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Abstract: Traditional screening methods for Mild Cognitive Impairment (MCI) face lim-
itations in accessibility and scalability. To address this, we developed and validated a
speech-based automatic screening app implementing three speech–language tasks with
user-centered design and server–client architecture. The app integrates automated speech
processing and SVM classifiers for MCI detection. Functionality validation included com-
parison with manual assessment and testing in real-world settings (n = 12), with user
engagement evaluated separately (n = 22). The app showed comparable performance with
manual assessment (F1 = 0.93 vs. 0.95) and maintained reliability in real-world settings
(F1 = 0.86). Task engagement significantly influenced speech patterns: users rating tasks as
“most interesting” produced more speech content (p < 0.05), though behavioral observa-
tions showed consistent cognitive processing across perception groups. User engagement
analysis revealed high technology acceptance (86%) across educational backgrounds, with
daily cognitive exercise habits significantly predicting task benefit perception (H = 9.385,
p < 0.01). Notably, perceived task difficulty showed no significant correlation with cognitive
performance (p = 0.119), suggesting the system’s accessibility to users of varying abilities.
While preliminary, the mobile app demonstrated both robust assessment capabilities and
sustained user engagement, suggesting the potential viability of widespread cognitive
screening in the geriatric population.

Keywords: mobile health applications; mild cognitive impairment; MCI detection; automatic
screening; user engagement

1. Introduction
1.1. Background

Mild Cognitive Impairment (MCI) is widely recognized as a transitional stage between
the cognitive changes associated with normal aging and the more severe cognitive decline
commonly found in Alzheimer’s disease (AD) [1]. Early detection of MCI is crucially
important as it provides an opportunity for accurate diagnosis and timely intervention that
can effectively slow down or prevent disease progression, reducing the risk of Alzheimer’s
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disease [2–4]. MCI is believed to arise from a combination of various factors, including age,
genetics, lifestyle, and overall health conditions [5]. Individuals with MCI experience a
mild decline in cognitive abilities, including memory, language, and cognitive processing
such as reasoning and problem solving. However, unlike AD, MCI symptoms are often
subtle and difficult for individuals and even their family members to notice. Despite the
high prevalence of MCI in China, of 15–50% within the senior population (aged 60+) [6],
diagnosis and treatment rates remain alarmingly low [7], emphasizing the urgent need for
scalable screening solutions.

Traditional diagnostic approaches of MCI present some limitations in their accessibil-
ity and scalability. Image-based methods, such as magnetic resonance imaging (MRI) [8]
and positron emission tomography (PET) [9,10], offer high diagnostic accuracy, but they
are expensive and often not easily accessible. Yet, cerebrospinal fluid (CSF)-based meth-
ods [11–13] are invasive procedures that carry potential risks to the patients. Cognitive
behavioral tests such as the Montreal Cognitive Assessment (MoCA) [14] and the Mini-
Mental State Examination (MMSE) [15], while widely used, have been shown to have
limited sensitivity and consistency for early detection [16–18].

Currently, several speech and language-based screening solutions have been devel-
oped for MCI assessment, as speech and language analysis can effectively characterize
language disorders in neurodegenerative diseases [19,20], and it shows promise in detect-
ing changes in language and speech patterns and exhibits the ability to identify early-stage
cognitive decline [21–24]. Such solutions for MCI screening mainly comprise systems
utilizing PC screens or web platforms as interfaces, such as the “CognoSpeak” system [25],
intelligent virtual agents [26,27], the MARC rapid screening tool [28], and the Philips In-
telliSpace Cognition digital test battery [29]. While these systems offer advantages over
traditional assessments, most of these existing solutions are designed for use on PC screens,
web platforms, or virtual agents, which may limit their accessibility and remote usage
potential for widespread adoption.

With increased accessibility, mobile screening tools for cognitive impairment hold
significant promise in healthcare by enabling early detection and intervention, even in re-
mote or underserved areas—crucial for effective treatment and management of conditions
like dementia [30,31]. Compared to traditional screening methods, mobile solutions are
highly cost-effective [31,32] and more efficient, with a reduced need for manual administra-
tion and potential human biases [32,33]. Additionally, mobile apps can leverage speech
language technologies to enable natural human–machine interaction, fostering greater
acceptance, particularly among the elderly population who may face barriers in adopting
new technologies [30,34].

