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Tunable molecular interactions near an atomic Feshbach resonance:
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Understanding and controlling interactions of ultracold molecules is a cornerstone of quantum chemistry.
While the laboratory creation of degenerate molecular gases comprised of bosonic atoms has unlocked powerful
platforms for quantum simulation, progress is limited by the absence of a robust theoretical framework for
characterizing intermolecular interactions. This is in stark contrast to the situation for Fermi gases. In this Letter,
we present such a framework providing universal expressions for these molecular scattering lengths as functions
of experimentally measurable quantities. Our discoveries are crucial for understanding molecular condensate
formation. Calculations of the compressibility reveal that a sign change in such molecular scattering lengths
is directly correlated with the instability of these condensates. These results offer fresh insight with broad
applications for atomic, molecular, and condensed matter physics, as well as quantum chemistry.
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Introduction. Molecular condensates of bosonic atoms rep-
resent a key frontier in physics, offering a path to discover
states of matter and quantum phase transitions [1–4]. The
use of Feshbach resonances [5], particularly through magne-
toassociation, has revolutionized our ability to create stable
diatomic molecules from ultracold atomic pairs. This has
allowed for the preparation of equilibrium molecular conden-
sates [6,7].

Despite this progress, bosonic systems face significant
challenges. Condensates become unstable near a resonance,
as they experience particle loss and heating due to three-
body recombination [8–11]. Feshbach interactions can add
to this condensate destabilization when they introduce an
attractive force between molecules. Such instabilities con-
trast sharply with two-component Fermi gases, where the
Pauli exclusion principle [12,13] allows for the robust for-
mation of stable molecular condensates. The stability in
fermionic systems has enabled an extensive exploration
of the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein-
condensation (BEC) crossover [14–17], a level of under-
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standing that has yet to be replicated with bosons. Here,
BCS-BEC crossover refers to a superfluid undergoing a
smooth evolution, with increasing interaction strength, from
large, overlapping Cooper pairs to tightly bound diatomic
molecules.

In this paper, we address this critical issue of bosonic
molecular condensate instability by examining the molecule-
molecule scattering length. Our approach is inspired by
atomic condensates, where the two-body s-wave scattering
length is typically described by the following equation:

as = abg

(
1 − �B

B − B0

)
. (1)

Here, B0 is the resonance value of the magnetic field B, �B is
the resonance width, and abg is the atomic s-wave background
scattering length. The leading-order contribution to as due to
the Feshbach coupling can be visualized as in Fig. 1(a) [18].

It is well known that atomic condensates collapse when
as becomes negative. This typically happens when the mag-
netic field B is above the resonance, specifically within the
range B0 < B < B0 + �B (assuming a positive atomic back-
ground scattering length, abg > 0). For concreteness, here we
assume �B > 0, so that the bare molecules’ energy drops
below the atom continuum when the magnetic field is below
resonance (B < B0) [19]. What has not been widely appreci-
ated is that Feshbach coupling can also modify the scattering
properties of molecules, which can lead to the instability of a
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FIG. 1. Scattering due to atomic Feshbach coupling: (a) Leading-
order scattering process contributing to the resonant term in the
atomic scattering length, as [Eq. (1)]. Two incoming atoms (single
blue circles) temporarily combine into a molecule (two attached
circles) via Feshbach coupling, and then dissociate into two outgoing
free atoms. The orange region represents virtual processes. (b) Cor-
responding leading-order contribution to the molecular scattering
length, amm, near the resonance. Here, two molecules approach each
other and temporarily break up into four free atoms, which then
propagate, interact, and recombine into two molecules. Similar to
panel (a), this process universally depends on the Feshbach coupling
but is of higher order in the coupling strength.

molecular Bose-Einstein condensate. Understanding this im-
portant effect is central to our investigation.

In this Letter, we demonstrate how Feshbach resonances
dramatically alter the intermolecular scattering length and
consequently the behavior of bosonic molecular condensates,

mirroring their profound effect in atomic systems. Crucially,
this tunability can drive molecular condensates into insta-
bility when this scattering length (called amm at zero and
aeff

mm at finite density) becomes negative. Notable is a rather
pronounced density dependence found in aeff

mm for narrow res-
onances, which arises from many-body effects and introduces
additional complexity; only in the limit of very wide Feshbach
resonances does aeff

mm simplify, converging with the two-body
scattering length amm.

