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Abstract

The ejection of planets by the instability of planetary systems is a potential source of free-floating planets. We
numerically simulate multiplanet systems to study the evolution process, the properties of the surviving systems, and
the statistics of the ejected planets. For systems with only super-Earth planets, we find that the time (in units of the
orbital period P1 of the innermost planet) for the system to lose the first planet by collision or ejection increases with
the semimajor axis of the innermost planet. In contrast, the time (in units of P1) for the first close encounter between
two planets is identical. These two timescales also depend differently on the orbital spacing between the planets.
Most systems with only super-Earths do not have planets ejected. In systems with super-Earths and a cold Jupiter,
we discover that a cold Jupiter significantly increases the probability of ejection of the super-Earths by close
encounters. For 38% of the ejected super-Earths, most velocities relative to their parent stars are smaller than
6 km s−1. We conservatively estimate that more than 86% of the surviving two-planet systems in the super-Earths-
plus-cold-Jupiter sample are long-term stable by using empirical criteria. Most super-Earths in the remaining two-
planet systems are on highly elliptical but stable orbits and have migrated inward compared with their initial states.

Unified Astronomy Thesaurus concepts: Celestial mechanics (211); Exoplanet dynamics (490); Planetary
dynamics (2173); Planetary system evolution (2292); Free floating planets (549)

1. Introduction

A recent hot topic in planetary science has been free-floating
planets (FFPs), which bring valuable information about the
systems they were born in (M. T. Penny et al. 2019;
S. A. Johnson et al. 2020; G. A. L. Coleman 2024). They can
help to deepen our understanding of the formation and evolution
of planets. FFPs are predicted to form in at least two ways. (1)
The first is through the direct collapse of gas clouds under self-
gravity. Star formation theory points out that when a giant gas
cloud is massive enough, the thermal motion of gas molecules
cannot balance the gravity of the cloud, and collapse happens.
Nuclear reactions are ignited when the pressure and temperature
are high enough in the collapsing cloud, and it will form a star
or brown dwarf by burning hydrogen or deuterium. However, if
the cloud is not massive enough (≲13MJ, where MJ is the mass
of Jupiter), deuterium burning will not be triggered, and it will
form a sub-brown dwarf (K. L. Luhman 2012). Sub-brown
dwarfs can be seen as FFPs trapped in any gravitational field.
(2) The second is by escape from planetary systems formed in
protoplanetary disks around young stars (single or binary), in
which solid materials merge and grow into planet embryos.
Planet embryos can evolve into terrestrial planets and attract
some gas to form ice giants. Gas giants are formed when solid
cores become massive enough to start runaway gas accretion
(e.g., J. B. Pollack et al. 1996; S. Ida et al. 2013). When the
planets form on orbits that are too close together, some planets
can become dynamically unstable and escape to become FFPs.
These two formation channels of FFPs also determine the

two methods to detect them: direct imaging and microlensing.

Direct imaging mainly searches for sub-brown dwarfs in
nearby young stellar clusters and star-forming regions
(M. R. Zapatero Osorio et al. 2000). Sub-brown dwarfs emit
light from their thermal energy, originating from their
gravitational potential. By determining their luminosity and
temperature, one can constrain their masses. Furthermore, sub-
brown dwarfs can be classified by their spectra. A few sub-
brown dwarfs of several Jupiter masses have been found of
types L (W. M. J. Best et al. 2017), T (J. Gagné et al. 2015),
and Y (D. C. Bardalez Gagliuffi et al. 2020). In recent
observations of the Trapezium Cluster by JWST (S. G. Pearson
& M. J. McCaughrean 2023), 9% of planetary mass objects are
classified as Jupiter-mass binary objects (JuMBOs), which
may have formed via direct collapse (however, see
K. L. Luhman 2024, who argued these may be background
sources). Since direct imaging requires sources having
sufficient brightness to be detected, cooled sub-brown dwarfs
and low-mass FFPs ejected from planetary systems cannot be
detected. For these cases, microlensing may be the only
detection method. Microlensing probes planets through the
deflection of light in the gravitational fields of the FFPs, which
results in brightness variations of the background sources.
Thus, it does not require emission from the FFPs, and it
analyzes the light curves of the background sources.
Theoretically, it can detect planets to very low masses (e.g.,
moons). A dozen or so FFP candidates have been discovered
this way, with planet masses from sub-Earth mass to several
Jupiter masses (P. Mróz et al. 2020; N. Koshimoto et al. 2023).
By analyzing FFPs detected in the Galactic bulge, T. Sumi
et al. (2023) found a large number of FFPs, and the average of
their masses falls in the range of super-Earths (see Section 4).
Dynamical analysis is required to study how a planet escapes

from a multiplanet system. For two-planet systems, one can use
semi-analytic criteria based on the masses and orbital parameters
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of the planets to decide the stability of the system (M. Hasegawa
& K. Nakazawa 1990; B. Gladman 1993; C. Petrovich 2015). A
well-known criterion is that when the orbital separation between
two planets on nearly circular orbits is less than =K 2 3 times
the mutual Hill radius (see Section 2.1), the system can be
unstable. However, the complexity of planetary systems with
more than two planets requires numerical integration to study
their evolution and final state.
Most early works on the instability of multiplanet systems

