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Abstract
In this paper, we investigate asymmetric Nash bargaining in the context of proportional insurance contracts between
a risk-averse insured and a risk-averse insurer, both seeking to enhance their expected utilities. We obtain a necessary
and sufficient condition for the Pareto optimality of the status quo and derive the optimal Nash bargaining solution
when the status quo is Pareto dominated. If the insured’s and the insurer’s risk preference exhibit decreasing absolute
risk aversion and the insurer’s initial wealth decreases in the insurable risk in the sense of reversed hazard rate order,
we show that both the optimal insurance coverage and the optimal insurance premium increase with the insured’s
degree of risk aversion and the insurer’s bargaining power. If the insured’s risk preference further follows constant
absolute risk aversion, we find that greater insurance coverage is induced as the insurer’s constant initial wealth
increases.

1. Introduction
Optimal insurance contract theory has been one of the research hotspots in actuarial science. An individ-
ual bargains with an insurer to design an insurance contract, which typically consists of an indemnity
function (coverage) and an upfront premium. Most papers in actuarial science on optimal insurance
focus on stop-loss indemnities, as they are often shown to be optimal; see, for example, Arrow (1963),
Van Heerwaarden et al. (1989), Gollier and Schlesinger (1996), Gollier (2013), and Chi et al. (2024).
However, a stop-loss indemnity covers losses above a pre-determined deductible, which can lead to
moral hazard. Once the deductible is exceeded, the insured may lack incentives to mitigate further losses
(Drèze and Schokkaert 2013). As an alternative, coinsurance is popular, where the insured covers part of
the incremental losses. A common form of coinsurance is proportional insurance. Therefore, this paper
focuses on the design of proportional insurance contracts.

Many optimal insurance models rely on the insurer’s indifference pricing or equilibrium arguments.
Boonen and Ghossoub (2023) show that competitive and Bowley equilibria make the insurer or insured
indifferent between insuring or not insuring. As a direct alternative, the asymmetric Nash bargaining
solution can guarantee that both parties strictly benefit from the insurance transaction (Kalai 1977).
The asymmetric Nash bargaining solution, which generalizes the Nash bargaining solution introduced
by Nash (1950), is characterized by Kalai (1977). More specifically, the Nash bargaining solution is
obtained by maximizing the product of the excess utilities of the two parties over the status quo. The
asymmetric Nash bargaining solution removes the symmetry axiom from the axiomatization of Nash
(1950). This allows for assigning particular powers to the excess utilities, which can be interpreted as
the bargaining power of each agent.
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In this paper, we investigate the asymmetric Nash bargaining on a proportional insurance contract
between a risk-averse insured and a risk-averse insurer,1 where the insurer’s initial wealth, subject to
fluctuations from existing business operations, is considered random. Following von Neumann and
Morgenstern (1953), we assume both agents maximize expected utility. We fully characterize the Pareto
optimality of the status quo by introducing a condition. If this condition is not satisfied (i.e., the sta-
tus quo is Pareto dominated), we derive the optimal asymmetric Nash bargaining solution. If the utility
functions of the two agents exhibit decreasing absolute risk aversion (DARA), we show that both the
optimal insurance coverage and the optimal insurance premium increase with the insurer’s bargaining
power and the degree of the insured’s risk aversion when the insurer’s initial wealth is decreasing with
respect to the insurable risk in the sense of reversed hazard rate order. For an insured with an exponential
utility function, the optimal insurance coverage increases with the insurer’s constant initial wealth.