The accurate determination of both the fundamental
molecular scattering length (amm) and the density-dependent
effective scattering length (aeff

mm) presents a significant theo-
retical challenge. As Fig. 1(b) illustrates, even a leading-order
intermolecular scattering process can be considerably more
complex as it involves higher order in Feshbach cou-
pling strength than what is seen in simpler atomic systems
[Fig. 1(a)]. Additionally, we also need to precisely account
for background interactions between atoms and molecules.

Summary of main results. Our theoretical framework em-
ploys a two-channel variational wave function treatment to
systematically analyze the system’s compressibility and, from
it, deduce the crucial scattering lengths. We begin by present-
ing general insights into the zero-temperature stability phase
diagrams presented in Fig. 2, which are determined through
numerical calculations of the compressibility κ = dn/dμ.

FIG. 2. Phase diagrams and molecular scattering lengths. Ground-state stability phase diagrams for (a) wide and (b) narrow resonances,
showing compressibility κ [normalized by κbg = m1/(4π h̄2abg)] as a function of atom number density n and of detuning ν̄ = �μm(B − B0)
(normalized by resonance width �ν̄ = �μm�B). Orange indicates stable regions (κ > 0), and blue indicates unstable regions. The atomic
condensate is present only in the atomic superfluid (ASF) phase, while the molecular condensate is present in both ASF and molecu-
lar superfluid (MSF) phases. Red dashed lines denote the quantum critical point ν̄c(n) separating ASF from MSF, while ν̄c,− and ν̄c,+
mark boundaries between unstable and stable regions. (c), (d) Corresponding two-body molecular scattering length amm, and its many-
body analog aeff

mm(n) for na3
bg = 1.68 × 10−5. Parameters for the narrow resonance [panels (b and (d)] are from the 133Cs resonance at

B0 = 19.849 G [6,7,20]. For the wide resonance [panels (a) and (c)], �ν̄ is increased by 102 times relative to panels (b) and (d).
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Figures 2(a) and 2(b) show the zero-temperature stability
phase diagrams for both a wide and a narrow resonance, in
terms of density n on the vertical axis and detuning ν̄ on
the horizontal axis. Both panels indicate a stable molecular
superfluid phase at large negative detuning, a stable atomic
superfluid phase at large positive detuning, and an unstable
region in between, where the compressibility becomes nega-
tive: κ < 0. The boundaries of this unstable region are marked
by the detunings ν̄c,+ and ν̄c,−. In Figs. 2(c) and 2(d), we plot
both our calculated two-body scattering length, amm, and its
many-body analog aeff

mm(n).
Note a striking similarity between panels (a) and (b)

of Fig. 2 on the atomic side. For both narrow and wide
resonances, the phase boundary of the unstable region is es-
sentially dictated by the sign change of the two-body atomic
scattering length, as. This means that in both scenarios, the
upper boundary detuning of the unstable regime, ν̄c,+, remains
nearly independent of density.

In contrast, the behavior of the compressibility on the
molecular side of the phase diagrams in Figs. 2(a) and 2(b)
reveals a significant difference between wide and narrow res-
onances. We summarize our key observations:

(1) Wide resonance case with density-independent stability.
In the case of wide resonances, the entire unstable region
shows very little dependence on density. This is a signifi-
cant finding because it means we can roughly characterize
the molecular condensate’s stability using just a two-body
scattering length, similarly to how we treat atomic conden-
sates. Figure 2(c) confirms this, showing that aeff

mm(n) is nearly
equivalent to amm, and importantly, amm itself changes sign at
the instability onset detuning, ν̄c,−, in Fig. 2(a).

(2) Narrow resonance case with strong density dependence.
In contrast, for narrow resonances, the lower boundary de-
tuning, ν̄c,−, of the unstable region in Fig. 2(b) is highly
dependent on density. Here, it is the density-dependent many-
body scattering length, aeff

mm, not the two-body amm, that
changes sign at this instability boundary, as clearly shown in
Fig. 2(d).