While mobile applications for MCI screening demonstrate encouraging diagnostic
accuracy, with Under the Curve (AUC) values up to 0.838 [18,35,36], and enable home-
based cognitive function monitoring [37], their successful implementation depends heavily
on user engagement. This aspect is particularly crucial as these applications primarily target
older adults, who may face aging-related barriers to digital health technology adoption [38].

Strong user engagement is essential for achieving optimal effectiveness and the clinical
impact of mobile mental health applications [39]. Understanding user engagement patterns
and barriers is invaluable for developing user-friendly designs that promote sustained
use and adherence. Therefore, our study extends beyond technical validation to include
comprehensive user engagement analysis, aiming to optimize the app’s potential for early
detection and intervention in the elderly population.
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1.2. Objectives

The present study builds upon our previous work on discriminating MCI status using
multiple spoken tasks [40] and addresses the gaps in accessibility, scalability, and user
engagement by developing an automatic MCI screening app designed specifically for the
geriatric population. It was assumed that an optimized and reliable app that is also user
friendly and engaging is more likely to be accepted and used consistently, leading to more
comprehensive cognitive assessments and helping to promote early detection of MCI on a
large scale. With that, two interconnected objectives were addressed. First, the technical
performance and functionality of the app’s performance in both controlled and real-world
settings were validated, in order to establish its reliability and validity as an accessible and
scalable tool for early detection of MCI. Second, we evaluated the ability of the proposed
app to maintain user engagement, a critical factor in the success and impact of mobile
health applications [39]. A comprehensive user engagement analysis that examined both
subjective user evaluations and objective behavioral observations was conducted. This
was to demonstrate the effectiveness in fostering user interaction and acceptance in MCI
screening of the app. The specific research questions and hypotheses guiding this user
engagement study are detailed in the next section.

1.3. Research Questions and Hypotheses for User Engagement Study

While the speech–language-based mobile app demonstrates strong potential for auto-
mated MCI screening, its effectiveness and clinical utility heavily rely on users’ sustained
engagement and interaction. Prior research has emphasized the critical role of user engage-
ment in determining the success and impact of mobile health applications, particularly
among older adults who may face unique challenges in adopting new technologies [39].
To investigate this, a comprehensive user engagement analysis was conducted to explore
the following three key research questions:

RQ1: Is there a correlation between users’ perceived difficulty of the screening process
and their actual cognitive performance?

Hypothesis 1. It is hypothesized that users who perceive the app as more difficult to use will
demonstrate lower cognitive performance on the MCI screening tasks.

RQ2: How do users’ task-specific evaluations relate to their engagement and subse-
quent speech production within the app?

Hypothesis 2. It is expected that users who find a task more interesting or engaging will interact
longer, and produce more speech within that task.

RQ3: Do users’ daily habits regarding cognitive exercises influence their perceptions
of the app’s potential usefulness and their willingness to embrace such technologies?

Hypothesis 3. It is anticipated that users who regularly engage in cognitive stimulation activities
will show greater receptivity to the app’s benefits and demonstrate higher technology acceptance.

2. Methods
2.1. Mobile App Design
2.1.1. App Architecture and Development Framework

The MCI assessment application employs a client–server architecture to optimize
resource allocation and ensure scalability (see Figure 1). The design separates the resource-
demanding tasks and sensitive data handling from the user interface, improving both
performance and security while enabling easier future updates and scalability.
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The server hosts computational resources and data storage for the app. It includes
a system backend that processes algorithms related to assessment models, a database
for processed data and assessment results, and an Automatic Speech Recognition (ASR)
module to process and recognize audio inputs and generate corresponding transcriptions
as well as time stamps. An administrative function is also included for centralized user
profile management, task updates, and model refinements.

Figure 1. System architecture of our app. Color Styles (boxes and arrows): Blue:Server-side compo-
nents, server-to-user data/control flow; Green: Client-side applications, user-to-server data/control
flow; Yellow box: Processing component; Dotted boxes/lines: Features under development.