(e.g., J. Chambers et al. 1996) focused on systems with
multiple equal-mass (or similar-mass) planets. They studied
the relationship between the time for the first close encounter
between two planets (or the time for the first orbit crossing
between two planets) and parameters such as the number of
planets, planet masses, and their orbital separations. Further
studies considered the influence of more complicated orbits
(with nontrivial eccentricities and inclinations, etc.) and mass
variations (e.g., A. W. Smith & J. J. Lissauer 2009;
S. J. Morrison & K. M. Kratter 2016; A. Obertas et al.
2017; D. R. Rice & J. H. Steffen 2023). They showed that the
first close encounter time tFCE is tightly correlated with the
orbital spacing K, satisfying ( )/ = +t P Klog FCE 1 , in which
P1 is the orbital period of the innermost planet. When the
planets are very close to each other ( <K 2 3 ), the planetary
system becomes unstable very quickly. In contrast, when the
separations are large (K> 8.4), the time for the system to
become unstable lengthens and deviates from the above
relationship (A. W. Smith & J. J. Lissauer 2009). In addition,
two-body mean-motion resonance becomes important when
the orbital periods of neighboring planets are near simple
integer ratios, and the instability time can either decrease or
increase significantly. Progress has also been made in under-
standing the mechanism of the instability, with A. C. Petit
et al. (2020) and C. Lammers et al. (2024) showing that the
instability is driven by the overlap of three-body resonances.
To understand the long-term evolution of planet systems and

the birth of FFPs, we need to integrate a longer time, to simulate
the process from the first encounter to the actual loss of any
planet, then finally to the stable state of the system. From the
simulations, we can learn the properties of the ejected planets
and those that remain in the systems. Y. Matsumoto &
E. Kokubo (2017), D. R. Rice et al. (2018), P. Bartram et al.
(2021), and F. Marzari (2025) have performed longer simula-
tions to study the relationship between the time at which the first
planet is lost and parameters such as planet masses and orbital
separations, eccentricities, and inclinations. However, these
studies either did not find any planet ejection, due to the
parameters adopted for the simulations (see Section 4.2), or did
not analyze the ejected planets.
Research on the in situ scattering in systems with three warm

Jupiter-like planets (K. R. Anderson et al. 2020; L. Yuan &
M. H. Lee 2024) shows that 15%–26% of Jupiter-like planets are
ejected and the orbits of the remaining planets have significant
eccentricities. The simulations suggest that FFPs could come
from the dynamical evolution of multiplanet systems, with the
remaining stable systems having properties similar to those of the
observed systems. In addition, G. A. L. Coleman (2024) finds
that, on average, five FFPs are produced in circumbinary
protoplanetary disk systems, and stellar flybys can perturb two-
planet systems, resulting in a 45% probability of ejecting planets
(F. Yu & D. Lai 2024). It is also possible for stellar flybys to
produce JuMBOS (S. G. Pearson & M. J. McCaughrean 2023),

but this formation fraction is smaller than 1%, even under the
most optimistic conditions.
Studies on existing planetary systems can also shed light on

the origin of FFPs. Using data from radio velocity observations
and the Kepler mission, W. Zhu & Y. Wu (2018) found that
about 30% of super-Earths coexist with cold Jupiters, and most
cold Jupiters coexist with super-Earths (see also M. L. Bryan
et al. 2019; M. L. Bryan & E. J. Lee 2024). This suggests that
the formation of super-Earths and cold Jupiters is tightly
correlated. Their interactions might produce free-floating
super-Earths.
In this work, we numerically simulate planetary systems

with only super-Earths and systems with super-Earths and a
cold Jupiter. Our study uses more planets and explores a larger
range of planetary masses (including a mixture of super-Earths
and Jupiters) than previous studies. We analyze unstable
events in these systems (in particular, the interaction between
giant planets and super-Earths) and the products from their
evolution, including ejected planets and surviving planetary
systems. In addition, we explore the influences of orbital
spacings and distances between planets and their host stars on
the evolution of planetary systems and the probability of
ejection. In Section 2, we introduce the parameters of the
simulated planetary systems and the numerical integration
methods. We show the results of the super-Earths-only and
super-Earths–cold-Jupiter simulations in Section 3. In
Section 4, we discuss the influence of the orbital spacing K
and Safronov number and the stability of the surviving two-
planet systems in the super-Earth–cold-Jupiter sample. We
conclude our work in Section 5.

2. Orbital Parameters and Simulation Methods

2.1. Orbital Spacing of Planets

We begin our simulations after the planets have formed and
the protoplanetary gas disk has dispersed. We study planetary
systems with multiple planets orbiting a host star, where the
host has one solar mass M� = 1M⊙ and one solar radius
R� = 1R⊙. (Systems with different host star mass can be
transformed to systems with M� = 1M⊙.) The mass and radius
of the ith planet ordered from the inside to the outside are mi
and ri, respectively. The orbital parameters of the planets
include the semimajor axis a, the eccentricity e, the inclination
i, the longitude of the ascending node Ω, the argument of
periapsis ω, and the mean anomaly M.
In multiplanet systems, we scale how close two orbits are

with the mutual Hill radius (J. Chambers et al. 1996):
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The separation between two neighboring planets is
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A smaller orbital spacing K means that the orbits of two
planets are closer and interact more strongly. As a result, the
system is more likely to become unstable.

2.2. Numerical Integration Methods

We use the N-body integration package REBOUND (H. Rein
& S. F. Liu 2012) to calculate the evolution of multiplanet
systems. We use two integrators under different conditions:
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IAS15 (H. Rein & D. S. Spiegel 2014) and Mercurius (H. Rein
et al. 2019). IAS15 is a high-order and nonsymplectic
integrator that adaptively adjusts the time step according to
the separations between the particles in a system. Although it
is not symplectic, it can still guarantee energy conservation, by
suppressing the integration error to machine precision.
Mercurius is a hybrid symplectic integrator that combines
IAS15 and WHFAST (J. Wisdom & M. Holman 1992; H. Rein
& D. Tamayo 2015), where WHFAST is a second-order
symplectic integrator that can integrate fast and accurately
when particles are far away from each other. Mercurius
switches to IAS15 when distances between particles are small
and back to WHFAST when they are large, at a threshold of
several times the mutual Hill radius, to handle close
encounters.
Since general-relativistic (GR) apsidal precession can affect

the stability of orbits close to the host star, we introduce GR
corrections to the numerical integration. We use gr-
potential (A. Nobili & I. W. Roxburgh 1986) in
REBOUNDx (D. Tamayo et al. 2020) as a correction term.
This algorithm applies to systems dominated by a central
massive object and keeps WHFAST symplectic, because its
potential simply gives an additional kick to the linear
momentum of each particle.
The simulations will have three types of events. 1. Planet–

planet collision (pp) or planet–star collision (ps), which
happens when the sum of the radii of two particles is less
than the distance between them. When two particles collide,
we merge them, keeping the total mass and volume the same
and the momentum conserved. 2. Planet ejection (ej), which
we define to occur when the distance of a planet from the
center of mass of the system is larger than 1000 au. The ejected
planet is removed from the system. 3. A close encounter
between the planets, which is the situation when the distance
between two planets is smaller than their mutual Hill radius
(but larger than the sum of their physical radii).