This paper is related to Chi et al. (2024), who also study Nash insurance bargaining solutions.
However, we differ in two fundamental ways. First, we allow for risk aversion of the insurer, while
Chi et al. (2024) restrict the insurer to be risk neutral. As a result, we get that once the insurer’s ini-
tial wealth is negatively dependent with the insurable risk, full insurance cannot be optimal even if the
deadweight cost is set to be zero, which contrasts with Chi et al. (2024). Second, we focus on propor-
tional insurance treaties, while Chi et al. (2024) study stop-loss arrangements. Under the assumption
of proportional insurance treaties, we can show that the set of feasible Nash bargaining outcomes is
convex such that we can use the characterization of asymmetric Nash bargaining solutions in Kalai
(1977). To be specific, he shows that the asymmetric Nash bargaining solution is the unique solution
that satisfies the following four properties: Feasibility, Invariance under change of scale of utilities,
Independence of irrelevant alternatives, and Pareto optimality. Three of these properties are clear and
intuitive requirements, but only the Independence of irrelevant alternatives can be argued about. This
property requires that if some feasible insurance contracts that are not equal to the bargaining solution
are removed from our feasible set, then the solution will not change. In other words, removing feasible
contracts (other than the bargaining solution) from the feasible set does not alter the solution. Notably,
in the bargaining literature, it has been replaced to obtain other bargaining solution concepts, such as
the Kalai–Smorodinsky solution (Kalai and Smorodinsky 1975). It should also be emphasized that Nash
bargaining under other model settings has been extensively studied. Alternative characterizations of the
Nash bargaining solution based on non-cooperative games are provided by van Damme (1986), Britz
et al. (2010), and Okada (2010). In a risk-sharing context, Aase (2009) studies the Nash bargaining solu-
tion and compares it with the competitive equilibrium. In the context of optimal reinsurance, Boonen
et al. (2016) and Anthropelos and Boonen (2020) study asymmetric Nash bargaining solutions with
distortion risk measures, and Anthropelos and Boonen (2020) show that it is important for the risk mea-
sures to be known by market, as agents have an incentive to misrepresent their risk measures. Moreover,
Zhou et al. (2015) and Boonen et al. (2017) study applications to longevity risk transfers with the Nash
bargaining solution. Similar to these studies, this paper advances the exploration of Nash bargaining
applications in insurance and risk management.

The remainder of this paper is organized as follows. Section 2 defines a proportional insurance con-
tract and provides a brief introduction to the asymmetric Nash bargaining solution. Section 3 provides
our main results on the optimal proportional insurance under asymmetric Nash bargaining. Section 4
conducts comparative statics analysis. Section 5 presents detailed examples illustrating our theoretical
results. Section 6 concludes, and all the proofs are delegated to the appendix.

1The risk attitudes of the insurer and the reinsurer may not be too dissimilar, because many major reinsurers do have subsidiaries
or affiliated companies that operate as primary insurers, offering first-line insurance directly to customers. Examples of such
companies include Munich Re, which owns ERGO Group, and Swiss Re, which has primary insurance operations through its
Corporate Solutions unit. This means that a reinsurer can act as an insurer (indirectly) or as a reinsurer in a reinsurance transaction.
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2. Model setup
2.1. A proportional insurance contract
An individual endowed with initial wealth w0 faces an insurable risk X, interpreted as a loss. The risk
X, defined on a probability space (�, G, P), is a non-negative, bounded random variable with an essen-
tial infimum of 0 and an essential supremum of M > 0.2 To reduce her risk exposure, she purchases a
proportional insurance contract with indemnity Iθ (x) := θx for some proportion θ ∈ [0, 1] and insurance
premium P, ceding partial risk to an insurer. Note that the admissible insurance premium must be non-
negative and cannot exceed M. Thus, the proportional insurance contract is completely determined by
the pair (θ , P) ∈ [0, 1] × [0, M]. The individual is risk averse and is endowed with a utility function u
satisfying u′( · )> 0 and u′′( · )< 0 on the domain [w0 − 2M, w0]. A rational condition for purchasing
this contract is that the individual’s expected utility is enhanced, that is,

E[u(w0 − X + Iθ (X) − P)] �E[u(w0 − X)].

Following Raviv (1979), we assume that the insurer is risk averse and endowed with bounded initial
wealth W1 and a utility function v satisfying v′( · )> 0 and v′′( · )< 0 on the relevant domain, where W1

is affected by the fluctuation of his existing business and may be random. The insurer will not offer this
contract unless his welfare is weakly improved, that is,

E[v(W1 + P − (1 + τ )Iθ (X))] �E[v(W1)],

where τ � 0 is the deadweight cost rate. The factor τ is used to include the overhead costs of providing
insurance by the insurer, such as marketing and administration costs.