The client app primarily serves as the user interface, designed to facilitate accessibility
for the geriatric population. Two distinct frontend interfaces have been designed as follows:
A general user interface (see Figure 2) developed for potential users with MCI, which
displays speech tasks, collects user inputs, and communicates with the server for data
processing and result retrieval. A super user interface (under development) for specialists,
community workers, or caregivers to manage assessments of users under their care. Both
interfaces allow access to usage history and assessment records.

2.1.2. Security Considerations and Data Protection

The application implements comprehensive security measures to protect sensitive
healthcare data and prevent potential security risks. To address voice spoofing concerns
highlighted in recent research [41], speech recordings are not downloadable by users
without administrator permission. Personal information is encrypted in accordance with
healthcare data protection standards, and unnecessary permissions (location, biometric
authentication, email) are omitted to minimize security vulnerabilities [42]. The application
follows strict security guidelines, requiring explicit user consent for microphone activation
and avoiding non-essential access requirements [43].

2.1.3. User-Centered Design Principles

The development of the MCI assessment application was guided by user-centered de-
sign principles, specifically optimized for elderly users to ensure ease of use. It incorporated
three key aspects: interface accessibility, interaction convenience, and user-centric output.
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Figure 2. Screenshots of main user interface (UI) of the app. The screen will automatically switch to
landscape orientation during the Picture Description task for better viewing. Detailed descriptions of
the tasks are provided in Supplementary Material SA.

Interface Accessibility: The interface design (see Figure 2) was carefully tailored to
incorporate visual elements prioritized for older adults. Firstly, typography was given
significant attention by implementing words of larger fonts with optimal contrast ratios to
accommodate the potential visual impairments common in elderly users. Secondly, spatial
organization was enhanced with increased element spacing to aid users who may have
reduced motor control or precision. Furthermore, a clear visual hierarchy was established
with minimalistic iconography to reduce cognitive load and enhance more direct navigation.
In addition, a comfortable blue palette was utilized for both conveying a sense of trust and
ensuring physiological accessibility.

Interaction Convenience: The application made use of a dual-modality interaction by
integrating visual and auditory elements to accommodate age-related sensory changes. Vi-
sual components contained clear textual instructions, intuitive graphical cues, and progress
indicators, while the auditory modality provided detailed vocal instructions and repeatable
audio prompts. To address the unique requirements of different tasks while considering
the cognitive and physical needs of elderly users, task-specific interface adaptations were
implemented. These adaptations included automatic landscape orientation for a wider
view and dynamic countdown timers for clear time management cues in specific tasks.
In addition, prior to the actual assessment, a Recording Test was carried out to serve as a
preparatory measure for users to optimize microphone placement, adjust volume, and ver-
ify audio input quality. The application further incorporated sequential task presentation
and consistent navigation patterns to effectively break down complex tasks into manage-
able steps, guide user attention, and reduce the learning curve. These features collectively
reinforce the overall interaction convenience for elderly users, harnessing both visual and
auditory modalities to support their engagement with the application.

User-Centric Output: The assessment output framework balanced clinical utility with
user comprehension. Based on user performance data, the system produced standardized
reports, created personalized cognitive profiles, and offered rehabilitation recommenda-
tions. For patients, the results were presented in clear, non-technical language, offering
insights into their cognitive health and potential improvement strategies. For clinicians or
healthcare workers, the reports provided detailed data to guide clinical decision-making.
These features enabled long-term cognitive monitoring by tracking changes over time to
support ongoing cognitive health maintenance.
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2.1.4. Speech Tasks, Feature Extraction, and Classification

The present MCI detection application incorporated three speech–language tasks from
our previous work [40]: Picture Description (PD) (includes three figures [44–46], details on
Supplementary Material SA), Semantic Fluency (SF), and Sentence Repetition (SR). These
tasks were designed to be completed in approximately 15 min, with speech transcrip-
tion and timestamps acquired through ASR. Feature extraction involves two approaches:
(1) custom-designed features based on previous work and (2) BERT-based features [47]. A
768-dimensional feature set was extracted from PD task transcriptions using a pre-trained
Chinese BERT model. For classification, the application implemented Support Vector Ma-
chine (SVM) classifiers for each task, including four task-wise classifiers (two for PD: one
using BERT features, another using custom features). Principal Component Analysis (PCA)
was used for feature selection in custom feature-based classifiers. Final MCI likelihood is
determined by averaging probabilities across all tasks, with equal weighting. A probability
threshold of 0.5 is used for MCI classification. This automated approach ensures consistent,
objective assessment without manual intervention and improves reliability by analyzing
additional lexical and linguistic features from advanced NLP models.