2.3. Numerical Integration Settings

For the initial conditions of our planetary systems, we first
set the semimajor axis of the innermost orbit a1. With a fixed
orbital spacing K, we obtain the semimajor axes of other
planets by satisfying Equations (1) and (2) simultaneously.
This scaling of planetary separations helps to compare with
previous works that adopted similar settings. Following
K. R. Anderson et al. (2020), we randomly choose other
parameters: e in [0.01, 0.05], i in [0°, 2°], Ω, ω, and M in
[0°, 360°]. The small but nonzero ranges for the eccentricities
and inclinations take into account the excitation and damping
of eccentricities and inclinations during planet formation,
including the damping by planet–disk interactions (W. Kley &
R. P. Nelson 2012).
Considering that our samples might be unstable on a wide

range of timescales (J. Chambers et al. 1996; D. R. Rice &
J. H. Steffen 2023), we divide the numerical integration into
two phases (K. R. Anderson et al. 2020; L. Yuan & M. H. Lee
2024). In Phase 1, which is likely to be more chaotic, we
integrate with the IAS15 integrator to guarantee accuracy. The
total integration time of Phase 1 is 106P1. The integration time
step is 10−3P1, where P1 is the initial period of the innermost
orbit. In Phase 2, we integrate all systems with two or more
planets remaining after Phase 1. Since this phase requires
much longer integration to ensure all systems end in stable

states, we use the Mercurius integrator. The total integration
time of Phase 2 is P108

1 , with a time step of P10 2
1 , where P1

is the period of the innermost orbit at the beginning of Phase 2.
The switching threshold between IAS15 and WHFAST of
Mercurius is three times the Hill radius. In the next section, we
will introduce the settings for the planet mass, radius,
innermost orbit, and orbital spacing K.

3. Numerical Simulations

3.1. Super-Earths-only Systems

To study the interaction between cold Jupiters and super-
Earths, we first simulate super-Earths-only systems, to discover
their evolution as a prelude. Most previous studies of the
instability of multiple equal-mass planetary systems fix the
semimajor axis of the innermost orbit and change the mass and
orbital spacing K of the planets, and they focus on the first close
encounter time (e.g., J. Chambers et al. 1996; A. W. Smith &
J. J. Lissauer 2009; D. R. Rice & J. H. Steffen 2023). Here, we
attempt to study systems at various distances from the host star
by changing a1. The initial conditions as listed in Table 1 are:
five super-Earths, each with mass 5M⊕ and radius 5

1/3R⊕; the
semimajor axis of the innermost orbit a1 is randomly chosen
from a Gaussian distribution governed by a1,0± 0.01 au; and the
orbital spacing is K= 5. Here, a1,0 determines the initial
semimajor axes of all the systems in a sample. We simulate 180
systems for each a1,0.
It takes longer for systems with larger a1 to become

unstable. In Figure 1, we show curves of the fraction of
planetary systems that do not experience a first unstable event
(i.e., a collision or ejection that changes the number of planets
from five to four), changing with the time normalized by the
period P1 of the initial innermost orbit of each system. We see
that as the planets become farther away from the host, the time
when the systems become unstable grows accordingly.
To compare the speed at which samples of different a1,0

become unstable, we define a half-loss time ˜ /t1 2 (˜ /=t t P1) as
the time in units of P1 when half of the systems in a sample
have experienced a first unstable event and lost a planet. This
is when the fraction of five-planet systems has decreased to
50% (see Figure 1). As Figure 2 shows, in logarithm
coordinates, the half-loss time of the super-Earths-only
samples increases with the distance from the host. By linear
regression,

˜ ( )/ = +t b a clog log , 31 2 1,0

we have b= 2.12± 0.13 and c= 5.44± 0.07.
We calculate the half-loss time ˜ /t1 2 as a statistical quantity,

while J. Chambers et al. (1996) and others considered the first
close encounter time when they studied the instability of
multiplanet systems. So we also calculate the median of the
first close encounter time in units of P1, t̃FCE, in each sample,

Table 1
Initial Conditions of Super-Earths-only Simulations

Parameters Initial Values

Number of planets Five super-Earths
Planet mass mp 5M⊕
Planet radius rp 51/3R⊕
a1 Gaussian distribution of a1,0 ± 0.01 au
K 5
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as another viewpoint. In Figure 3, we show t̃FCE for different
alog 1,0. Interestingly, there is no clear dependence of the first

close encounter time on the distance between the planets and
the host. So even though many previous works (J. Chambers
et al. 1996; A. W. Smith & J. J. Lissauer 2009; D. R. Rice &
J. H. Steffen 2023) fixed a1,0 when numerically integrating at
various orbital spacings K, their results should still represent
the statistical properties of close encounters for samples of
different innermost orbits. However, the strikingly different
behaviors of ˜ /t1 2 and t̃FCE mean that there is a complex
dynamical process between the first close encounter and the
first planet loss in the planetary systems. Since this process
depends significantly on the scale of the systems, we cannot
simply regard the first close encounter as the measure of
planetary systems becoming unstable.
In Figure 4, we show the fraction fej,SE of all super-Earths

