of
magic [30], the min-relative entropy of magic [10,31], and
the extension of the stabilizer norm [32] are inappropri-
ate due to the needs of complex minimization procedures.
In this paper, we consider the a-stabilizer Rényi entropy
(¢-SRE) (a > 2 € 7Z), which is based on evaluating expec-
tation values of Pauli strings [22]. The «-SRE is a mono-
tone for pure states, making it well suited for exploring
the magic of many-body ground states [16,33]. In addi-
tion, it has a close relation with the entanglement-spectrum
flatness for an arbitrary bipartition [34,35].

The contributions of this work span both algorithmic
and physical levels. At the algorithmic level, we introduce
the first unbiased quantum Monte Carlo (QMC) algorithm
capable of computing both the «-SRE and its derivatives
in large-scale and high-dimensional quantum many-body
systems within polynomial time, as long as the Hamilto-
nian is sign-problem free. In fact, over recent years, several
classical numerical tools have been developed to calculate
the «-SRE, including methods with matrix product states
(MPSs) and tree-tensor networks [11,16—19,36]. However,
these methods face limitations in two or higher dimensions
and finite-temperature cases. A recent hybrid algorithm
proposed in Ref. [37] addresses this issue by expressing
the «-SRE using the language of the tensor network (TN)
and then applying nonequilibrium QMC sampling [38].
However, the authors’ algorithm computes the «-SRE at
only a single point per run and is incapable of extract-
ing derivative information, yielding results with limited
physical insight.

Technically, we prove that the QMC simulations of the
a-SRE, which relate to some generalized partition func-
tion, can be restricted in the reduced configuration space
by sampling reduced Pauli strings (both terms are defined
in Sec. III). Using this algorithm, it is straightforward to
estimate the values and derivatives of the «-SRE by con-
sidering the partition-function difference, in conjunction
with Monte Carlo techniques including but not restricted to
the reweight-annealing (ReAn) method (importance sam-
pling) [39-47], thermodynamic integration [46,48—50],
and the Bennett acceptance-ratio method [51,52]. The
flexibility of our framework also allows for the integra-
tion of ideas from recent QMC algorithms for computing
entanglement entropy, which could lead to further perfor-
mance improvements [38,53—59]. The only limitation of
our algorithm is that the Hamiltonian must be free of the
sign problem, meaning that the weights in the partition-
function summation must be non-negative real numbers to
allow a probabilistic interpretation—a common challenge
for all QMC algorithms [60,61]. However, sign-problem-
free models already host a rich variety of fundamental
many-body phenomena, including spontaneous symmetry
breaking, topological phase transitions, topological order,

and conformal criticality. As such, our method plays a cru-
cial role in advancing the understanding of quantum magic
and complex quantum matter.

At the physical level and as a demonstration of our
approach, we study the magic in the transverse-field Ising
(TFI) model with periodic boundary conditions (PBCs).
The Hamiltonian is given by

H=-JY 7ZiZj—h) X, (1)
(i) i

where (ij) denotes the nearest-neighbor site pairs and
X and Z refer to Pauli matrices. We investigate the
ground-state magic of both one-dimensional (1D) and
two-dimensional (2D) TFI models, as well as the finite-
temperature 2-SRE of the 2D TFI model.

In previous studies, though the full-state magic of the
ground state in general quantum models has shown not to
be a reliable diagnostic for criticality [9,11,16-19,36], a
further understanding of the relationship between the full-
state magic and criticality remains open. In this work, we
isolate the free-energy part in the «-SRE for the first time,
which contributes to a trivial singularity in its derivatives.
In our study of ground states, we surprisingly find that the
remaining nontrivial part—directly linked to the character-
istic function (i.e., the distribution of squared expectation
values of Pauli strings) and magic—also exhibits singular-
ities in both the 1D and 2D TFI models. Consequently, the
general behavior of the full-state magic quantified by the
a-SRE is governed by the interplay between the contribu-
tions from the free energy and the characteristic function.
The order of phase transition also plays a crucial role. For
example, in the 1D TFI model, we observe that the ground-
state magic peaks at the critical point, which is consistent
with previous studies [11,16,36]. In contrast, in the 2D
TFI model, the ground-state magic reaches its peak within
the ferromagnetic phase. More broadly, this highlights a
key reason why full-state magic does not always provide
a clear signature of phases and criticalities in many-body
systems.

Rather than focusing on the full-state magic, we suggest
that its volume-law corrections would be more impor-
tant, as a nonzero volume-law correction is a necessary
condition for the existence of nonlocal magic residing in
correlations. Such a kind of magic is spread nonlocally
and cannot be removed via local non-Clifford operations.
Notably, considering the volume-law corrections does not
require a computable mixed-state monotone and has sim-
ilar effect to the mutual magic [9,15,62—64] that we will
detail in Sec. V C. For both the 1D and 2D ground states
of TFI models with finite system sizes, we observe dis-
continuous indications of the volume-law corrections at
the critical point, which reflect the sudden transition of the
ground-state magical structure across the phase-transition
point.
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Additionally, we investigate the 2-SRE of at the finite-
temperature case in the 2D TFI model, observing that
the singularity of the part of the characteristic function
occurs outside the critical point, rendering it ineffective
for characterizing the system. This accords with the under-
standing that 2-SRE is not a well-defined measure for
mixed-state magic [16,22]. In fact, even for 1D systems,
studies on the magic of Gibbs states for local Hamiltonians
are scarce. Hopefully, extending our method to compute
the mutual-stabilizer Rényi entropy, discussed in Sec. VI,
could provide valuable new insights in the future.

The paper is organized as follows. In Sec. II, we briefly
review the magic resource theory, including the definition
of the ¢-SRE. Our core algorithm is introduced in Sec. 1.
With the algorithm, we can estimate the values and deriva-
tives of the «-SRE in conjunction with the ReAn and
thermodynamic integration techniques, which we will dis-
cuss in Sec. IV. The numerical results for the magical
behaviors related to many-body physics of the 1D and 2D
TFI models are analyzed in Sec. V and then in Sec. VI, we
provide a summary and further discussions on extending
our algorithm to compute the «-SRE of a reduced density
matrix by tracing out the environment degrees of freedom.