For any proportion θ ∈ [0, 1], these two rationality conditions are equivalent to

P−(θ ) � P � P+(θ ), (2.1)

where P−(θ ) and P+(θ ) are the solutions to the following equations

E[v(W1 + P − (1 + τ )Iθ (X))] =E[v(W1)], P � 0, (2.2)

and

E[u(w0 − X + Iθ (X) − P)] =E[u(w0 − X)], P � 0, (2.3)

respectively. In other words, the proportional insurance contract is acceptable only if the insurance pre-
mium is less than the maximum amount the insured is willing to pay and exceeds the minimum level
required by the insurer. Thus, compared with the status quo (i.e., (θ , P) = (0, 0)), Equation (2.1) guaran-
tees that positive insurance is demanded only if both insured and insurer will (weakly) benefit from the
insurance transaction. Note that P−(θ ) and P+(θ ) are unique due to the strict increasingness of u and v.

Clearly, the final insurance contract depends heavily on the negotiation between the insured and the
insurer. In the literature, Nash bargaining is widely used to model the negotiation between two parties.
Thus, we will give a brief introduction of Nash bargaining in the next subsection.

2.2. Asymmetric Nash bargaining
A two-person Nash bargaining solution was first introduced by Nash (1950) and then extended by Kalai
(1977) to the asymmetric case. Let S be the set of all feasible bargaining outcome vectors for the two
parties and is a compact convex subset of R2. A bargaining problem is composed of a pair (a0, S), where
the 2-dimensional vector a0 ∈ S represents the status quo before bargaining (“disagreement point”), and
there exists at least one point x = (x1, x2)T ∈ S such that x1 > a01 and x2 > a02. Let B denote the collection
of all 2-person bargaining problems. We use a map μ:B �→R

2 to characterize the bargaining process.

2It is a reasonable assumption because the practical insurance loss is usually bounded, and this greatly simplifies the following
analysis, especially in the proof of the convex set of the Nash bargaining outcomes. To relax this assumption, more technical
discussions may be needed.
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According to Kalai (1977), the negotiation is referred to as asymmetric Nash bargaining if it satisfies
the following four axioms:

• Feasibility:μ(a0, S) ∈ S andμ(a0, S)> a0, whereμ(a0, S)> a0 means a strict inequality in both
components.

• Invariance under change of scale of utilities: If G:R2 �→R
2 is such that G(a) = (c1a1 +

b1, c2a2 + b2)T where ci > 0, then G(μ(a0, S)) =μ(G(a0), G(S)).
• Independence of irrelevant alternatives: For all two bargaining problems (a0, S) and (a0, U)

such that S ⊂ U and μ(a0, U) ∈ S, it holds that μ(a0, S) =μ(a0, U).
• Pareto optimality: If μ(a0, S) = (z1, z2)T and yi � zi for i = 1, 2, then either y /∈ S or yi = zi for

i = 1, 2.

Kalai (1977) shows that μ satisfies the above four axioms if and only if there exists a δ ∈ (0, 1) such
that μ(a0, S) is the unique point in S satisfying

μ(a0, S) = arg max
x∈S

(x1 − a01)1−δ(x2 − a02)δ.

This solution is referred to as the asymmetric Nash bargaining solution. Here, δ ∈ (0, 1) represents the
bargaining power of the second person relative to the first person. This means that the second person
has more power in the negotiation if the value of δ becomes larger (see, e.g., Kalai 1977). Feasibility is
an attractive property, as it implies that the asymmetric Nash bargaining solution strictly exceeds a0 in
every component. This strict inequality does not hold true for Bowley or competitive equilibria in the
context of distortion risk measures, as shown by Boonen and Ghossoub (2023).

3. Nash insurance bargaining
In this paper, we analyze the insurance negotiation between a risk-averse insured and a risk-averse insurer
using the asymmetric Nash bargaining framework. More specifically, the status quo is characterized by

a0 =
(
E[u(w0 − X)]

E[v(W1)]

)
.

Let the feasible set of insurance contracts be given by
F = {(θ , P) : θ ∈ [0, 1], P−(θ ) � P � P+(θ )} .

Then, the set of feasible bargaining outcome vectors under proportional insurance can be given by

S =
{(

E[u(w0 − X + Iθ (X) − P)]

E[v(W1 + P − (1 + τ )Iθ (X))]

)
: (θ , P) ∈F

}
.