that have been ejected by the end of Phase 2 for different
alog 1,0. It is <2% for a1,0� 0.5 au and reaches 15% for

a1,0 = 2 au. The increase of fej,SE with the distance from the
host can be understood in terms of the Safronov number (see
Section 4.2).
F. Marzari (2025) has recently performed simulations with

a1,0 = 5 au and stated that both the time of the first close
encounter and the time of the first planet loss should scale with
P1. As we have just shown, this scaling is correct only for the

time of the first close encounter. D. R. Rice et al. (2018) have
studied the effects of changing a1,0, using simulations with
four planets of mass m= 1× 10−5M⊙ on nearly circular and
coplanar orbits with K = 5 and a1,0 = 0.01, 0.1, 1, 10, and
100 au. They found that the distribution of the first close
encounter time is nearly independent of a1,0, which is in
agreement with our Figure 3. In addition, they found that the
distribution of the time for the loss of the first planet is nearly
identical to the distribution of the encounter time at
a1,0 = 0.01 au, whereas the time for the loss of the first planet
is much longer than the encounter time for the majority of the
systems at a1,0 = 100 au. This is also consistent with our
Figures 2 and 3. By using ˜ /t1 2 to characterize the distribution of
the time of the first planet loss, we are able to quantify the
dependence of ˜ /t1 2 on a1,0, as shown in Figure 2 and
Equation (4) (see Section 4.1 for further discussion).

3.2. Super-Earths–Cold-Jupiter Systems

As we mentioned in Section 1, W. Zhu & Y. Wu (2018)
found that 30% of super-Earths coexist with cold Jupiters, and
almost all cold Jupiters coexist with super-Earths. This implies
that the evolution of super-Earths and cold Jupiters may be
highly correlated. Thus, we numerically simulate planetary
systems with both super-Earths and cold Jupiters. Based on
Section 3.1, we add a Jupiter at the outermost extents of the
super-Earth systems, whose orbit is also determined by
Equation (2). We focus on the case with a1,0 = 0.5 au and

Figure 1. The fraction of five-planet systems in the super-Earths-only
simulations with K = 5 as a function of time, which is normalized by the
period P1 of the initial innermost orbit of each system. Five curves are shown
for a1,0 = 0.2, 0.4, 0.6, 0.8, and 1 au, where a1,0 defines the initial
distribution of the semimajor axis of the innermost orbit (see Table 1). In
samples with smaller a1,0, the fraction of five-planet systems decreases faster
with time.

Figure 2. Half-loss time vs. the semimajor axis of the innermost orbit for the
super-Earths-only samples with K = 5. The red dashed line shows the linear
regression result. t̃ is the time normalized by P1: ˜ /=t t P1.

Figure 3. The first close encounter time (t̃FCE) vs. the initial semimajor axis of
the innermost orbit a1,0 for super-Earths-only samples with K = 5. The first
close encounter time depends little on the distance between the planets and
the host.

Figure 4. The fraction fej,SE of all super-Earths that have been ejected vs. the
initial semimajor axis of the innermost orbit a1,0 for super-Earths-only samples
with K = 5.
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K= 5 (see Table 2 for the full set of initial conditions). These
systems should undergo more chaotic evolution with the close
association of the super-Earths and the cold Jupiter. By
comparing with the super-Earths-only samples, we can study
the influence of the cold Jupiter on the super-Earths. We
simulate 180 systems, identical to the number of pure super-
Earth systems we studied.
In Figure 5, we show the evolution of the fractions of

planetary systems with different numbers of planets in the
super-Earth–cold-Jupiter sample in Phases 1 and 2. In Phase 1,
all systems evolve fast, most of which become three- or two-
planet systems. In Phase 2, some three-planet systems become
unstable, producing more two-planet systems. No single-planet
system appears in this simulation. 94% of planetary systems
end up with two planets, and 6% end up with three planets (see
K= 5 in Table 3 for more information).
In the super-Earth–cold-Jupiter sample, a significant number

of ejected planets appear. All of them are super-Earths or new
planets born from collisions between super-Earths. This shows
that the super-Earths cannot effectively perturb the orbit of the
cold Jupiter, which is expected from their large mass
difference. 38% of all super-Earths are ejected, with 91% of
them escaping in Phase 1. In contrast, the super-Earths-only
sample with a1,0 = 0.5 au has no ejection in Phase 1 and <2%
ejection in Phase 2. This indicates that the cold Jupiter
significantly increases the probability of super-Earths ejecting.
Because of the large mass of the cold Jupiter, super-Earths
having close encounters with it have a high probability of
being ejected.
We choose a system that experiences two planet–planet

collisions and two ejections as an example to show how a
super-Earth–cold-Jupiter system evolves. Figure 6 shows the
evolution of the semimajor axis, eccentricity, periastron
distance, and apastron distance of each planet. We index the
planets from low to high in the order of their initial distances
from the host, so Planet 6 is the cold Jupiter. Soon after the
start of the integration, the orbits of the super-Earths become
more eccentric. At t/P1 ∼ 150, Planets 1 and 2 have an
encounter and switch order. Then, at t/P1 ∼ 1.2× 104, Planet
5 is scattered into an orbit beyond that of the cold Jupiter, with
its periastron near or inside the orbit of the cold Jupiter. After
further changes in its orbit, it collides with the cold Jupiter at
t/P1 ∼ 1.5× 104, and the merged planet is labeled Planet 5. At
t/P1 ∼ 105, Planets 1 and 2 are scattered into orbits farther
from the host, with their periastrons near or inside the orbit of
the cold Jupiter. Soon afterward, Planet 3 collides and merges
with Planet 4. Eventually, Planets 1 and 2 escape from the
system, and Planets 3 and 5 form a stable super-Earth–cold-
Jupiter system. This example shows the following typical
events in the evolution of super-Earths–cold-Jupiter systems:
at the beginning, the orbits of the super-Earths become