II. QUANTUM MAGIC

A. Short review of stabilizer protocols

We focus our discussions on qubit systems in this paper,
which can be extended to general qudit systems. We first
define the Pauli group Gy as

Oy = !é‘- ®; g;

o € (LX,Y,Z},E € {:I:l,:l:i}}, )

where X, Y, and Z are the three Pauli matrices and / is
the 2 x 2 identity matrix. For an Abelian subgroup S C
Gy and some state space Vg, if VS € S and |¢) € Vs,
S|¥) = |¥) holds, then S is called a stabilizer of Vs.
In the Heisenberg picture, suppose that g is a genera-
tor of S and U is some unitary operation acting on |i);
then, Uly) = Ug|y) = UgU'Ulyr), indicating that UgU'
stabilizes U]y). As the number of the generators {g;} is
at most log|S|, then simulating the evolution of such a
kind of [¢) only requires polynomial complexity in the
Heisenberg picture. To enable this, the evolved stabilizers
must remain within the Pauli group under certain unitary
operations. These unitaries are known as Clifford unitaries
and they form the Clifford group C. Each Clifford uni-
tary can be efficiently generated from the Hadamard gate,
the controlled-NOT (CNOT) gate, and the phase gate, all
within polynomial complexity. Additionally, measurement
operations in the computational basis can be incorporated
into the circuit with polynomial complexity, formalized
in the Gottesman-Knill theorem [12—14]. By introducing
the necessary operations, such as qubit discarding, we can

construct a fully classical protocol referred to as the stabi-
lizer protocol. The quantum states manipulated under this
protocol hence have classical simulatability and are called
stabilizer states.

To achieve universal quantum computation, it is neces-
sary to introduce the quantum resources beyond the sta-
bilizer protocol, which are known as the magic resources
[3,10,30,65,66]. The greater the magic of a state, the fur-
ther it deviates from classically simulable stabilizer states.
As discussed earlier, a suitable measure of magic (a real
map on density matrices) must satisfy the monotonicity
condition. Suppose that M is some measure; then, for a
given density matrix p and any stabilizer protocol £ that
manipulates p, we must have M[E(p)] < M (p).

B. a-stabilizer Rényi entropy
For a pure state p, its «-SRE is defined as [22]

1 1 2a
My(p) = 7——log | 7 > TP |, (3)
PePy
where
PN = {®]]\[=IO}O}:[>X9YaZ} (4)

is a quotient group of the Pauli group Gy and the mono-
tonicity is ensured for o > 2 € Z [16,33]. This definition
can be viewed as the a-Rényi entropy of a classical dis-
tribution Ep(p) := [Tr(pP)]?/2", also called the charac-
teristic function [22,67]. For convenience, we consider the
case in which o« = 2 and also call Py the Pauli group in
this paper.
The 2-SRE M, (p) satisfies the following properties:

(1) faithfulness: M,(p) = 0 if and only if p has no
magic.
(i) stability: M,(CpC") = M,(p) for any Clifford uni-
tary C € C related to the Hilbert space.
(iii) additivity: My (p ® p') = My (p) + My (p") for two
arbitrary pure states p and p’.

The definition in Eq. (3) can be extended to mixed states
as [22]

My (p) := My (p) — S2(p), (%)

where

S>(p) := —log[Tr(p?)] (6)

is the entanglement 2-Rényi entropy of p. For pure states,
S>(p) vanishes and M, (p) reduces to Eq. (3). Note that
M,(p) is not a well-defined measure for quantifying
mixed-state magic, similar to entanglement entropy used
in mixed states.
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C. Generalized partition functions

To compute the 2-SRE, we first reformulate it in the
language of QMC. Specifically, we employ the stochastic
series expansion (SSE) method [68—70] in this paper.

Given a Hamiltonian A and the inverse temperature S,
the density matrix is p = e #¥ /Z, where Z := Tr(e #1) is
the normalizing factor to guarantee Tr(p) = 1. Similarly,
we define Z, := Tr(e ?*#) such that Tr(p?) = Z,/Z°.
Besides, we introduce

0:= > TPyt = Y [T P, (1)

PePy PePy

which can be viewed a generalized partition function.
Then, we have

- 1 V4
M(p) = —log [Z—N% +log [Z—i} . ®)

Consequently, evaluating the 2-SRE is equivalent to eval-
uating some partition-function difference according to
Eq. (8). The central challenge then lies in simulating O
with QMC, which we will detail in the next section.

III. QUANTUM MONTE CARLO SIMULATIONS
OF THE GENERALIZED PARTITION FUNCTION

A. Stochastic series expansion

We start by considering Tr(e #7 P) to facilitate under-
standing. The generalized partition function Q just takes
four replicas of Tr(e~#” P) and then sums over all possible
Pauli strings {P}, which will be discussed later. Following
the standard procedure of SSE [68—72], we first apply the
Taylor expansion to obtain

Tr(e PPy =) %Tr[(—H)”P]. 9)

n

We then rewrite H = — 3 H, ,, where each H,, is a
local operator, with u to denote its type (diagonal or off-
diagonal under a given representation) and v specifying the
spatial degree (bond or site) on which the operator acts.
Then,

Tr(e—ﬁHP)=ZZ§Tr ]i[HMp,vp Pt, (10)
n S, : gq=1

where each S, specifies an operator sequence or string
]_[Z.:l H,'L - With length n. For practical simulations, the
series given in Eq. (10) must be truncated at some suf-
ficiently large power A. After filling in (A —n) null

operators (also denoted by H,,, with some special u), we

have
Tr(e_ﬂHP) = ZZW(P;SA:|‘10>), (11)
a  Sp
where
W(P; Sa, |ao))
B(A —n)! | &
= Al H(aq+l|Hﬂq,vq|aq) (0[1|P |O[0)

q=1

(12)

are sampling weights, and the summation on « includes
totally (A + 1) sets of basis o) propagated by P and
{H} v} In addition, there is a PBC (lag) = lan+1))
along the imaginary-time axis because of the trace oper-
ation. In Fig, 1(a), we present a schematic diagram of a