(3) Proximity to quantum critical point (QCP). What is par-
ticularly interesting is that for narrow resonances, at moderate
to high densities, the boundary detuning ν̄c,−(n) in Fig. 2(b)
nearly aligns with the detuning ν̄c(n). This detuning ν̄c(n) is
associated with a QCP that separates the MSF from the ASF
phase. This strong correlation suggests that close proximity to
the QCP is a crucial factor in the instability of these narrow
resonance molecular superfluids.

To quantitatively confirm the observations above, we
present three limiting forms for the scattering lengths amm and
aeff

mm. These formulas are particularly relevant in the interesting
detuning regions where a stable MSF exists and where the
compressibility changes its sign [21]. It is important to note
that they are applicable only for the magnetic field below the
resonance: B < B0.

For a wide resonance at large negative detuning, we find
that the scattering lengths aeff

mm and amm are given by

aeff
mm(n) ≈ amm = abg

mm

[
1 −

(
�wide

B

B0 − B

)2
]
, (2a)

where �wide
B = π√

6

√
h̄2

m1(ā − abg)2�μm
�B (2b)

is an effective molecular resonance width. Here, abg
mm, which

is chosen to be positive [22], m1, and �μm are the molecular
s-wave background scattering length, the atomic mass, and
the magnetic moment difference between the open and closed
channels, respectively. As in the literature [5,23], ā in Eq. (2b)
can be taken as 0.96RvdW, where RvdW is the van der Waals
length.

For the narrow resonance case at zero density and with
detuning somewhat away from unitarity, we can define a two-
body molecular scattering length

amm = abg
mm

[
1 −

(
�narrow

B

B0 − B

) 3
2

]
, (3a)

where �narrow
B =

(
abg

abg
mm

) 2
3

(
m1a2

bg�μm

h̄2

) 1
3

(�B)
4
3 (3b)

is the counterpart molecular resonance width. The scattering
process underlying the resonant term in Eq. (3a) [24] is il-
lustrated in Fig. 1(b), which involves the exchange of two
bosonic atom constituents between molecules. Importantly,
the negative sign in front of this term is fundamentally con-
nected to Bose statistics. It can be shown that for a fermionic
Feshbach resonance, amm takes a similar form to Eq. (3a), but
with the negative sign in front of the resonant term replaced
by a positive sign (see Refs. [25–27]).

Finally, we present an expression for the many-body
molecular scattering length aeff

mm(n) in the case of a narrow
resonance at finite density,

aeff
mm(n) ≈ abg

mm

[
1 −

(
�narrow

B

B0 − B

) 3
2

f (B, n)

]
, (4a)

with f (B, n) = 1 + 2
√

2

π
ln

(
ν̄2

ν̄2 − ν̄2
c (n)

)
, (4b)

where ν̄ = �μm(B − B0) is the detuning and ν̄c(n) ≈
−2ᾱ

√
n is its corresponding QCP value, with ᾱ represent-

ing the renormalized Feshbach coupling strength defined in
Eq. (6). Equation (4) is applicable for the detuning less than
the QCP value, ν̄ < ν̄c < 0. At zero density, the QCP coin-
cides with the resonance ν̄c = 0 and Eq. (4a) reduces to Eq. (3)
for the two-body scattering length amm.

Qualitatively, one can understand why many-body physics
plays an important role in the molecular condensate stability,
as the main fluctuations that destabilize the MSF phase in
Fig. 2 are atomic Bogoliubov excitations arising from the
presence of the ground-state molecular condensate. These ex-
citations exhibit a significant energy gap and behave like free
atoms when the detuning is large and negative, as is relevant in
a wide resonance. However, they become soft with a phonon-
like, low-energy dispersion as the detuning approaches the
QCP. For a sufficiently narrow resonance at a given density,
it is this softness of the Bogoliubov excitations, rather than
proximity to the two-body resonance point, that drives the
instability.
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These many-body effects are manifested in the logarith-
mic term in f (B, n) appearing in Eq. (4). This logarithmic
dependence has the important consequence that the bound-
ary detuning ν̄c,−(n) for the narrow resonance is generally
exponentially close to the QCP [21]. Importantly, this narrow
resonance case presents an interesting opportunity as it pro-
vides experimental access to the associated QCP physics from
the stable MSF side.