2.2. User Engagement Study Procedure

The user engagement study involved 22 participants recruited based on inclusion
and exclusion criteria consistent with our previous work [40]. Written informed consent
was obtained from all participants, and the study received ethical approval from the Hu-
man Research Ethics Committee of Shenzhen Institutes of Advanced Technology, Chinese
Academy of Science. Participants completed the MCI screening using our mobile applica-
tion in a controlled laboratory setting. The block diagram of data collection and workflow
is provided in Supplementary Material SB (see Figure S1).An experimenter covertly ob-
served participants’ engagement in two key aspects, using a structured form to record the
frequency of these behaviors for each participant during the screening. The two aspects of
engagement observed were the following:

(1) Cognitive processing (thinking/analyzing), defined as observable focused or engaged
behavior, such as short pauses during speech without obvious distraction or stops to
produce words described in filled pauses;

(2) Distraction levels, defined as observable distracted behaviors, such as looking away
from the screen, engaging in task-irrelevant speech, or engaging in body movements
unrelated to the task.

Immediately following the screening, participants completed a pre-designed question-
naire assessing their overall perceptions of the app’s usability and task difficulty, using
3-point Likert scales and open-ended questions. To provide a validated measure of cogni-
tive performance, each participant underwent a standard MoCA administered by a trained
researcher one week after the app screening to minimize potential practice effects. Finally,
the collected data from the app screening, engagement observations, questionnaires, along
with MoCA scores were analyzed using quantitative and qualitative methods, as described
in the Performance Metrics and Data Analysis section.

2.3. Performance Metrics and Data Analysis

Technical performance of the MCI screening was evaluated by comparing the au-
tomatic assessment results with manual assessment across three speech tasks, and its
robustness on a real-world dataset obtained from self-directed, unstructured settings. Stan-
dard metrics, including accuracy, precision, recall, and F1-score, were used to assess the
performance of the system. For the user engagement analysis, multiple statistical ap-
proaches were adopted. First, the Kruskal–Wallis H-test [48] was used to analyze the
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relationship between users’ overall perception of app difficulty and their cognitive perfor-
mance (MoCA scores and probability of MCI). Next, to examine the connection between
users’ task-specific evaluations and their engagement, both subjective data (self-evaluations
of users and observations of experimenters) and objective measures of speech production
(task duration, total characters, keywords, and repetitions) were analyzed using the Mann–
Whitney U test [49]. Finally, the influence of users’ daily habits and education on their
perceptions of the usefulness of the app and willingness to adopt such technologies, were
investigated and results were presented using the Kruskal–Wallis H-statistic.

3. Results
3.1. Participants

The study included data obtained from two distinct groups of participants: the Real-
World set and the Survey set. The Real-World set consisted of 12 mobile phone users who
completed tasks without any external assistance (three females, nine males), with a mean
age of 45.83 years (SD = 10.00 years), mean education level of 16.9 years (SD = 3.87 years),
and a mean MoCA score of 26.12 (SD = 1.91). The Survey set included 22 individuals
(8 females, 14 males) who participated in the user engagement survey, with a mean age
of 60.10 years (SD = 6.48 years), mean education level of 10 years (SD = 3.11 years), and a
mean MoCA score of 26.71 (SD = 3.39) *. MoCA scores were available for 17 participants in
the Survey set.

3.2. MCI Detection Performance
3.2.1. Comparison with Manual Assessment

The present automatic MCI detection system was evaluated against manual assessment
benchmarks based on the same dataset. Results (Table 1) demonstrated that the automatic
approach yielded comparable or superior performance to manual assessment across all
cognitive tasks (F1 ≥ 0.78, Recall ≥ 0.82).

Table 1. Comparison of manual and automatic MCI detection performance. BERT refers to fea-
tures extracted from the BERT NLP model, while Custom refers to custom-designed features from
previous work.