Since (0, 0) ∈F , it follows that a0 ∈ S.
Let PO ⊂F be the class of all (θ , P) such that there is no (θ ′, P′) ∈F satisfying

E[u(w0 − X + Iθ ′ (X) − P′)] �E[u(w0 − X + Iθ (X) − P)], (3.1)

E[v(W1 + P′ − (1 + τ )Iθ ′ (X))] �E[v(W1 + P − (1 + τ )Iθ (X))], (3.2)
with at least one inequality being strict. Denoting the frontier of S by ∂S, we have

∂S =
{(

E[u(w0 − X + Iθ (X) − P)]

E[v(W1 + P − (1 + τ )Iθ (X))]

)
: (θ , P) ∈PO

}
.

Next, we analyze whether the status quo a0 belongs to the frontier of S.

Proposition 1. Under the assumption of proportional insurance, the status quo is Pareto optimal if and
only if

E[u′(w0 − X)X]

E[u′(w0 − X)]
� (1 + τ )

E[v′(W1)X]

E[v′(W1)]
. (3.3)
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From the above proposition, we know that no insurance will be purchased if the insured’s marginal
welfare improvement E[u′(w0−X)X]

E[u′(w0−X)]
is less than the marginal cost from the insurer (1 + τ ) E[v′(W1)X]

E[v′(W1)]
. In partic-

ular, when τ is sufficiently high, insurance becomes unattractive. Furthermore, when W1 is independent
of X, some interesting phenomena can be observed:

• The right-hand side of Equation (3.3) degenerates to (1 + τ )E[X] such that this necessary and
sufficient condition is no longer affected by the degree of the risk aversion of the insurer.
Notably, Proposition 3 in Braun and Muermann (2004) also states that when the insurer is
risk neutral, no insurance will be purchased if this condition is satisfied.

• Note that u′(w0 − X) and X are comonotonic, and thus the left-hand side of Equation (3.3) is
larger than E[X] by the Hardy-Littlewood inequality (Hardy et al., 1952). This means that if
τ = 0, the status quo is Pareto optimal only if X is almost surely deterministic.

Further, if W1 is stochastically increasing in X (denoted by W1 ↑st X),3 we have

E[v′(W1)X]/E[v′(W1)] �E[X]

such that Equation (3.3) fails to be satisfied for a relatively small τ . This is intuitive: if the insurer can
hedge existing business by underwriting new risks, he will provide insurance when the deadweight cost
is low. For the opposite case of W1 ↓st X, it is harder to evaluate because the right-hand side of Equation
(3.3) also exceeds E[X].

To ensure the feasibility of Nash bargaining, we impose the following assumption, which requires
the deadweight cost rate τ to be sufficiently small.

Assumption 1. E[u′(w0−X)X]
E[u′(w0−X)]

> (1 + τ ) E[v′(W1)X]
E[v′(W1)]

.

In addition to the Pareto inefficiency of the status quo, Nash bargaining problems also require the set
S to be compact and convex. This is shown in the following proposition.

Proposition 2. The set S is convex and compact.

From the above proposition, Nash bargaining is feasible if Assumption 1 is satisfied. The asymmetric
Nash bargaining solution solves the following optimization problem:

max
θ∈[0,1]

P−(θ )�P�P+(θ )

{E[v(W1 + P − (1 + τ )Iθ (X))] −E[v(W1)]}δ

× {E[u(w0 − X + Iθ (X) − P)] −E[u(w0 − X)]}1−δ (3.4)

for some δ ∈ (0, 1), where δ represents the bargaining power of the insurer. Obviously, the optimization
objective function is continuous in θ and P and equals to zero if P is equal to either P−(θ ) or P+(θ ).
Thus, the Nash bargaining solutions (θ ∗, P∗) must exist and satisfy

θ ∗ ∈� := {θ ∈ (0, 1] : P+(θ )> P−(θ )} and P−(θ ∗)< P∗ < P+(θ ∗) (3.5)

due to Assumption 1. The set � plays an important role in deriving optimal solutions, and we provide
an alternative characterization in the following proposition.

Proposition 3. Under Assumption 1,

�=
{

(0, 1], if P+(1)> P−(1),
(0, θ0), otherwise

for some θ0 ∈ (0, 1].