Variational analysis. To arrive at all of these results, we
use a variational ground-state analysis that incorporates both
atomic and molecular condensates, as well as depletion and
atomic Cooper-pairing contributions. Some aspects of these
stability issues due to the presence of Cooper pairing of
bosons have been discussed in prior work [28–33]. There, the
emphasis was primarily restricted to single-channel models.

We adopt a two-channel model Hamiltonian that includes
both interchannel Feshbach coupling and intrachannel back-
ground interactions:

Ĥ =
2∑

σ=1

∑
k

hσka†
σkaσk − α√

V

∑
k1,k2

(
a†

1k1
a†

1k2
a2,k1+k2

+ H.c.
) +

2∑
σ=1

∑
ki

gσ

2V
a†

σk1
a†

σk2
aσk3 aσ,k1+k2−k3 . (5)

Here, aσk is an annihilation operator for the open-channel
atoms (with σ = 1) or closed-channel molecules (σ = 2). The
summation V −1 ∑

k, with V the volume, represents an integral
over the momentum k with a cutoff �, which is needed
to regularize ultraviolet divergences in various k-dependent
integrals. Finally, we assume three-dimensional isotropy and
ignore trap effects.

In Eq. (5), we define kinetic energy contributions
h1k = (h̄k)2/2m1 − μ and h2k = (h̄k)2/2m2 − (2μ − ν)
with m2 = 2m1, μ the chemical potential, and ν the bare
molecule detuning. The parameter gσ > 0 corresponds to
a repulsive intrachannel density-density interaction, and α

represents the bare Feshbach coupling between the two
channels. The parameters {ν, α, g1, g2} depend on the cutoff
� and are related [20,21] to experimental observables
by ν = ν̄ + √

2βαᾱ, α = ᾱ
/
√

2, g1 = ḡ1
, and g2 =
ḡ2/(1 − (2/π )�abg

mm ), with ᾱ =
√

4π h̄2abg�μm�B/m1,
ḡ1 = 4π h̄2abg/m1 > 0, ḡ2 = 4π h̄2abg

mm/m2 > 0, β =
m1�/(2π2h̄2), and 
 = 1/(1 − βḡ1). These relations are
chosen to reproduce the atomic scattering length as in Eq. (1)
in the two-atom scattering limit. Finally, the momentum
cutoff � is related to the length scale ā in Eqs. (2)–(4) by
� = π/(2ā).

From the renormalized Feshbach coupling parameter ᾱ,
one can define a characteristic length scale r∗ [5,25,26,34] as

r∗ ≡ 4π h̄4/m2
1ᾱ

2 = h̄2/(abgm1�μm�B), (6)

which allows us to classify the resonance width quantita-
tively. If the ratio wres ≡ abg/r∗ is much smaller than unity
(wres � 1), the resonance is viewed as narrow; otherwise, it is
classified as wide. For the narrow and wide resonances used
in this Lettter, we choose wres ≈ 0.006 [20,21] and wres ∼ 1,
respectively [35].

To address the ground-state stability at zero temperature,
we adopt the following many-body variational wave function
as an approximation to the true ground state of Ĥ :

|�var〉 = N−1e
∑

σ �σ0
√

V a†
σ0+

∑′
k

∑
σ χσk a†

σka†
σ−k |0〉, (7)

where {�σ0, χσk} are the variational parameters and N is
the normalization factor. In the exponent, the k sum is over
half of k space, and the prime in the k summation implies
that the origin k = 0 is excluded. The vacuum |0〉 satisfies
aσk|0〉 = 0 for all annihilation operators aσk. In the spirit of
generalized Bogoliubov theory, this variational wave function
includes only pairwise correlations between atoms or between
molecules in the exponent. We emphasize that this approxi-
mation is adequate for our focus on the detuning regime that
is not too close to the resonance [36]. In Ref. [21], we pro-
vide concrete estimates showing that neglecting higher-order
correlations results in less than 2% uncertainty in the phase
boundaries of the phase diagram in Fig. 2, as well as in the
scattering length formulas given in Eqs. (2)–(4).