Manual Automatic
Tasks Acc Pre Rec F1 Acc Pre Rec F1

SR 0.90 0.91 0.88 0.88 0.91 0.87 0.94 0.90
SF 0.71 0.74 0.56 0.64 0.79 0.75 0.82 0.78
PD(Custom) 0.80 0.80 0.84 0.80 0.80 0.74 0.86 0.80
PD(BERT) - - - - 0.79 0.75 0.82 0.78
Task fusion 0.95 0.97 0.94 0.95 0.94 0.91 0.96 0.93

The task fusion results confirmed the robustness of the present automatic system
(F1 = 0.93), closely aligning with manual assessment performance (F1 = 0.95). Notable
improvements were observed in the SF task, where the automatic approach substantially
outperformed manual assessment (F1: 0.78 vs. 0.64; recall: 0.82 vs. 0.56). The SR task
showed slight enhancement in the automatic condition (F1: 0.90 vs. 0.88) while maintain-
ing high precision and recall rates. For the PD task, the BERT-based features achieved
comparable performance (F1 = 0.78) to the custom-designed features used in manual as-
sessment (F1 = 0.80), with improved recall (0.86 vs. 0.84) despite a minor precision trade-off.
These findings indicate that the present automatic MCI detection system can effectively re-
place manual assessment, maintaining high performance standards even with the inherent
complexities of automated processing.
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3.2.2. Real-World Dataset Evaluation

To validate the practical applicability of our automatic MCI detection system beyond
laboratory conditions, its performance was evaluated based on a real-world dataset. The task
fusion approach demonstrated a reasonable performance (see Table 2) in the real-world settings
(F1 = 0.86), despite the observable decrease in results from the controlled environment (F1 = 0.93).
However, individual task performance saw substantial declines: SR (F1 = 0.75 vs. 0.90),
SF (F1 = 0.44 vs. 0.78), and PD with BERT features (F1 = 0.57 vs. 0.78) (Table 2).

Table 2. MCI detection performance on Real-World dataset.

Task Accuracy Precision Recall F1

SR 0.67 0.60 1.00 0.75
SF 0.58 0.67 0.33 0.44
PD (Custom features) 0.42 0.43 0.50 0.46
PD (BERT features) 0.50 0.50 0.67 0.57
Task fusion 0.83 0.75 1.00 0.86

Among individual tasks, SR maintained a relatively robust performance (F1 = 0.75)
with perfect recall but reduced precision (0.60). For PD tasks, BERT-based features demon-
strated superior performance compared to custom features (F1 = 0.57 vs. 0.46), confirming
the robustness of contextual language models in challenging environments. SF showed the
most significant performance drop (F1 = 0.44), primarily due to low recall (0.33). The re-
duced performance likely is due to the combination of a small sample size (n = 12), variable
environmental conditions, and differences in participant engagement compared to con-
trolled settings.

3.3. User Engagement Findings
3.3.1. Overall App Difficulty Perception and Cognitive Performance

To examine the relationship between perceived overall difficulty of the new app
(screening process) and cognitive performance (RQ1), the possible correlation between
users’ subjective experience of app difficulty and their cognitive status was examined.

As shown in Table 3, the Kruskal–Wallis test revealed no significant relationship
between perceived overall difficulty of the app and MoCA score (H = 4.256, p = 0.119),
as well as probability of MCI (H = 2.387, p = 0.303). Among difficulty perception groups
(“difficult” n = 7, “just ok” n = 7, “easy” n = 3), those rating the app as “easy” were in
marginally better cognitive conditions (MoCA: Median = 29, P25 = 29, P75 = 29; Prob.MCI:
Median = 0.297) compared to the “difficult” group (MoCA: Median = 28, P25 = 26, P75 = 29;
Prob.MCI: Median = 0.456). However, these differences were also not statistically significant.
These results contradicted our initial hypothesis (H1) that higher perceived difficulty
would be associated with lower cognitive performance and indicate that users’ subjective
perception of the overall difficulty of our app is not related to their current cognitive status.

Table 3. Statistics on influence of task perception on cognitive assessment Outcomes. Overall
difficulty perception is categorized as “difficult”, “just ok”, or “easy”. Prob.MCI represents the
probability of Mild Cognitive Impairment derived from our task fusion model.