(2) —
o] | |
3 a2 H/muv
%ﬂ s; @O
o
= o3
'% 5>00 O
o
©n o Hy,
s @M |
o) Jar) s e o) fansa)
Imaginary-time propagation
(b)
o1 o1 o1 01
el | . @m s @M el |
g2 a2 g9 g9
;@0 5500 s; @0 5500
S Si A Si
g3 03 03 o3
s>OQ0O0 ssOQ0O s Q0O s>sO0O
o4 o4 [ep? 04
s @M s @M ssOm ENe] |
|ag) |a) ) |a)
Replica 1 Replica 2 Replica 3 Replica 4
FIG. 1. (a) A configuration of Tr(e 7 P) in the language of

SSE. The vertical axis represents the spatial degrees of freedom
of the system, such as lattice sites sg, s1,- - - . In this example, a
qubit lies at each site, with empty and solid circles denoting |1)
and || ), respectively. The horizontal axis indicates the (A + 1)
imaginary-time slices. Associated with each slice, the state of
qubits is represented by |a,). Then, |o) is sequentially propa-
gated by operators P =[], o/, Hyyws Hupys -y and Hy, oy
evolving through the intermediate states o), |ay), ---, until
it returns to |ep11) = |ag). For diagonal (off-diagonal) o; and
Hy,v,» we denote them with empty (solid) quadrangles in the
diagram. (b) A sampled configuration of Q with four replicas of
Tr(e P P). The four replicas share the same P, while |o§) and
S can be different. Here, we only show the time slice of P for
simplicity and the others are represented by SX .
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configuration associated with W(P; Sy, |ag)), which can
apparently be uniquely determined by P, Sx, and |oy).
Similarly, we can apply SSE to QO to obtain

0= > XX |[Dressii | 0

PEPy ok sk

where

W(P; Sk, o))
A

[ [ekiilHy, 1) | (@] Plag)
g=1
(14)

and the superscript & signifies the replica number. Note that
Sk or |a’0‘) can differ across replicas; thus each configura-
tion of Q is uniquely determined by P, {Sf\}, and {|oz(’§)}
[see Fig. 1(b)].

For H representing some qubit system, a;‘ are typi-
cally chosen in the basis of Pauli operator Z. Since Z =
diag(1, —1) introduces a minus sign after propagating one
[{) in |eg) to another || ) in |&;), we will encounter neg-
ative weights in [], W(P;S’/‘\ +1,o¢6‘), which results in the
notorious sign problem [73—77]. A similar difficulty also
happens with the Pauli operator Y. Fortunately, this issue
can be avoided by leveraging the symmetry of Pauli strings
by performing simulations in a reduced configuration
space, as introduced next.

_ g —n! (A—n)‘

B. Reduced configuration space

First, we replace Y in the Pauli group given in Eq. (4)

with
~ 0 -1
Y=[1 O] (15)

to remove imaginary numbers. This makes no difference
with regard to simulating Q according to the definition
given in Eq. (3).

For convenience, let us denote by € the parts of each
configuration of Q expressed in Eq. (13), determined by
{S’j\} and {|a{§)}. To identify all possible configurations, we
can start by selecting a € and then traverse all associated
P before moving to the next €. Notably, to ensure the PBC
in the imaginary-time axis, the type of each o; (diagonal or
off-diagonal) in P is also constrained by €.

A simplified problem is to consider a single replica
and a single qubit, i.e., we consider the partition func-
tion ) Pep, Tr(e P P). If P is off diagonal under a given
¢ with |ap) = |1), then X and Y both contribute a posi-

tive sign after propagating |o), with their corresponding
configurations sharing the same weight. On another hand,

if |o) = |), Y yields a negative sign, in which case the
two weights are equal in magnitude but opposite in sign.
As a result, in the summation such as Eq. (13), these two
terms cancel each other and this ¢ does not appear in the
valid configuration space. This can be easily generalized
to an arbitrary type of P and N qubits and, effectively,
Py = [T, 0jlo; € {(X + 1), + 2)}} in this case.

With a single replica, any valid € must satisfy |ag) =
[1 - 1). We refer to the corresponding valid configura-
tion space as the reduced configuration space, in contrast
to the full space that includes configurations with negative
weights. Furthermore, it is unnecessary to determine the
specific Pauli matrix for each o;; we only need to distin-
guish whether it is diagonal. This leads to the concept of
the reduced Pauli string, such as (X + Y) for Py, which
takes into consideration the combined effects of multiple
Pauli strings. This confirms that we are on the right track.
Using a similar idea, we can now proceed to tackle our
target partition function Q.

For simplicity, we still start by considering one qubit and
assume P to be off diagonal. It is easy to verify that as long
as an even number of |a§) is in |1), the corresponding €
will be valid, due to the multiplication of W(P; S’R, |a’(‘;))
in Eq. (13). Otherwise, the symmetric contributions from
X and Y would analogously make € absent in the reduced
configuration space.

Concretely, for the N-qubit case, we denote |a0)
Iql, .. .,qN) where |q/) {I1),14)} is the state of the jth
qubit in replica k; then, for any site j, there must be an
even number of |qj’-‘) in 1) state to ensure a valid €. The
specific forms of these reduced Pauli strings in this case
are also unimportant and only their types and effects on
lak) matter, flipping or leaving the qubits unchanged.

We now rewrite Eq. (13) as

0- zzz[nwsﬁ,m»} 16

PePy ak Sk

where the tildes indicate that we are considering the
reduced configuration space and reduced Pauli strings.