unstable gradually, but they cannot escape, since their
interactions with each other are relatively weak; when a
super-Earth is scattered into an orbit that has strong
interactions with the cold Jupiter, the cold Jupiter can collide
with the super-Earth or transfer energy, resulting in the latter’s
ejection; and the remaining super-Earths can collide with each
other.
The velocity distribution of FFPs plays an essential role in

their detection, since it influences the timescales of their
microlensing signals (B. Paczyński 1986). Figure 7 shows a
histogram of the velocities of the ejected planets relative to the
host stars in the super-Earth–cold-Jupiter sample. Most ejected
planets have velocities in the range of 0∼ 6 km s−1, consistent
with H. Gautham Bhaskar & H. Perets (2025), implying that
they obtain just enough kinetic energy to escape (the escape
velocity at 1 au from a solar-mass star is about 40 km s−1).
Given the high velocity dispersion of the stars in the Milky
Way (∼120 km s−1 in the Galactic bulge—E. Valenti et al.
2018; and ∼50 km s−1 in the Galactic disk—B. Anguiano et al.
2020), the combination of the velocity of the host stars and the
relative velocity of the ejected planets would be dominated by
the velocity of the stars. As a result, the velocity distribution of
the ejected planets should be similar to that of stars.
At the end of the simulations, 94% of the stable planetary

systems are two-planet systems composed of a super-Earth and
a cold Jupiter. Since the orbit of the cold Jupiter is only weakly
perturbed by the super-Earths, we study the properties of the
super-Earth orbit in the stable two-planet systems. The top
panels of Figure 8 show the final eccentricities versus the final
semimajor axes and the final semimajor axes versus the initial
semimajor axes. The orbits of many remaining super-Earths
have significant eccentricities: the smaller the final semimajor
axes, the greater the range of eccentricities. In addition, most
remaining super-Earths have semimajor axes smaller than
0.5 au, meaning their final semimajor axes are smaller than the
initial ones. In the bottom panels of Figure 8, we show the
probability distribution of the final semimajor axes and final
eccentricities of the surviving super-Earths. The final semi-
major axes are mostly in the 0.2∼ 0.6 au range, with a median
of af,med = 0.40 au, which is smaller than the initial semimajor
axes of the super-Earths. At the same time, the orbits have
become more eccentric. The median of the final eccentricities
is ef,ave = 0.21, and the 90th percentile value is ef,90 = 0.44
(see Table 3), which are much greater than the initial
[0.01, 0.05] range. These results indicate that in the super-
Earths–cold-Jupiter systems, the remaining super-Earths move
inward to survive, since, in this way, they are less likely to
interact with the cold Jupiters, which decreases the probability
of collision or ejection.
A general picture of the dynamical evolution of the super-

Earth–cold-Jupiter systems is as follows. The orbits of the
super-Earths become chaotic under the interactions with each
other and with the cold Jupiter. Some super-Earths move
outward and interact with the cold Jupiter. In the meantime,
others move inward. Eventually, the super-Earths moving
outward are lost through collision or ejection after close
encounters with the cold Jupiter, while the super-Earths
moving inward remain, because of their considerably larger
distance from the cold Jupiter. The orbits of these surviving
super-Earths become more eccentric from the frequent
interactions.

Table 2
Initial Conditions of Super-Earths–Cold-Jupiter Simulations

Parameters Initial Values

Number of planets Five super-Earths and one cold Jupiter
Planet mass mp 5M⊕, MJ
Planet radius rp 51/3R⊕, RJ
a1 Gaussian distribution of 0.5 ± 0.01 au
K 5

Note. MJ and RJ are the mass and radius of Jupiter, respectively.
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4. Discussion

4.1. Orbital Spacing K

Previous studies of the dynamical instability of planetary
systems discovered that the initial orbital spacing K, defined by
Equation (2), influences the first close encounter time. The larger
the value of K, the later the first encounter happens (e.g.,
J. Chambers et al. 1996; A. W. Smith & J. J. Lissauer 2009;
D. R. Rice & J. H. Steffen 2023). On the other hand, in
Section 3.1, we find from the super-Earths-only simulations with
K= 5 that the first close encounter time t̃FCE and the half-loss
time ˜ /t1 2 (both in units of P1) have different dependences on the
initial semimajor axis of the innermost orbit a1,0, with t̃FCE nearly
independent of a1,0 and ˜ /t a b

1 2 1,0, where b≈ 2.1. Thus, we
study further the influence of the orbital spacing K on t̃FCE and
˜ /t1 2 by extending our simulations of the super-Earths-only
systems to K= 4 and 6.
In Figures 9 and 10, we show the first close encounter time

t̃FCE and the half-loss time ˜ /t1 2, respectively, for different
alog 1,0 and K. The first close encounter time t̃FCE is nearly

independent of a1,0 for a given K (as we find in Section 3.1 for
K= 5) and increases rapidly with increasing K (as found in
previous studies). For all values of K, the half-loss time ˜ /t1 2

increases with a1,0. The vertical dashed–dotted line in
Figure 10 is =alog 0.451,0 , roughly dividing the figure into
two parts. For >alog 0.451,0 , ˜ /t1 2 of different K at the same
a1,0 do not have significant differences. When we linearly
regress ˜ /tlog 1 2 to alog 1,0 of all the data points whose

>alog 0.451,0 , we obtain

˜ ( ) ( ) ( )/ = ± + ±t alog 2.92 0.11 log 5.53 0.02 41 2 1,0

(see the dashed line in Figure 10). For <alog 0.451,0 , ˜ /t1 2 is
larger than the extrapolation of Equation (4), with the
deviation larger at smaller a1,0 and larger K. This can be
understood when we realize that the first planet lost cannot
happen before the first close encounter, i.e., ˜ /t1 2 must be larger
than t̃FCE, and that t̃FCE increases rapidly with K (Figure 9). In
fact, the data points in Figure 10 can be approximated by

˜ ˜ ( )/ = +t a t10 , 51 2
5.53

1,0
2.92

FCE

where ℓ≈ 3 (see the dotted lines in Figure 10 for K= 4, 5,
and 6).
We also vary the orbital spacing of the super-Earth–cold-

Jupiter samples from K= 5 to K= 4 and 6, with fixed
a1,0 = 0.5 au. We find that the value of K does not change the
statistical properties of the results (see Table 3). The reason
may be that the outcomes (ejection, collision, and scattering)
of the encounters between the super-Earths and the cold
Jupiter depend primarily on the Safronov number (see the next
section), which is not sensitive to the value of K.