Overall Perception Median M(P25, P75) Kruskal–
Wallis

Difficult (n = 7) Just ok (n = 7) Easy (n = 3) H p

MoCA 28 (26, 29) 25 (22, 28) 29 (29, 29) 4.256 0.119

Prob.MCI 0.456 (0.3, 0.6) 0.470 (0.4, 0.5) 0.297 (0.2, 0.5) 2.387 0.303
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3.3.2. Task-Specific Engagement Patterns

To investigate how users’ task evaluations impact their engagement and therefore
speech production (RQ2), the relationship between user perceptions and speech produc-
tion across three tasks was analyzed. Participants completed each task and provided an
immediate evaluation of the tasks through a questionnaire.

The primary finding is that positive task engagement corresponded with distinct pat-
terns of speech production, as indicated by users’ self-reported interest and perceived diffi-
culty. In the PD task, which 13 users rated as “most interesting” (comprising 39 sub-tasks),
heightened engagement manifested in significantly greater speech output: participants
produced more characters and maintained longer speech durations compared to those who
found it uninteresting (p < 0.05 for both measures; Figure 3c).

Figure 3. User perception and engagement across different tasks (* p < 0.05). Red axes indicate
keywords in (a), extra repetition in (b), and total character in (c). Purple axes indicate basically the
same thing: the duration or time spent on that specific task.

Task difficulty also influenced engagement and subsequent speech production pat-
terns. In the SR task, users who reported higher engagement through perceiving it as
“hard” produced more speech output, demonstrated by increased repetitions (Median = 4)
compared to those rating it “not hard” (Median = 2; p < 0.05). These users also spent more
time completing the task (Figure 3b). For the SF task, while users who rated sub-tasks as
“easiest” (22/66 records) showed higher engagement through producing significantly more
keywords, their speech duration did not differ significantly from other users (Figure 3a).

3.3.3. Behavioral Observations and Task Engagement

To complement users’ self-reported engagement, the real-time cognitive behavioral
markers through structured experimenter observations during speech production tasks
were examined. Observers systematically recorded two key engagement indicators: (1) cog-
nitive processing, manifested through thinking/analyzing behaviors such as focused
pauses and word production efforts, and (2) distraction levels, indicated by off-task behav-
iors such as looking away or irrelevant speech.

Contrary to our expectations that higher self-reported engagement would correspond
with more observable cognitive processing and fewer distractions during speech produc-
tion, the behavioral data showed limited alignment with task perceptions. The primary
finding was the consistency of thinking frequency across all perception groups (interest-
ing/not interesting, easy/not easy, hard/not hard) during speech production in all three
tasks (Figure 4).

While slight variations in distraction patterns emerged during speech tasks, particu-
larly during the PD task (Median: 0 for “interesting” vs. 1 for “not interesting”) and SR
task (Median: 1 for “hard” vs. 2 for “not hard”), the differences did not reach statistical
significance. These results suggest that while users’ task perceptions was clearly related
to their speech production output, the real-time behavioral engagement during speech
production was more uniform than their self-reported engagement would suggest.
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Figure 4. Frequency of observed thinking and distraction behaviors across task perception groups.

3.3.4. Daily Habits, Perceived Benefits, and Technology Adoption

To examine how the daily cognitive exercise habits of the users influenced their per-
ceptions of app usefulness and technology acceptance (RQ3), the questionnaire responses
about participants’ daily cognitive activities, perceived benefits of speech–language tasks,
and willingness to adopt technology-aided cognitive assessments were analyzed.

The primary finding partially supported our hypothesis that participants’ daily cog-
nitive exercise habits significantly predicted their perception of speech–language tasks’
benefits (H = 9.385, p < 0.01; see Table 4). Users who regularly engaged in mental exercises
were more likely to recognize the potential benefits of speech tasks for cognitive health
monitoring. Interestingly, neither participants’ daily habits nor their education level played
a significant role in their openness to technology-assisted cognitive assessment tools (daily
habits: H = 0.762, p > 0.05; education: H = 7.770, p > 0.05). It implies that the willingness to
embrace such technology stems from something beyond just cognitive exercise routines or
educational background. Despite that, it was found that 86% of the participants expressed
their enthusiasm in adopting these systems.

Table 4. Influence of education and daily habits on benefit valuation and technology acceptance:
H-statistic results.

Education Daily Habit

Benefit Valuation H = 7.035 H = 9.385 **

Technology Acceptance H = 7.770 H = 0.762
** p < 0.01.