C. The algorithm

Compared to a standard SSE algorithm that involves
updates on operators {Hﬁq,vq} and spins {|oz’(§)} [68-70,78—
80], two modifications are made in our algorithm: (i) the
updates on |a§ ) must ensure that an even number of |q}‘ ) are
in |1); and (ii) the reduced Pauli string P = ]_[J. o0, where
o; is diagonal or off-diagonal o;, must also be updated.
We summarize the key components of our algorithm below
and it is broadly applicable to any sign-problem-free mod-
els in SSE simulations.
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1. Local update

The local update for Q follows a similar approach to
that in a conventional SSE algorithm, where P, {61’0‘}, and
the off-diagonal operators remain unchanged. For each
time slice in each replica, we consider updating the null
operator (corresponding to an empty time slice) to a diag-
onal one and vice versa, following the Metropolis-Hasting
algorithm [81,82].

2. Nonlocal update on the reduced Pauli string and
operators

In SSE simulations, nonlocal updates, such as (directed-)
loop or branching-cluster updates, are used to reduce
autocorrelations during sampling. These updates alternate
between diagonal and off-diagonal operators, which can
improve the efficiency of simulations.

A simple way to update P = []; 6; is by treating {5;}
as effective single-site diagonal and off-diagonal opera-
tors. Then, each o; can be involved in some nonlocal
collection (a loop or cluster) and be updated together with
those operators. In this way, once a collection across the
imaginary-time boundary is updated, the corresponding
|q]’»‘) should also be flipped (updated). On the other hand,
for each site j, we must always have an even number of
|qjl.‘) in [1) and then such an update of the collection should
flip an even number of |q]’-‘) simultaneously. This suggests
that the collections for nonlocal updates in this case should
be formed across different replicas. For a concrete exam-
ple, readers may refer to Appendix A, where we detail the
nonlocal update scheme for the TFI model and analyze its
autocorrelation times.

IV. PARTITION-FUNCTION DIFFERENCE

A. Reweight-annealing and importance sampling

As our primary interest lies in how M, and its derivatives

change with some physical parameter A, we consider
My(1) = —log Q(1) + 2log Z(A) + log Z,(A) + N log 2
a7

and use the ReAn method based on importance sampling
[39-47].

First, we select a reference point Ay for which the value
of My (Xg) is already known. For example, in the TFI model
given in Eq. (1), the limit Ag =J = 0 corresponds to a
product state with no magic. Then, by considering the dif-

ference [M> (L) — M (Ao)] (We assume Ag < A without loss
of generality), we have
- A Z(A Zr (A
50 = log Qo) (ho) 2(Ao) (18)
o) Z(A) Z>()

Since the distribution overlap between Q(Ag) and Q(A)
(similar for Z and Z;) can be significantly small,

practically, to enhance the simulation efficiency, interpo-
lations are needed. We consider

O(k) ﬁ O(h—1)

o ~ U o0
Z(w) 1 Z(hie1)

) 1
zoy ~ 760 (19

Zz()»o) o 7y (e 1)
()

by dividing [X,A] into m subintervals, where X, = A.
Apparently, the efficiency of Eq. (19) depends on (i) the
number of m required and (ii) the relative error for estimat-
ing [Q(Ax—1)/O(\)]. Neither of these two things should
scale exponentially with system size in order to enable
efficient simulations. To satisfy the two requirements, we
use the annealing scheme introduced in Ref. [39]. In brief,
it sets [Q(Ar—1)/Q(Ar)] =€, where € < 1 is a constant
for any parameter point and system size. Then, it can be
proved that the required number of interpolations scales
m ~ (, — xo)L?/|log €|, which is polynomial, where L is
the length of the system and d is the space dimension. The
relative error for estimating each [Q(Ax—1)/Q( t)] in this
scheme is then bounded by /(e~! — 1)/Nyc, with Nyc
denoting the number of Monte Carlo steps, which does not
diverge exponentially.

If L = B, which is the inverse temperature, then the
estimators are

O(Br-1) _ <(E)nm>

0(Bv) B ) g0

ZB-) _ [ B \™

Z(By) _<< Br ) >ﬂ,c,z’ 20

Z2(Br-1) _ <(E)nm>
Z(Br) B by

where the subscripts denote that the simulation is at Sy
for simulating the corresponding partition function and 7
denotes the total number of operators (excluding the null
operators) in the SSE configuration. The reference point is
taken to be By = 0, at which the value of 2-SRE is zero.

Similarly, if we take A =J in the Hamiltonian of the
TFI model given in Eq. (1), we have

OWr—1) _ <(£>W’t°t>
Q(Jk) Jk JkQ,
Z(Jk-1) ot
=((5) ) e

ZUo

Zy(Jk-1) <<J >nj’t°'>
ZZ(Jk) Jk JiZo ’
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where n; 4t denotes the total number of operators related
to interacting terms J in TFI model.

The derivations for the relations in Egs. (20) and (21)
can be found in Appendix B.

B. Thermodynamic integration

Another popular way to estimate the partition-function
difference is via the thermodynamic integration (TI) [46,
48-50]. In general, TI considers two systems 4 and B,
which can differ in their manifolds and parameter, with
effective potential energies E£4 and Ep, respectively. To
evolve 4 to B, an extended system is introduced with an
effective potential energy E(A), where A € [Ay4, Ag]. The
function E()) is constructed such that E(A,) = E, and
E(Ap) = Ep. For example, suppose that 4 and B share the
same inverse temperature 3; then, for the extended system,
Z(h) =Y, e PE® and

dlogZ(}\) dE(\)
SO Y fssh il W 22)
dx dr |,
Then, integrating Eq. (22), we achieve
Zp B
tog 22 = [ ~p dEGY) ©3)
4 Iy

Note that Eq. (23) also indicates how to calculate the
derivatives of log(Zz/Z4) with parameter A.