3That is, the distribution of [W1|X = x] is increasing in x in the sense of usual stochastic order, where random variable Z1 is said
to be smaller than Z2 in the usual stochastic order if P(Z1 � z) � P(Z2 � z) for all z ∈R.
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Figure 1. The functions P+(θ ) and P−(θ ) corresponding to Example 1.

Example 1. Let
w0 = 20, u(w) = −w−1, v(w) = w0.6,

and W1 = 100 almost surely. Moreover, assume that the loss X has the cumulative distribution function

FX(x) = 5

6
+ 4

7

∫ x

0

103

(y + 10)4
dy, x ∈ [0, 10].

Clearly, P(X = 0) = 5
6

and M = 10. Assumption 1 is satisfied whenever τ < 0.817, since E[u′(w0−X)X]
E[u′(w0−X)]E[X]

=
1.817.

Based on the above assumptions, it is easy to calculate P+(θ ) and P−(θ ) numerically. For τ = 0.4,
we display these two functions in Figure 1. The set � can be determined for different values of the
cost rate τ . More specifically, when τ = 0.3, we have θ0 = 1, and thus �= (0, 1]. The supremum of �
changes to approximately 0.773 if the value of τ is set to be 0.4 (see Figure 1). If τ further increases
to 0.5, then θ0 decreases to approximately 0.540. A similar set � is obtained when the insurer’s risk
attitude is changed from power utility function to

v(w) = 1 − e−aw

for some positive a. The outcomes of θ0 in those experiments are presented in Table 1.

Now, we can solve the optimization problem (3.4) and obtain the Nash bargaining solutions in the
following proposition.
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Table 1. The supremum of �, given by θ0, when the
insurer’s risk preference follows an exponential utility
function. Here, the value −∞ corresponds to the cases
that Assumption 1 is violated.

a
τ 0.001 0.01 0.1 1
0.3 1 0.984 0.513 −∞
0.4 0.801 0.726 0.381 −∞
0.5 0.559 0.507 0.268 −∞

Proposition 4. Under Assumption 1, the optimal proportional insurance contract (θ ∗, P∗) that solves
Problem (3.4) is unique. It satisfies the first-order condition⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 − δ) × E[u′(w0 − X + Iθ∗ (X) − P∗)]

E[u(w0 − X + Iθ∗ (X) − P∗)] −E[u(w0 − X)]
= δ× E[v′(W1 + P∗ − (1 + τ )Iθ∗ (X))]

E[v(W1 + P∗ − (1 + τ )Iθ∗ (X))] −E[v(W1)]
,

E[u′(w0 − X + Iθ∗ (X) − P∗)X]

E[u′(w0 − X + Iθ∗ (X) − P∗)]
= (1 + τ )

E[v′(W1 + P∗ − (1 + τ )Iθ∗ (X))X]

E[v′(W1 + P∗ − (1 + τ )Iθ∗ (X))]
,

(3.6)
if

P+(1) � P−(1) or E[X]< (1 + τ )
E

[
v′(W1 + P̂ − (1 + τ )X)X

]
E

[
v′(W1 + P̂ − (1 + τ )X)

] , (3.7)

and equals to (1, P̂) otherwise, where P̂ is a solution to the following equation
(1 − δ)u′(w0 − P)

u(w0 − P) −E[u(w0 − X)]
= δE[v′(W1 + P − (1 + τ )X)]

E[v(W1 + P − (1 + τ )X)] −E[v(W1)]
, P � 0. (3.8)

From the above proposition, we can see that full insurance is unlikely to be optimal, except for very
extreme cases such as that of a quite small τ and the insurer’s risk exposure W1 − (1 + τ )X being stochas-
tically increasing in X. Especially when W1 ↓st X, which includes the independent case between W1 and
X, we have

E

[
v′(W1 + P̂ − (1 + τ )X)X

]
E

[
v′(W1 + P̂ − (1 + τ )X)

] >E[X]

such that condition (3.7) is satisfied even if the deadweight cost rate τ is zero, then partial insurance is
optimal. Moreover, the optimal insurance solution depends not only on the degree of risk aversion of
both parties but also on the bargaining power δ.

4. Comparative statics analysis
In this section, we will carry out comparative statics analysis to investigate the effect of some interesting
factors on the Nash bargaining solution.