The trial ground-state energy associated with |�var〉 is then


[�10, �20, χ1k, χ2k] = 〈�var|Ĥ |�var〉, (8)

which is a functional of the parameters {�10, �20, χ1k, χ2k}.
Here, �σ0 = 〈aσ0〉/

√
V indicates that �10 (�20) also repre-

sents the amplitude of the atomic (molecular) condensate.
Minimizing 
 with respect to {�∗

10, �
∗
20, χ

∗
1k, χ

∗
2k} yields

a set of saddle-point equations [20]. Those derived from
the derivative ∂
/∂χ∗

σk can be recast into the form of
the BCS-like gap equation by introducing the Cooper-like
pairing order parameter �σ ≡ gσV −1 ∑

k �=0〈aσkaσ,−k〉. Us-
ing the pairing order parameter �σ , one can rewrite the
ground-state energy 
 in Eq. (8) as a function of only
five unknowns: 
 = 
[�10, �20,�1,�2, μ], whose first-
order derivative with respect to the five parameters leads to
four saddle-point equations plus one total particle number
density constraint: n = (|�10|2 + n1) + 2(|�20|2 + n2) with
nσ = V −1 ∑

k �=0〈a†
σkaσk〉.

We now numerically solve the five equations. Figures 3(a)
and 3(b) plot the calculated chemical potentials near reso-
nance at two different densities for both the wide and narrow
resonances. This provides useful insight into the anomalous
negative sign of the compressibility and the related con-
densate instability. From both figures, we observe that the
chemical potential μ, which represents the average energy
per atom, falls below the two energy levels corresponding
to the bare atomic continuum threshold on the atomic side
and the two-body molecular energy/2 on the molecular side.
Furthermore, as the density n decreases, in the near-resonance
regime the chemical potential μ approaches the two energy
levels from below. Consequently, the inverse compressibility
κ−1 = dμ/dn must be negative near and on both sides of
the resonance [37]. The numerical results that were shown
previously in Figs. 2(a) and 2(b) support this analysis; there,
we directly evaluated the derivative dμ/dn numerically, from
which we constructed the ground-state stability phase dia-
grams.

Many-body effective scattering length. Armed with this un-
derstanding, we now derive the many-body effective scattering
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FIG. 3. Chemical potential, inverse compressibility, and molecular scattering lengths. (a), (b) Chemical potential μ (blue solid and red
dashed lines) vs detuning ν̄ at densities n and n/2, with na3

bg = 1.68 × 10−5 [same as Figs. 2(c) and 2(d)]. The “atom continuum” threshold is
at μ = 0. In panel (a), “−Eb” represents the dressed molecular energy; in panel (b), it is replaced by its bare value, ν̄. (c), (d) Comparison of
the inverse compressibility (blue solid lines) at na3

bg = 1.68 × 10−5 with the atomic scattering length as (red dashed lines) and the many-body
molecular scattering length aeff

mm (brown dashed lines with squares), defined in Eq. (9). Both aeff
mm and as are plotted in units of abg.

length aeff
mm for the dressed molecules in terms of an effective

interaction geff
2 :

aeff
mm(n) = m2

4π h̄2 geff
2 (n), (9a)

with geff
2 = (Zeff )2

2

∂4
[�10, �20,�1,�2, μ]/V

∂�2
20∂ (�∗

20)2
. (9b)

Here, Zeff is the fraction of the dressed-molecular condensate
in the closed channel, defined by Zeff = |�20|2/(|�20|2 +
n1/2) [38]. The quartic derivative in Eq. (9b) can be carried
out approximately [21, 39], leading to

geff
2

(Zeff )2
≈ ˜̄g2 − ˜̄α4

⎡⎣ 1

V

∑
k

1

2E3
1k

− 2g1

(
1

V

∑
k

ε̃1k

2E3
1k

)2
⎤⎦,

(10)

where E1k =
√̃

ε2
1k − |�̃1|2 is the atomic Bogoliubov quasi-

particle energy, with ε̃1k = h1k + 2g1(|�10|2 + n1) and �̃1 =
�1 + g1�

2
10 − 2α�20. In Eq. (10), ˜̄α and ˜̄g2 are two in-

teraction parameters, related to the Feshbach coupling ᾱ

and molecule-molecule interaction ḡ2 by ˜̄α = √
2α/(1 +

g1V −1 ∑
k 1/2E1k ) and ˜̄g2 = g2/(1 + g2V −1 ∑

k 1/2E2k ). It
is important to note that Eq. (10) is applicable as long as the
detuning ν̄ is smaller than and not too close to its QCP value ν̄c

as we have already set �10 = 0. Evaluating Eqs. (9) and (10)
leads to the aeff

mm plots in Figs. 2(c) and 2(d).