If we restrict the intermediate process of the integration
to be adiabatic, repeated thermalization procedures can be
saved by taking the final state from the last simulation as
the initial state for the next simulation. This is a trick of
simulated annealing [83] and it also applies to the ReAn
method. In this work, we use TI to calculate the deriva-
tives of 2-SRE by identifying Zp = Q(1) and Z, = Q(),)
(and similarly for Z and Z,). We use ReAn to compute the
values of M, instead of TI because empirically TI requires
more interpolations than ReAn, as the former method has
to consider numerical integration errors.

According to Eq. (18), the first-order derivatives of the
2-SRE with parameters J and 8 can be easily achieved as

dMy(J)
o =Bl — 2Bz~ Elrzy,  (24)
dM>(B)
= (E)po — 2E)pz — (E)p 2,5 (25)
dap
respectively, where the effective potential energies are
<nJ, 0 ) ’/,
(E)yg = =02,
(1 g0t) s,
(E)yz = =00 (26)
(nJtot).sz
(E)y .z, = _Tz

and
(ntot>ﬂ,Q
E = —_—=
(E)g.o 8
(E>5,Z - _ (ntot)ﬁ,Z’ 7)
B
(Rtot) ,
(E)pz, = _“T/SZZ_

The TI relations for higher-order derivatives of M, can also
be estimated. For example, the second-order derivatives
are

d*My(J) 1
2 -2 [CJ,Q —-2Cyz7 — CJ,Zz] , (28)
d*M>(B) 1
—F B [Cs0—2Cs2— Cp2,], (29)
where
(Cos = (110100t = D)0 = (171005 05
Oz = (nysot(ygor — D)z — (M 10t)J 25 (30)
(C) 0 = (nys0t(y 0t — D)szy = (11001)7 2,
and
(Cop = (mot(mot — D)p.o — (mot)5.0-
(C>Z,ﬂ = (Mot (Mot — 1)),3,2 - (ntot),zg,za 31

(C)zp.p 7= (mot(ot — D) p.zy — (o) z,-

V. NUMERICAL RESULTS
A. Ground-state 2-SRE and the derivatives

As many-body magic is typically an extensive quantity
that follows the volume law [10], its density is a commonly
studied quantity [9,11,19,36]. For the 2-SRE, we define the
magic (2-SRE) density to be /1, := M, /N.

For the 1D TFI model, we consider a ring of length
L with the parameter 4 fixed at 1 in Eq. (1), such that
the quantum critical point is located at J. = 1. For the
2D TFI model on a L x L square lattice, we similarly fix
h =3.04438 to let J. ~ 1 [84].

As shown in Fig. 2(a), the magic density m; of the 1D
TFI model reaches its maximum at the critical point, which
aligns with previous results obtained via the MPS and TN
methods [11,16,36]. In contrast, the magic of the 2D TFI
model increases monotonically across the critical point;
thereafter, the magic for the 2D TFI model maximizes
within the ferromagnetic (FM) phase and then decays to
zero, since the limit J — oo corresponds to a stabilizer
state.
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0.8 1.0 1.2 0.8 1.0 1.2

FIG. 2. m; as a function of the coupling strength J of the TFI
model: (a) for the one-dimensional (1D) ring with length L, fixing
h =1 and B = L to extrapolate to the ground state; (b) for the
two-dimensional (2D) L x L square lattice with PBC, fixing & =
3.04438 and 8 = L to extrapolate to the ground state. In addition,
aq (d = 1,2) denote the volume-law coefficients in Eq. (32).

This accords with the results reported by sampling
generalized Rokhsar-Kivelson wave functions of the 2D
quantum ferromagnet with the same phase transition in
Ref. [20]. However, the authors’ findings for the 1D quan-
tum ferromagnet [20] differ significantly from our 1D TFI
model results. They did not observe a peak in 71, at the crit-
ical point of the 1D quantum Ising ferromagnet. Given that
our results as well as those MPS or TN results are derived
from direct calculations on the TFI model rather than the
corresponding classical stochastic-matrix-form Hamilto-
nian (not an exact TFI model but with the same phases),
the peak behavior at the critical point of the 1D TFI model
must be solid. On the other hand, the results in Fig. 2
reflect that the magnitude of magic is not a characteris-
tic quantity for a phase or phase transition. For example,
the state can be efficiently prepared using Clifford gates
when the spins are strictly aligned along the z axis. How-
ever, the magic increases if the spins are distributed around
the north pole of the Bloch sphere, even though the state
remains in the FM phase. Similarly, when the spins rotate
to align precisely along the x axis, characteristic of a per-
fect paramagnetic phase, the magic returns to zero. An
important reason for the above observations is that magic
is essentially basis dependent, which can be viewed as
the participation entropy in the Pauli basis [64,85,86]. In
this sense, its derivatives and scaling behavior could be
more important. As we will discuss later, the volume-law
corrections are also valuable.

In Figs. 3 and 4, we present the first- and second-
order derivatives of my, respectively. For both the 1D
and 2D cases, singularities can be observed. In particular,
their second-order derivatives diverge at the critical points.
From Egs. (24) and (28), the singular behavior of the
2-SRE is determined by the interplay between the higher-
order derivatives of the (logarithmic) partition functions

(a) (b)
101 A 204 | s Nie
° DDQE!W‘ %. ¥ N =242
m = 4 7 _ 292
0-5_1 .. , 1.5 S:i. A N=32
~ .ﬂ 1.0 1 2 E
=
= 00 = »
£ # i;
= ® 0.5 1 3
L "
5 ° =
—0.5 4 e Nos :D %Eﬁﬁﬁj 0.0 &
B ON=16 M
1.0 B N =32 % —0.5
V1 A~ N=64 .
0.8 1.0 1.2 1.0 1.2 1.4
J J
FIG. 3. dm,/dJ of the TFI models: (a) the 1D ring with length

L; (b) the 2D L x L square lattice.

log O and logZ. Note that Z, and Z have the same sin-
gularity behavior at zero temperature. If the singularity
originates purely from the Z part (related to the free energy
or energy), it is trivial, as both the 1D and 2D models
exhibit second-order phase transitions at their quantum
critical points. Consequently, if the Q part, which is tied
to the characteristic function Ep(p), exhibits no singular-
ity, then magic lacks a direct sensibility to criticality for
the model.