First, we investigate the effect of the degree of the insured’s risk aversion on the optimal rate and
insurance premium of proportional insurance. In the literature, the insured’s degree of risk aversion is
often measured by Arrow-Pratt coefficient of absolute risk aversion

Au(w) = −u′′(w)

u′(w)
.
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The insured’s risk preference is called to exhibit constant absolute risk aversion (CARA) if Au(w) is a
constant function. It is equivalent to that the insured has an exponential utility function with Au(w) = a
for some positive a.

To proceed, we consider a very special case. If there are no deadweight costs and risk preferences of
the two agents in the contract exhibit CARA, then the optimal proportion has a closed-form expression
and is independent of the bargaining power.

Proposition 5. Assume that the insurer’s initial wealth W1 is independent of X. For τ = 0 and CARA
utility functions u and v with Arrow-Pratt coefficients of λu and λv, the asymmetric Nash bargaining
solution is given by (θ ∗, P∗), where θ ∗ = 1/λv

1/λu+1/λv
and P∗ ∈ (P−(θ ∗), P+(θ ∗)).

The result in the above proposition can also be verified through Equation (3.6). Under these strict
assumptions, we can see that the optimal proportion θ ∗ does not depend on the bargaining power δ and
increases in λu. In other words, as the insured becomes more risk averse, more insurance coverage is
demanded. We claim that this effect can also be held for general cases, while the optimal parameters
θ ∗ and P∗ may not have closed-form expressions. Another insured’s risk attitude with increasing and
concave utility function ũ is called to be more risk averse than the insured’s with utility function u if
Aũ(w) �Au(w) for any w. Equivalently, there exists a twice differentiable increasing concave function
κ such that ũ(w) = κ(u(w)); see Proposition 2 in Gollier (2001). Furthermore, the utility function u is
said to exhibit a DARA risk preference if Au(w) is decreasing.

Proposition 6. Let −W1 be increasing in X in the sense of hazard rate order (i.e., −W1 ↑hr X).4 Under the
DARA assumptions on utility functions u and v, both the optimal proportion and the optimal insurance
premium increase as the insured becomes more risk averse in the Arrow-Pratt sense.

The above proposition can be explained as follows: As the insured becomes more risk averse, she is
willing to pay more insurance premium to mitigate the risk and transfer more risk to the insurer. Notably,
a similar finding is obtained by Proposition 2 in Chi et al. (2024), which assumes a risk-neutral insurer.
The above proposition extends the result to the case of a risk-averse insurer.

Next, we analyze the effects on the welfare improvement and the Nash bargaining solution by the
change of the insurance market structure.

Proposition 7. Under Assumption 1, as the insurer becomes more powerful in the bargaining (i.e., δ
increases), the increment of the insurer’s expected utility increases while the welfare improvement of the
insured decreases. Further, if −W1 ↑hr X and the risk preferences of the insured and the insurer exhibit
DARA, both the optimal insurance premium P∗ and the optimal proportion θ ∗ are increasing in δ.

The above proposition indicates that the insurer will receive a larger reward from the contract negotia-
tion as he becomes more powerful. However, this comes at the cost of a reduction in the insured’s welfare
improvement. As more reward is asked by the insurer, the insured has to pay more extra cost to cede the
risk. Equivalently, the insured’s initial wealth is relatively reduced. Under the DARA assumption of the
insured’s risk preference, the insured becomes more risk averse and would like to cede more risk. In
other words, the increase in the insurer’s bargaining power leads to more insurance demand. Thus, this
proposition can be used to explain the phenomenon of the overinsurance preference observed in practice
without incorporating behavioral elements (e.g., Braun and Muermann 2004). It is necessary to point
out that a similar finding is also obtained by Proposition 5 in Chi et al. (2024) under the assumption of
a risk-neutral insurer. However, we consider a risk-averse insurer with random initial wealth satisfying
−W1 ↑hr X instead.