4. Discussion
4.1. Overview

The automated MCI screening application demonstrated strong technical perfor-
mance and user engagement, supported by its solid architecture and user-centered design.
The client–server architecture, combined with effectively applied user interface principles
for the geriatric population, rendered the system able to attain detection performance simi-
lar to manual assessment (F1 = 0.93 vs. 0.95) in controlled environments, while ensuring
acceptable reliability (F1 = 0.86) in real-world scenarios. The results confirmed the first
objective of the present study, to create a dependable and accessible MCI screening tool,
although individual task performance showed variability in the practical contexts.
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The second objective of exploring user engagement was facilitated by strategic task
arrangements and an effective interaction design. The appropriate calibration of task
difficulty and the user-friendly interaction design facilitated a high technological acceptance
(86%) among users with diverse educational backgrounds. The lack of a link between
perceived difficulty and cognitive state, along with the significant beneficial impact of task
interest on speech production (p < 0.05), suggests that the present speech–language tasks
can accommodate users of different cognitive abilities and support the automated approach
to creating an engaging and accessible MCI screening tool.

4.2. Principal Findings

The proposed automatic MCI detection system demonstrated strong performance when
compared with manual assessment across all cognitive tasks. Aligning with the study showing
that automated speech analysis can be effective in predicting early cognitive decline [21,22,50],
the task fusion approach achieved comparable results (F1 = 0.93) to manual assessment
(F1 = 0.95), with remarkable improvements in the SF task (F1: 0.78 vs. 0.64). In addition,
the superior performance of BERT-based features over custom features in Picture Description
tasks (F1 = 0.57 vs. 0.46) suggests that advanced language models may be particularly valuable
for real-world applications.

In real-world situations, a decline in the performance of the system was noted. This
could be due to a combination of factors: limited sample size (n = 12), fluctuating en-
vironmental variables, and variations in participant engagement relative to controlled
environments. Despite these challenges, the system exhibited robustness (F1 = 0.86), com-
parable to existing digital screening tools like Shanghai Cognitive Screening (SCS) with an
AUC of 0.838 [18] and another digital tool with an AUC of 0.77 for MCI detection [36].

The strong consistency of the present system with MoCA scores confirms its effective-
ness as a digital assessment tool for MCI screening. Integrating the app with traditional
methods such as MoCA could provide clinicians with a more comprehensive cognitive
profile, potentially enhancing early MCI detection and facilitating timely interventions.

User engagement findings revealed intricate relationships between the perception of
overall difficulty and performance outcomes. In contrast to the first hypothesis, perceived
app difficulty did not show a significant correlation with cognitive performance, indicating
that subjective task difficulty may not serve as a reliable indicator of cognitive status in
this instance. Prior studies indicated that performance expectancies influenced actual
performance solely in challenging tasks and among individuals with a heightened need
for cognition [51]. The absence of a marked correlation between perceived difficulty and
cognitive performance in the present study indicates that the difficulty level of the app
tasks remained within the cognitive capacities of our general user population.

In relation to the second research question (RQ2) concerning the relationship between
users’ evaluations of specific tasks within the app and their engagement levels as well as
subsequent speech production, the present findings indicate that subjective task perceptions
were positively correlated with both engagement and speech production outcomes, whereas
objective engagement markers showed consistency across different perception groups.
From a subjective perspective, users’ self-reported task evaluations showed a positive
correlation with engagement and speech production outcomes. In the PD task, which
many users regarded as “most interesting”, there was an apparent increase in engagement,
evidenced by significantly greater speech output. Participants produced more content
and sustained longer durations than those who perceived it as uninteresting. In the SR
task, users who reported greater difficulty, an indicator of engagement, exhibited increased
speech repetitions and allocated more time to the task. In the SF task, despite a less
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pronounced association between perceptions and engagement, users who rated sub-tasks
as “easiest” generated a greater number of keywords, suggesting sustained engagement.

From an objective perspective, the present observational data on real-time engage-
ment markers (cognitive processing and distraction levels) showed that users maintained
consistent engagement regardless of their task evaluations. Thinking frequency, defined
as observable focused behavior such as short pauses during speech production, remained
stable across perception groups during speech production in all tasks. While slight differ-
ences emerged in distraction patterns, as indicated by off-task behaviors such as looking
away from the screen or task-irrelevant speech, these did not reach statistical significance.
This suggests that the app effectively maintained users’ behavioral engagement during the
speech production process, independent of their subjective task perceptions.