The overall minus sign associated with the term∑
k 1/2E3

1k in Eq. (10) should be noted. This term arises
from contributions related to the scattering process shown
in Fig. 1(b). It should be clear that the presence of E1k in
the denominator reflects the fact that the excitations involved
in the intermediate scattering state are atomic Bogoliubov
quasiparticles.

In general, the k integral in Eq. (10) cannot be done analyt-
ically. However, for the narrow resonance case and detuning
near the QCP, Eqs. (10) and (9) can be further simplified
to yield the simple analytical expression for the many-body
scattering length aeff

mm [21] presented in Eq. (4). In Figs. 3(c)
and 3(d), we numerically evaluate aeff

mm for a generic de-
tuning in both the narrow and wide resonance cases, and
compare it with the numerically calculated compressibility
inverse κ−1 [40]. Notably, the two, aeff

mm and κ−1, show rather
precise agreement, for both the narrow and wide resonances at
detunings away from the immediate vicinity of the QCP [41].

All of this allows us to understand why the compressibility
in Figs. 2(a) and 2(b) behaves so differently when compar-
ing the behavior of wide and narrow resonances. For a very
narrow resonance, because of the small Feshbach coupling
ᾱ, the factor ˜̄α4 in Eq. (10), which is proportional to ᾱ4,
is very small. Consequently, the effective scattering length
aeff

mm becomes negative only when the atomic Bogoliubov
quasiparticle energy gap (contained in E1k=0) is sufficiently
small. This ensures that the detuning at which aeff

mm changes
sign is sufficiently close to the QCP. In contrast, for a wide
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resonance, this occurs when the gap E1k=0 is still large, which
corresponds to a detuning well away from the QCP.

Zero-density limit. The expressions for the two-body scat-
tering length amm, presented in Eqs. (2) and (3), were obtained
from the zero-density limit of aeff

mm in Eq. (9), which leads to

amm = abg
mm − abg

mm

k4
br∗ā3

A1 − 1

k6
br2∗ ā3

A2 + abg

k8
br2∗ ā6

A3, (11)

where r∗ was defined in Eq. (6) and kb = √
mEb/h̄ is the

detuning-dependent momentum corresponding to the molec-
ular binding energy Eb. The three dimensionless and positive
coefficients {A1, A2, A3} contain subleading dependences on
1/kb [21], and their expressions are given in Supplemental
Material [21]. To arrive at Eqs. (2) and (3), we retain the
background contribution abg

mm in Eq. (11) along with the A1

and A2 terms, which are dominant for the wide and narrow
resonances, respectively, near the boundary detuning ν̄c,− in
Fig. 2.

Conclusions. In this Letter, we have conducted an in-
depth study on the stability of molecular condensates near
Feshbach resonances in bosonic atoms, establishing the rela-
tionship to the intermolecular scattering lengths. In contrast
with the Fermi gases, there has, thus far, been very little
theoretical work on characterizing this property for those
molecules comprised of bosonic atoms. Such calculations
cannot naturally build on past work for the Fermi sys-
tems [42], as in the Bose problem in the more immediate

vicinity of resonance, one has to contend with Efimov and
tetramer bound states as well as other background contri-
butions. With the caveat that, following experiment [6,7],
we are not too close to resonance (where instability is
guaranteed), we have shown how just as Feshbach resonances
allow tuning of the scattering lengths of atoms, they also
modify the scattering length of molecules constituted from
these atoms.

Our predictions are ripe for experimental validation. The
concrete expressions for the molecular scattering lengths we
derived make it possible to address a number of issues that
were previously inaccessible; these include, among others,
the equilibrium equation of state in the dilute molecular gas
regime, the expansion dynamics, the collective modes, and
the molecule-molecule scattering-induced relaxation [13,26,
42–44].
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