4.2. Safronov Number and Ejection

In the super-Earths-only sample, the number of ejections
increases with the distance between the planets and the host.
The a1,0 = 0.1 au sample has no ejection, but the a1,0 = 2 au
sample has 15% of super-Earths ejected (Figure 4). The
probability that a planet is going to escape should depend on
the Safronov number (V. S. Safronov 1972):

( )= =
V

V

M

M

a

r

1

2
, 6esc

2

orb
2

p p

p

where Vesc is the escape velocity at the planet surface, Vorb is
the orbital velocity of the planet, ap is the semimajor axis of
the planet, and rp is the planet radius. When two planets get
close to each other, they are likely to gain velocity changes at
the order of Vesc. Hence, a greater Vesc adding to Vorb makes it
easier for planets to escape (A. Morbidelli 2018). When Θ < 1
(Θ > 1), planets tend to collide (escape).

Figure 5. Evolution of the fractions of planetary systems with different numbers of planets in the super-Earth–cold-Jupiter sample with a1,0 = 0.5 au and K = 5.
Phases 1 and 2 are in the left and right panels, respectively. The curves labeled fnp are the fractions of systems with n planets. P1 and P1 are the periods of the
innermost orbits at the beginnings of Phase 1 and Phase 2, respectively.

Table 3
Statistical Outcomes of Super-Earths–Cold-Jupiter Samples with Different

Orbital Spacings K

K f1p f2p f3p fej,SE ef,med ef,10 ef,90

4 0% 96% 4% 38% 0.23 0.09 0.45
5 0% 94% 6% 38% 0.21 0.08 0.44
6 1% 93% 7% 38% 0.22 0.07 0.45

Note. fnp is the fraction of systems with n planets remaining. fej,SE is the
fraction of all super-Earths that have been ejected. ef,med, ef,10, and ef,90 are the
median, 10th percentile, and 90th percentile values of the eccentricity of the
super-Earth orbits in surviving two-planet systems.
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To study the relationship between the Safronov number and
ejection, we simulate systems with equal-mass giant planets with
greater Safronov numbers than super-Earths with the same
innermost semimajor axis. The planet masses are Jupiter, Saturn,
and one-third of Saturn mass. The planet radii are Jupiter radius,
Saturn radius, and (1/3)1/3 Saturn radius. The other initial
conditions of the numerical simulations are shown in Table 4.
In Figure 11, we show the number of ejections per planet

versus Safronov number in the equal-mass planet and super-
Earth samples. In each sample, the Safronov number is defined
as that of the middle (third) planet. We see that samples of
different masses but similar Safronov numbers agree well on
the probability of ejection, which implies that the Safronov
number is a good indicator of the tendency of a planetary
system to undergo collision or ejection. On this basis, we

further simulate equal-mass planetary systems with the planet
mass randomly chosen in [1/30, 1]MJ and the semimajor axis
of the innermost orbit in [0.1, 1] au. We set the radii of the
planets by keeping their density the same as Jupiter. The initial
conditions are given in Table 5. Figure 12 shows that the
probability of planet ejection increases with the Safronov
number, especially when the Safronov number is small.
As we mentioned in Section 1, Y. Matsumoto & E. Kokubo

(2017), D. R. Rice et al. (2018), and P. Bartram et al. (2021)
have performed simulations that extend to the first planet loss
event and beyond, but they did not find any planet ejection
events in their simulations. The absence of planet ejection in
the simulations by Y. Matsumoto & E. Kokubo (2017) and
P. Bartram et al. (2021) is consistent with the fact that the
Safronov numbers of their simulations are much less than 1.
For the simulations with four planets of mass m= 1× 10−5M⊙
and bulk density of 2 g cm−3 by D. R. Rice et al. (2018), the
Safronov number Θ ≈ 0.11(a1,0/au), which would be ≈1.1
and 11 for the simulations with a1,0 = 10 and 100 au,
respectively. Thus, the absence of planet ejection or collision
with the central star in these simulations, as reported by
D. R. Rice et al. (2018), is unexpected on the basis of their
Safronov number, and additional analysis of simulations with
similar parameters will be needed.
A study of FFPs in the Galactic bulge conducted by

Microlensing Observations in Astrophysics found a large number
of FFPs: if the planet mass distribution is assumed to be a power
law, then the number of FFPs per star is = +f 21 13

23, with a total
mass of = +m M80 47

73 (T. Sumi et al. 2023). The uncertainty of
this result is still large, due to the small sample size. If further
studies confirm this high abundance, one possibility may be that
many planets are formed in protoplanetary disks and become

Figure 6. Evolution of the semimajor axes (upper left panel), eccentricities (lower left panel), apastron distances (upper right panel), and periastron distances (lower
right panel) in a super-Earth–cold-Jupiter system. When a planet–planet collision happens, the new planet will be indexed by the planet with a smaller index after the
merger. When a planet escapes, its curve will be terminated. At the start, the cold Jupiter is labeled Planet 6, while after the collision, it is labeled Planet 5. The left
and right panels show different logarithmic ranges of t/P1, so both early and late evolution can be seen clearly.