The third research question (RQ3) examined the impact of users’ daily cognitive ex-
ercise practices on the perceived utility of the app and their inclination to adopt similar
technology. The research identified a significant correlation between daily cognitive habits
and perceived app usefulness (p < 0.01), offering important insights for adoption strategies.
The 86% technological acceptance rate among participants, irrespective of educational back-
ground, indicates extensive use in geriatric health monitoring. Recent research indicated
that older individuals are more inclined to utilize mobile health applications when they
acknowledge health advantages [52]. This is essential due to the poor diagnostic rates and
the necessity for accessible screening instruments in China [6,7]. Highlighting the cognitive
health advantages of speech–language exercises and matching the design of the app with
user preferences can therefore enhance its perceived usefulness and adoption, irrespective
of individual habits or educational background.

4.3. Clinical Integration Potential

The app is designed to address early detection of MCI primarily in pre-clinical con-
texts, especially for large-scale screening initiatives by hospitals, communities, or healthcare
facilities. Its standardized, accessible solution and automated nature ensure consistent
evaluation metrics, making it particularly valuable for longitudinal cognitive monitoring.
Additionally, the app’s self-assessment capability provides individuals with options to
manage their cognitive health proactively, potentially leading to earlier clinical consulta-
tions when changes are detected. This aligns with our goal on preventive healthcare and
early intervention in cognitive decline.

Clinical workflow integration can be considered in the following ways. First, the app
can be incorporated into general or annual physical examinations as a routine cognitive
screening measure. Second, the objective assessment results can serve as auxiliary mea-
surements to support specialist diagnosis. Finally, long-term cognitive tracking can be
applied in clinical settings to capture subtle cognitive changes reflected in language patterns
over time, providing specialists with objective data for monitoring disease progression or
treatment effectiveness.

4.4. Limitations and Future Work

The limited sample size (n = 12) for evaluating real-world performance significantly
constrains our study and may impact the generalizability of our findings. Due to the
limited sample size, the published results—while promising—may not accurately reflect
the many characteristics and needs of the broader elderly community. The demographic
composition of our sample, especially concerning age range and educational attainment,
may not adequately represent the diverse potential consumers who could benefit from our
screening tool.
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The intrinsic variability of real-world testing situations imposes an additional sub-
stantial limitation. Despite achieving reasonable robustness, external factors such as back-
ground noise and device discrepancies may introduce variation that affect task perfor-
mance. In SF, the substantial drop in performance on individual tasks (F1 decreased
from 0.78 to 0.44) underscores the difficulties in sustaining assessment performance in
uncontrolled settings.

In addition, the examination of user involvement was conducted in laboratory settings.
The controlled environment may not accurately reflect the diverse challenges users face
in real-life scenarios, including technical difficulties with mobile devices, environmental
distractions, or fluctuations in mental or physiological states. The absence of longitudinal
data limits our understanding of the evolution of involvement patterns over extended
periods of continuous use, particularly among users with diverse cognitive profiles and
varying levels of technological familiarity.

Several promising directions for future research can be identified. Emphasis must be
placed on executing extensive validation studies across varied populations and contexts,
with a particular focus on real-world applications. Long-term follow-up studies may
enhance the assessment of the sustainability of user engagement over extended periods.
Furthermore, examining the app’s incorporation into current healthcare workflows and
assessing its viability as a longitudinal monitoring instrument may improve its clinical
applicability. Future research should investigate the influence of caregiver support and
social factors on the maintenance of engagement with the application.

5. Conclusions
This study reports the development and validation of a speech–language mobile

application that addresses two interconnected challenges in MCI screening: assessment
performance and user engagement. The automatic screening system exhibited detection
performance comparable to manual assessment, while ensuring reliability in practical
applications. The application of strategic task organization and user-centered design
concepts facilitated the sustained engagement and high technology acceptance among users.
Our mobile application provides a viable solution for early detection of MCI on a large scale
and therefore drives progress in accessible cognitive healthcare for geriatric populations.
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