B. Contributions from Q and Z for the singularities in
the ground-state magic

To clarify, we separately plot the Q and Z parts in
Fig. 5. For the TFI models, we surprisingly find that both
parts exhibit divergence at J.. In the 1D case, depicted in
Fig. 5(a), the Q part governs the behavior of [d%7it,/dJ?]
near the critical point, resulting in the sharp downward
trend of [d?#i,/dJ?] in Fig. 4(a). By contrast, in the 2D
case shown in Fig. 5(b), the Z part dominates. Away from
the critical point, the divergent effects of the O and Z parts
cancel out in the ferromagnet phase, leading to a distinct

a b
(2) ®),,
R b ® N=8
B N =162
0 "U;.ﬁ’ I B N =242
ay” 1004 f b N=32
—25 - > 1
= * A
< 50 % =0 o
£ 4
=
=75 & j‘f
& N=38 04 ®
_100d ® v-164 W
B N =232
A~ N=64 & 4
—125 —50 T
0.8 1.0 1.2 1.0 1.2 1.4
J J
FIG. 4. d*,/dJ?* of the TFI models: (a) the 1D ring with

length L; (b) the 2D L x L square lattice. The lowest value is
atJ ~ 1.1.
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(a)
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=Y 5001 ®a
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—400 Zf 3
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—600 —1000 7 T
0.8 1.0 1.2 1.0 1.2 1.4
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FIG. 5. For d?m,/dJ?, the contributions from Q and Z accord-
ing to Egs. (24) and (28): (a) the 1D ring with length Z; (b) the
2D L x L square lattice.

behavior of [@?in, /dJ?] in Fig. 4(b) with an extreme value
atJ ~ 1.1.

The above results suggest that in general models, the
interplay between the Q and Z parts, or the contribu-
tions from the characteristic function and the free energy,
may result in more intricate behavior of m,. The order
of the phase transition plays a significant role here. From
this perspective, it is more clear that, consequently, magic
quantified by m, does not necessarily achieve a maximum
or minimum at the quantum critical point. This argument
is also supported by previous small-scale numerical results
for the 2D Z, gauge theory, obtained using tree-tensor-
network sampling [11]. For the 1D and 2D TFI models
studied here, the divergence of the Q part in [d%iny/dJ?],
which relates to Ep(p), suggests a more direct connec-
tion between magic and (conformal) criticality. However,
this relationship is still subtle, as the Q part may lack a
singularity for certain models and general bases.

C. Volume-law corrections

To gain deeper insight into the results and many-body
magic, we discuss the volume-law corrections of 2-SRE.
In the following discussion, we assume that the ground
state exhibits translation symmetry, which holds in many
cases, including the TFI models considered in this work. If
a symmetric ground state exhibits only local magic, e.g.,
1Y) =111 — €™ 114))/v/2]°V/2, which is a product
state of V/2 singlet states up to a phase, the strict volume
law M, o N of the full-state magic follows directly from
the additivity property discussed in Sec. II B. In contrast,
if a ground state exhibits nonlocal magic, which cannot be
removed via finite-depth local quantum circuits in the ther-
modynamic limit [87,88], then nonzero volume-law cor-
rections must appear in the full-state magic. These correc-
tions have a similar role with the mutual magic £45(p) :=
MApap) — M(ps) — M(pp) [9,15,62-64] in a bipartite

system 4 U B, where M is some mixed-state magic mono-
tone. Unlike mutual magic, these volume-law corrections
go beyond the bipartition scenario. Although nonzero
volume-law corrections are a necessary but not sufficient
condition for the presence of nonlocal magic, they serve as
a valuable diagnostic tool, particularly given the difficulty
of directly identifying nonlocal magic through circuit-
based definitions. This mirrors the difficulty of identify-
ing long-range entanglement in many-body systems. For
instance, in conformal critical systems, subleading correc-
tions to the area law of entanglement entropy often serve
as important indicators [89,90]. Similarly, we claim that,
in the thermodynamic limit, persistent volume-law correc-
tions to the SRE at a conformal critical point may indicate
nonlocal magic.

To fit the volume-law corrections, we adopt the fitting
ansatz

Mz = ade + by (32)
for ground states on a d-dimensional lattice with length
L with the data of 71, in Fig. 2. Additional subleading
terms may be present, particularly in higher dimensions.
As shown in Fig. 2, the volume-law coefficients a; and
a, for the TFI models are close to their corresponding 2-
SRE densities, confirming that the volume law is exactly
the leading term in 2-SRE.

In Fig. 6(a), we present the correction b; for the ground
states of the 1D TFI model. Since both the paramagnetic
phase and the ferromagnet phase are gapped, in the ther-
modynamic limit, no nonlocal magic should be captured
by 2-SRE. This reasoning also extends to the 2D case
shown in Fig. 6(b). Therefore, we attribute the nonzero
values of by (d = 1,2) near J,. to finite-size effects. More
interestingly, these finite-size effects lead to the indica-
tion of discontinuities at the critical points. The difference
between the two phases is also reflected by the discon-
tinuities of the magical structures reflected by b,;. This

(@) (b)1.0

0.2 1 0.5 1
0.1 0.0 e
0.0 —0.5 1

0.1 1 ~1.0 1

b] bQ
0.2 T -15 T
0.6 0.8 1.0 1.2 0.8 1.0 1.2
J J
FIG. 6. The volume-law corrections for the ground states of

(a) the 1D TFI model; (2) the 2D TFI model. The lowest point of
by(J)isatJ ~ 1.05.
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FIG. 7. The volume-law scaling M, = a\L + b, fitted for the
2-SRE of the 1D TFI model (PBC) with length L at its criti-
cal point J. = 1. The correction term is determined to be b; =
—0.34(2), which is consistent with the theoretical prediction
—logv/2 &~ —0.3466 in Ref. [91].

phenomenon contrasts strongly with the full-state magic,
from which extracting information of phases and criticali-
ties proves challenging, as we have discussed in Sec. V B.
This suggests that the volume-law corrections of magic
could provide a stronger diagnostic for criticalities com-
pared to full-state magic. This is especially significant for
the «-SRE, which, as a non-mixed-state measure, fails to
provide a reliable or monotonic mutual magic for bipartite
systems.