Figure 7. Distribution of the velocities of the ejected planets relative to the
host stars in the super-Earth–cold-Jupiter sample. Most ejected planets have
relative velocities lower than 6 km s−1.
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Figure 8. Orbital properties of the super-Earths in the final stable two-planet systems from the super-Earths–cold-Jupiter simulations. Top left panel: final
eccentricities vs. final semimajor axes. Top right panel: final semimajor axes vs. initial semimajor axes. In this panel, the scatters are clustered in several strips of
initial semimajor axes, corresponding to those of the five initial super-Earths. The super-Earths farther away from the cold Jupiter are more likely to survive. Bottom
left panel: probability distribution of the final semimajor axes. Bottom right: probability distribution of the final eccentricities.

Figure 9. The first close encounter time t̃FCE vs. the initial semimajor axis of
the innermost orbit a1,0 for super-Earths-only simulations with orbital spacing
K = 4, 5, and 6, defined in Equation (2).

Figure 10. The half-loss time ˜ /t1 2 vs. the initial semimajor axis of the
innermost orbit a1,0 for super-Earths-only simulations with orbital spacing
K = 4, 5, and 6. The vertical dashed–dotted line is =alog 0.451,0 , which
roughly divides the dependence of ˜ /t1 2 on K into two parts. The dashed and
dotted lines show Equations (4) and (5), respectively.
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unstable in terms of becoming FFPs. In our simulations, we find
about 40% probability that a cold Jupiter can eject a super-Earth,
and also 40% probability that equal-mass planets can escape

when they are far away from their host stars. Many planets of
small masses might be ejected right after planetary systems form.
However, a more detailed prediction will require more realistic
initial conditions of the planetary systems, starting with many
planetary embryos. This is beyond the scope of the current paper.

4.3. Comparison with Observations

For comparison with observed systems, we retrieve a list of
confirmed planetary systems with a single outer gas giant
accompanied by inner super-Earths from the NASA Exoplanet
Archive6 (R. L. Akeson et al. 2013; J. L. Christiansen et al.
2025). We define gas giants as planets with mass m� 0.3MJ,
while restricting super-Earths to planets with mass below 15M⊕.
We select systems as long as the giant planet is outside the orbit
of the super-Earth, regardless of its orbital period, and we only
accept those that have eccentricity measurements for the inner
super-Earths. In the end, our observational sample consists of
16 systems containing a single inner super-Earth, with the
semimajor axes of the outer giant planets between 0.3 and 22 au,
most of which are at 1–4 au. In addition, we also identify 13 inner
super-Earths (with eccentricity measurements) belonging to eight
systems with multiple super-Earths plus an outer giant planet,
which have properties similar to the single-super-Earth systems
above. Figure 13 presents the eccentricity of the inner super-
Earths as a function of the semimajor axis ratio between the inner
super-Earth and the outer giant planet. We find that the majority
of systems have inner super-Earths located at 0.1–0.5 au and a
large ratio of the semimajor axis of the cold Jupiter to that of the
super-Earth(s).
Based on the properties of these observed systems, we

simulate systems with smaller innermost semimajor axes a1,0
of the super-Earths compared to the super-Earth–cold-Jupiter
systems in Section 3.2, while keeping the cold Jupiter at 1 au.
The orbital spacing of the super-Earths is K= 5.
Table 6 shows that when the super-Earths start in the inner

regions of planetary systems, they are less likely to be ejected,
and the fraction of systems with only two planets remaining
decreases. The cold Jupiter cannot interact with the super-Earths
effectively over this long distance. The evolution resembles the
super-Earths-only systems. In contrast, the super-Earths with
initial orbits closer to the cold Jupiter experience significantly

Table 4
Initial Conditions of Equal-mass Planet Simulations

Parameters Initial Values

Number of planets Five equal-mass planets
Planet mass mp MJ, MS, or 1/3 MS
Planet radius rp RJ, RS, or (1/3)1/3RS
a1 Gaussian distribution of a1,0 ± 0.01 au
K 5

Note.MJ andMS are the masses of Jupiter and Saturn, respectively, and RJ and
RS are the corresponding radii.

Figure 11. The number of ejections per planet vs. Safronov number, defined in
Equation (6), in the equal-mass planet samples together with the super-Earths-
only sample. The Safronov number of a sample is calculated based on the orbit
of the middle (third) planet.

Figure 12. Histogram of the number of ejections per planet vs. Safronov
number in the equal-mass planet sample with randomly chosen masses and
semimajor axes of the innermost orbits.

Table 5
Initial Conditions of Equal-mass Planet Simulations with Randomly Chosen

Masses and Semimajor Axes of the Innermost Orbits

Parameters Initial Values

Number of planets Five equal-mass planets
Planet mass mp Randomly chosen in [1/30, 1]MJ
Planet radius rp ( )/ /m M Rp J

1 3
J

a1 Randomly chosen in [0.1, 1] au
K 5

Figure 13. Eccentricity of inner super-Earth vs. the semimajor axis ratio
between the outer cold Jupiter and the inner super-Earth from observations,
with the color of the symbol showing the semimajor axis of the inner super-
Earth. The red boxes mark the systems with multiple inner super-Earths.

6 https://exoplanetarchive.ipac.caltech.edu
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more ejections. This indicates that free-floating super-Earths and
super-Earths coexisting with cold Jupiters may originate from
different regions in planetary systems.