4Random variable Z1 is said to be smaller than Z2 in the sense of hazard rate order if P(Z1>z)
P(Z2>z) is decreasing in z. It is well-

known that the hazard rate order is more strict than the usual stochastic order. Thus, −W1 ↑hr X implies that W1 is stochastically
decreasing in X. In addition, −W1 ↑hr X is equivalent to that W1 is decreasing in X in the reversed hazard order. We refer to Shaked
and Shanthikumar (2007) for more details on stochastic orders.
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Figure 2. The optimal parameter pair (θ , P) in the asymmetric Nash bargaining solution as a function
of the insurer’s bargaining power δ ∈ (0, 1), with τ = 0.3 (left) and τ = 0.4 (right).

Finally, we assume that W1 = w1 almost surely and attempt to analyze the effect on the optimal
insurance coverage by the change of the insurer’s initial wealth w1.

Proposition 8. Set the insurer’s initial wealth W1 to be a constant w1 almost surely, and assume that
the insurer’s risk preference exhibits DARA and that the insured has a CARA utility function u. Under
Assumption 1, the optimal rate of proportional insurance θ ∗ increases in the insurer’s initial wealth w1.

When the insurer’s initial wealth increases, he will become less risk averse under the DARA assump-
tion of his risk preference and charge less insurance premium. As the insurance becomes less costly, the
insured would cede more risk, as stated in the above proposition.

5. Numerical examples
In this section, we provide examples to illustrate the theoretical results from the previous two sections.
Specifically, we adopt the setting of Example 1 as our benchmark assumptions. That is,

w0 = 20, u(w) = −w−1, v(w) = w0.6 and τ = 0.4,

and W1 = 100 almost surely.
We show the insurance contract corresponding to the asymmetric Nash bargaining solution in

Figure 2. In this figure, we display the optimal insurance contract (θ , P) under the asymmetric Nash
bargaining for τ = 0.3 and τ = 0.4. The contracts are shown as functions of the bargaining power of the
insurer δ. Consistent with Proposition 7, the numerical results show that both the coinsurance rate θ and
the premium P strictly increase with δ. Thus, greater insurance coverage is induced when the insurer has
more bargaining power. In addition, we note that the result in Proposition 5 may not hold if the assump-
tions on τ = 0 and the CARA risk preferences of the insured and the insurer are relaxed. The difference
between the cases τ = 0.3 and τ = 0.4 can be described as follows. When the deadweight cost rate τ
is lower, insurance becomes more attractive, as reflected by a larger coinsurance rate of approximately
0.48 for τ = 0.3, compared to approximately 0.36 when τ = 0.4. As the insurance coverage gets larger,
the corresponding insurance premium also becomes higher.

Next, we present a sensitivity analysis to illustrate the comparative statics. For related problems
involving different parameter choices for δ or minor adjustments to the relative risk-aversion param-
eters in u or v, we find that the pattern of the optimal insurance contract (θ , P) is roughly consistent with
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Figure 3. The optimal parameter pair (θ , P) in the asymmetric Nash bargaining solution as a function
of the risk-aversion parameter γ of the insured, with δ= 0.5 and τ = 0.4.

Figure 2. That is, both θ and P increase with the bargaining power, albeit only slightly. We now present
four additional examples, focusing on the following sensitivities: (1) the impact of the insured’s risk
aversion, (2) the use of a different class of utility functions, (3) the effect of the insurer’s initial wealth,
and (4) the effect of background risk. Throughout the following examples, we fix τ = 0.4 and w0 = 20.

First, we examine the effect of the insured’s risk-aversion parameter. Let W1 = 100 a.s., v(w) = w0.6,
and let the bargaining power be δ= 0.5. The utility function u of the insured is given by

u(w) =
{

w1−γ
1−γ if γ �= 1,
ln (w), if γ = 1,

(5.1)

which is the constant relative risk aversion (CRRA) utility function with coefficient γ > 0. Thus, the
utility function of the insurer v(w) = w0.6 belongs to the same class, with parameter γ = 0.4. In Figure 3,
we show the optimal insurance contract as a function of the risk-aversion parameter γ of the insured.
We observe that as the insured becomes more risk averse, the insurance coverage increases, and the
insurance premium rises disproportionately.