Importantly, a recent theoretical study has shown that
for a (1+1)D conformal critical point, the volume-law
correction to the 2-SRE is a constant [91]. This con-
stant is connected to the noninteger ground-state degener-
acy, known as the g-factor, of some boundary conformal
field theory. In the 1D TFI model, this yields bj exact =

(a) (b)1.5
0.300 %\ -
Iy
0.275 1.04 ®
o8 s W iF
= [SaY N =
- 0.250 = % o N 162
I: |4 Ié\] *
0.225 £ 05 i
0.200 | N=8
N =16
01751 | N=242 0.0 1
| N=322
0.150 —
0.5 1.0
&)
FIG. 8. Fixing J =1 and & = 2.5, for the 2D TFI model on

a L x L square lattice: (a) the variation of 71, with the inverse
temperature 8; (b) the first-order derivative dm,/dp. For each
subfigure, the left dashed line refers to B./2 and the right one
refers to B.. The additional solid purple line in the right figure
corresponds to the singular point at which 8* ~ 0.687.

(a) : (b) :
@ N =82 o N=8
0.09 Z,part w162 Y 81 B N=162 A
¥ N =242 $ N =242
09 ﬁ A N1:482 . & N‘:482 |
—0.4- % % §
'; Sk 4 1 Q part
& Zpart Om i e
—0671 Ty o #
Y g E%t
—081 T
0.5 1.0

FIG. 9. For —B*(d*my/dp?): (a) the Z and Z, contributions;
(b) the Q contribution.

—log +/2 &~ —0.3466. To verify this, we have carried out
low-temperature simulations with § = 4L and successfully
extracted b; = —0.34(2), in excellent agreement with the
theoretical expectation, as shown in Fig. 7.

D. 2-SRE of 2D finite-temperature Gibbs states

While the «-SRE is not well suited as a measure for
mixed states, we are interested in examining whether it
can partially reflect some of the properties of the system.
We fix J =1 and /# = 2.5 and then the finite-temperature
phase-transition point is located at 7, = 1.27369(5) or
Be ~ 0.78512, based on the QMC results in Ref. [92].

At the infinite-temperature limit (8 = 0), 71, is approx-
imately zero within the error bar. For finite temperatures,
however, m, exhibits complex behavior, offering minimal
valuable information, as shown in Fig. 8(a). Additionally,
for the first-order derivative dm,/df, we observe a singu-
lar point 8* & 0.687 < . in the paramagnetic phase, as
shown in Fig. 8(b).

Using Eq. (29), we analyze —B%(d*m,/dB?%), which is
proportional to the specific heat. For this second-order
phase transition, the Z part of —B%(d%in,/dp*) must be
singular at 8.. Meanwhile, the Z, part, influenced by the
doubling of B, attains its critical point at 8./2, as shown in
Fig. 9(a). Unexpectedly, the Q part, depicted in Fig. 9(b),
diverges at 8*, a point unrelated to any physical property
of the system. Consequently, the 2-SRE, which is not a
well-defined magic measure for mixed states, proves inad-
equate for characterizing phases or critical phenomena in
the finite-temperature case.

VI. CONCLUSION AND DISCUSSIONS

In this work, we introduce a novel and efficient QMC
method for computing the «-SRE and its derivatives
in large-scale and high-dimensional quantum many-body
systems. Our method is broadly applicable to any sign-
problem-free Hamiltonian regardless of the dimension
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of the system. This versatility makes our method well
suited for studying quantum magic across a wide range
of physical systems, including those exhibiting sponta-
neous symmetry breaking, topological phase transitions,
topological order, and conformal criticality. As many-body
magic remains an underexplored frontier, our algorithm
offers a vital computational tool for advancing this area,
particularly in light of recent theoretical developments in
conformal field theory [91].

We demonstrate our approach on both 1D and 2D
ground states, as well as finite-temperature Gibbs states
of the TFI model. A key benefit of our approach is that
it allows us to isolate the free-energy contribution in the a-
SRE and the derivatives, providing deeper understanding
into magic and criticality in quantum many-body systems,
which have previously been inaccessible. In particular,
we uncover singularities in the derivatives of the char-
acteristic function contribution in SRE at the conformal
critical points in both 1D and 2D. Further, we reveal that
the behavior of the «-SRE is governed by the interplay
between these two contributions, clarifying why full-state
magic generally fails to reveal meaningful information
about phase structure and criticality, as observed in earlier
studies. Meanwhile, the order of the phase transition plays
a crucial role for the behaviors of SRE and the singulari-
ties in its derivatives. This is quite different from quantum
entanglement: for both the 1D and 2D TFI models, previ-
ous results show that the quantum entanglement reaches its
maximum at the quantum critical points [44,93].

To further investigate the use of full-state magic, we
consider the volume-law corrections, the nonzero values
of which serve as a necessary condition for the presence
of nonlocal magic inherent in system correlations. These
corrections, observed in our simulations on finite system
sizes, show the evidence of discontinuity at quantum crit-
ical points, indicating distinct magical structures on both
sides of the critical point. We consider volume-law correc-
tions to be more significant and argue that they could be
important diagnostics for nonlocal magic at conformal crit-
ical points. We leave a more comprehensive exploration of
these corrections across a broader class of systems to future
work. Finally, we confirm that the «-SRE is not an effective
measure for mixed-state magic in many-body systems by
studying an example of finite-temperature phase transition.

In addition, our algorithm shows not only that certain
magic states of a high-dimensional many-body Hamilto-
nian can be simulated efficiently on a classical computer
but that their magic can be computed efficiently. This
underscores the fact that magic is just a necessary but not
sufficient resource for quantum advantage.