4.4. Stability of Surviving Two-planet Systems

In the super-Earth–cold-Jupiter sample in Section 3.2, with
a1,0 = 0.5 au and K = 5 for all planets, more than 90% of the
systems end with two planets—a super-Earth and a cold
Jupiter. In Figure 5, at the end of Phase 2, the fractions of
systems with different numbers of planets have become stable,
an indicator that the systems are stable. We can use the
empirical criterion (C. Petrovich 2015) for two-planet systems
to determine their stability. The stability boundary is

( )
( )

( )
+

>r
a e

a e
Y

1

1
, 7ap

out out

in in

where ain and aout are the orbital semimajor axes of the inner
and outer planets, respectively, ein and eout are the corresp-
onding orbital eccentricities, and

( ) ( )
/ /

= +Y
m m

M

a

a
2.4

max ,
1.15. 8in out

1 3
out

in

1 2

In Equation (8), min and mout are the masses of the inner and
outer planets, respectively, and M� is the mass of the host star.
When the boundary in Equation (7) is satisfied, a planetary

system tends to be stable (C. Petrovich 2015). More precisely,
when rap < Y− 0.55, there is a >95% probability that the two-
planet system is long-term unstable; when rap > Y+ 0.25,
there is a >95% probability that the two-planet system is long-
term stable (C. Petrovich 2015). Figure 14 shows aout/ain
versus rap − Y for the remaining two-planet systems from the

super-Earths–cold-Jupiter sample in Section 3.2. The two
dashed lines are the above 95% probability criteria. 91% of the
two-planet systems have more than 95% probability that they
will remain stable. In addition, all systems satisfy the stability
boundary of Equation (7). By a conservative estimation, more
than 86% of the surviving two-planet systems are stable. The
proportion of stable systems could be even higher if we
consider the effect of GR precession (K. R. Anderson
et al. 2020).

5. Conclusions

In this work, we have simulated multiplanet systems using
the N-body integration package REBOUND to study their
evolution and the planets ejected from them. We have
analyzed the effects of various parameters on the evolution
of planetary systems and how they become unstable due to
collisions or ejections. Throughout our analysis, we measure
time in units of the orbital period P1 of the innermost planet in
the system.
In our super-Earths-only samples, for the same orbital

spacing K, defined in Equation (2), systems farther away from
their host stars experience the first planet loss by ejection or
collision later in their evolution, though it takes the same
amount of time for them to have their first close encounters.
This demonstrates that complex dynamical processes exist
between the first encounters and the first planet loss events. For
the systems with a large semimajor axis of the innermost orbit
a1,0, we find that the half-loss time ˜ /t1 2 is almost independent
of K, with ˜ /tlog 1 2 increasing linearly with alog 1,0. However,
for the systems with smaller a1,0, ˜ /t1 2 increases with K. The
latter can be explained by the rapid increase of the first close
encounter time t̃FCE with increasing K. In addition, we explore
the dependence of the number of ejections on the Safronov
number in equal-mass planetary systems. We show that the
average numbers of ejections per planet are similar in systems
of different planet masses but with the same Safronov number.
When the Safronov number increases, the number of ejections
increases as well.
In the evolution of the super-Earths–cold-Jupiter systems,

the orbits of super-Earths move inward or outward under the
interaction with other planets. When the orbit of a super-Earth
intersects with that of the cold Jupiter, it becomes unstable,
and the super-Earth will eventually be lost through collision or
ejection. Because of the large Safronov number of the cold
Jupiters, 38% of super-Earths escape in the super-Earths–cold-
Jupiter sample. They have a low velocity relative to their host
stars, and thus their observed velocity distribution in the Milky
Way will be similar to that of their host stars. Since the cold
Jupiters dominate the super-Earths–cold-Jupiter systems,
samples of different Ks have the same fraction of ejected
planets. Most super-Earths in the surviving two-planet systems
have migrated inward, and they have considerably greater
eccentricities than their initial states. Under a conservative
estimation without GR effects, more than 86% of the
remaining two-planet systems are long-term stable, according
to the criteria of C. Petrovich (2015). It should be noted that
we do not see any binary objects ejected from our samples by
checking the time intervals between ejections, and so this has
little impact on producing systems such as JuMBOs
(S. G. Pearson & M. J. McCaughrean 2023).
In our simulations, we assumed perfect mergers (i.e., two

colliding planets always merge to form a planet with the sum

Table 6
Statistical Outcomes of Super-Earth–Cold-Jupiter Simulations with the Cold

Jupiter at 1 au, K = 5 for the Super-Earths, and Different a1,0

a1,0 (au) 0.1 0.2 0.3 0.4 0.5

f2p (%) 0 16 66 92 96
fej,SE (%) 0 3 20 32 37

Note. f2p is the fraction of systems with two planets remaining. fej,SE is the
fraction of all super-Earths that have been ejected.

Figure 14. aout/ain vs. rap − Y for the remaining two-planet systems from the
super-Earths–cold-Jupiter sample in Section 3.2, with a1,0 = 0.5 au and K = 5
for all planets. The left and right vertical dashed lines show the 95% instability
and stability boundaries, respectively. The variables are defined in
Equations (7) and (8).
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of the masses). For the simulations with equal-mass planets,
close encounters between the planets typically increase the
relative velocity to less than the escape velocity before a
collision, and perfect merger is a reasonable approximation
(e.g., H. Genda et al. 2012; S. T. Stewart & Z. M. Leinhardt
2012). For the super-Earth–cold-Jupiter simulations, a super-
Earth could gain random velocity up to the surface escape
velocity of Jupiter in an encounter with the cold Jupiter, which
could lead to a relative velocity in a subsequent collision with
another super-Earth that exceeds their surface escape velo-
cities. The effects of a more realistic collision algorithm
accounting for other collision outcomes, such as hit-and-run,
will require further investigation.
To further study the properties of ejected planets from

multiplanet systems, we need to make progress from both
theory and observations. First, future theoretical works need to
adopt more realistic initial conditions, including more planets
and/or the presence of protoplanetary disks in the simulations.
Second, it will be vitally important to discover more FFPs with
masses to improve the current statistical results (e.g., T. Sumi
et al. 2023), which is indeed one of the science drivers of
upcoming space missions, such as Roman (M. T. Penny et al.
2019) and Earth 2.0 (ET; J. Ge et al. 2022).
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