In closing, we discuss extending our algorithm to com-
pute the magic of a reduced density matrix. The mutual
magic L4p quantifies those magic generates from nonlo-
cal non-Clifford operations and it could also encode crucial
information of many-body systems. Previous studies have

shown that the mutual magic £, would exhibit stronger
signatures than the full-state magic in detecting criticalities
and is capable of characterizing certain states in topologi-
cal quantum field theory [9,11,15,62—64,94]. While L 5 is
ideally defined using a mixed-state magic monotone, using
the «-SRE to define it, called the mutual-stabilizer Rényi
entropy (mSRE), has also proven valuable [11,64,94], in
much the same way as quantum mutual information cap-
tures entanglement. Its significance has also been theoret-
ically substantiated in the recent developments on confor-
mal field theory [91]. Our algorithm can be easily extended
to compute reduced-density-matrix magic by tracing out
one subsystem in QMC simulations using the technique in
Refs. [95-98], so that the mSRE can be computed. This is
also a promising way to study the finite-temperature phase
transition and open quantum systems rather than consider-
ing the full-state «-SRE, as mentioned at the outset. Our
work will enhance the further fusion and intersection of
quantum information and many-body physics.
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APPENDIX A: NONLOCAL UPDATE AND
AUTOCORRELATION TIME FOR SIMULATING
O IN THE TFI MODEL

For a conventional SSE simulation of the partition func-
tion Z of TFI model, we define the following operators
[69,701]:

H ;= h(o;"+07), (A1)
Hy; = hl;, (A2)
Hy 5z =J(ZZi + 1), (A3)

where 0% := (X % iY)/2. The nonlocal update in this case
is the branching cluster update, as illustrated in Fig. 10,
where each cluster is updated with a 50% probability by
switching between single-site diagonal operators Hj; and
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FIG. 10. To grow a cluster, we begin from either a site or a
bond operator and identify all operators belonging to the cluster
based on the following rules: (1) each cluster terminates at site
operators, H_y; or Ho;; (2) each bond operator H, 7 is associ-
ated with a single cluster. The example illustrates two clusters,
represented by dashed and solid cyan lines, respectively.

off-diagonal operators H_; ;. If a cluster, such as the one
represented by the solid orange lines in Fig. 10, crosses the
imaginary-time boundary, we should accordingly update
the spins in o).

As introduced in Sec. III C, to simulate O, we extend
the clusters defined in Fig. 10 to additionally include {o; }
from the reduced Pauli string P =[], o; and allow the
cluster to span multiple replicas (see Fig. 11). While the
update scheme presented above appears reasonable, we
find that, in practice, it results in long autocorrelation
times. This occurs because the cross-replica clusters inad-
vertently correlate the operators in different replicas, which
are supposed to be independent. To fix this problem, before
each round of nonlocal updates, we freeze each o; with
a probability of 50% to make the operators in different

P a1 | - o1 g1 g1
x| LT | s« @B INe) -
o9 oy 09 g2
53.|::1 33()|::2 83.|::3 SSOE4
Sh Sy Sy A
a3 o3 T3 a3
5208 2 d ssQ s2 0
g4 04 g4 g4
s1 g si@ B siQOE s A
1 2 3 4
|arg) |og) ) | )
Replica 1 Replica 2 Replica 3 Replica 4
FIG. 11. For each site s;, since o; in different replicas must

be the same, a cluster associated with s5; must include all the
oj. For each s;, we start at either the left or right side of o; in
each replica, but ensure that the imaginary-time boundaries are
crossed an even number of times in total. The diamond-shaped
markers represent the remaining part of the cluster, which is com-
posed of H_;;, Hy; and H, b Notably, due to the existence of
the two-site operators H, 7 different o; and oy can belong to the
same cluster.
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FIG. 12. (a) The integrated autocorrelation time of n; for the

2D TFI model at the quantum critical point with 4/J = 3.0443
and g = L. (b) The decay of 4,, () for various system sizes,
represented by different colors.

clusters sufficiently independent. Apparently, the detailed-
balance condition still holds with this modification. If a
o; is frozen, then it will not be included in any cluster.
Unlike the clusters in Fig. 11, which take four replicas into
consideration, only two replicas are randomly chosen in
this case related to site j . Additionally, the imaginary-time
boundaries in the selected two replicas are either crossed
simultaneously or not at all. We find that these modifica-
tions lead to a dramatic reduction in autocorrelation times
to an acceptable level.

As an example, we consider the integrated autocorrela-
tion time of the observable 7, in Sec. IV A, defined as

A 1 ©
Tt = ) A ), (A4)
=1
where
Ay (1) o= (nyny (u+ 1) — (ny;w)* (A5)

(ny()?) — (nyW))?

is the autocorrelation function, with u and ¢ to denote dif-
ferent MC times [80,100]. 4,,, (¢) is a convex function and
will decay exponentially when ¢ is large, and the sum
in Eq. (A4) is truncated when 4,, (f) becomes negligibly
small in practice [100]. The results are shown in Fig. 12
and indicate the efficiency of this modified algorithm for
nonlocal updates.

APPENDIX B: ESTIMATORS IN
REWEIGHT-ANNEALING

We consider the partition function Q as an example,
with similar reasoning applying to Z and Z,. Suppose
that Q(Ax) = D . We(Ak), where W.(At) > 0 are the real
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weights. Then,
OCi—1) _ > e We(hi—1)
O(r) Do We(hp)
Z We(hk—1) Wc()\k)

We ()

ZC Wc ()‘k)

= <M> (B1)
W()\k) )‘/c,Q’

which averages the weight ratios for the two parame-
ters Az—; and Ag. Equation (B1) is called the reweight-
ing trick [39,101]. If A = B, then according to Egs. (13)
and (14), the ratio W(B;_1)/W(Bx) in Eq. (B1) becomes
(Br—1/Br)", where nyy is the total number of operators in
the four replicas. Similarly, we can obtain the reweighting
ratio when A = J.
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