Second, we present a case in which the insurance coverage no longer increases in the bargaining
power. We assume that the utility function of the insured is given as

u(w) = w − β

2
w2. (5.2)

Here, β = 0.05 controls the degree of risk aversion. We can easily verify that this utility function is
increasing for wealth levels within the relevant range. However, the Arrow-Pratt coefficient of absolute
risk aversion Au is increasing in w and the DARA assumption is not met. The optimal insurance contract
is displayed in Figure 4. We find that the optimal insurance coverage θ is indeed decreasing in the
bargaining power, while the insurance premium is increasing. Thus, if the insurer gets more bargaining
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Figure 4. The optimal parameter pair (θ , P) in the asymmetric Nash bargaining solution as a function
of the bargaining power δ ∈ (0, 1), where τ = 0.4, v(w) = w0.6, and the utility function u is as in Equation
(5.2) with β = 0.05.

power, he will charge a higher premium for less coverage. This represents a clear advantage for the
insurer.

Third, we study the effect of the initial wealth of the insurer. Let the utility function of the insured u
be given as in Equation (5.1) with coefficient γ = 2. For two different utility functions v of the insurer,
we show the optimal insurance contracts as a function of the initial wealth of the insurer in Figure 5.
Proposition 8 shows that if v is DARA and u CARA, then under Assumption 1, the optimal rate of propor-
tional insurance θ ∗ increases in the insurer’s initial wealth w1. This pattern is also evident in Figure 5(a),
where both the insured and the insurer have DARA utility functions. However, Figure 5(b) shows that
this pattern does not hold when v is not a DARA utility function but instead takes the functional form
in Equation (5.2) with β = 0.01, which results in an increasing Arrow-Pratt coefficient of absolute risk
aversion Av for relevant wealth levels.

Fourth, and finally, we study the effect of background risk of the insurer. Recall that in our baseline
example, we let the utility functions of the insured u and the insurer v be given as in Equation (5.1)
with γ = 2 for the insured and γ = 0.4 for the insurer. We model background risk via the following
assumption:

W1 = 100 − kX, (5.3)

Here, k ∈R measures the extent of background risk. If k � 0, then −W1 ↑hr X. We show the optimal
insurance contract as a function of k ∈ [−2, 2] in Figure 6. We interpret a larger value of k as indi-
cating greater background risk. Additionally, k � 0 implies that new insurance risk is not attractive for
the insurer due to a lack of diversification opportunities. From Figure 6, we observe that larger back-
ground risk leads to less coverage and a lower corresponding insurance premium. Additionally, we do
not observe any discontinuity at k = 0. Thus, a small change from positive to negative dependence, or
vice versa, has little impact on the optimal insurance contract

https://www.cambridge.org/core/terms. https://doi.org/10.1017/asb.2025.10073
Downloaded from https://www.cambridge.org/core. IP address: 147.8.21.63, on 14 Jan 2026 at 03:13:31, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/asb.2025.10073
https://www.cambridge.org/core


254 Tim J. Boonen and Yichun Chi

0.14

0.18

0.22

0.26

0.3

0.34

20 40 60 80 100 0 20 40 60 80
0.14

0.18

0.22

0.26

0.3

0.34

(a) (b)

Figure 5. The optimal parameter pair (θ , P) in the asymmetric Nash bargaining solution as a function
of the initial wealth of the insurer w1, with τ = 0.4 and δ = 0.5. Here, we use u as in Equation (5.1) with
γ = 2.
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Figure 6. The optimal parameter pair (θ , P) in the asymmetric Nash bargaining solution as a function of
the weight k that measures background risk (see Equation (5.3)), where τ = 0.4, δ = 0.5, u(w) = −w−1,
and v(w) = w0.6.

6. Concluding remarks
In this paper, we study optimal insurance design under asymmetric Nash bargaining, assuming that both
the insured and the insurer are risk averse and allowing the insurer’s initial wealth to be random. To
simplify the analysis, ensure the feasibility of asymmetric Nash bargaining, and facilitate comparative
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statics, we focus on proportional insurance contracts. After obtaining a necessary and sufficient condi-
tion for Pareto optimality of the status quo, we derive the optimal Nash bargaining solutions when this
condition is not satisfied. We show that when the insurer’s initial wealth is negatively dependent with
the insurable risk, full insurance cannot be optimal, even if the deadweight cost is set to zero. We further
find that insurance coverage increases with the insured’s risk aversion or the insurer’s bargaining power
if the insurer’s initial wealth decreases in the insurable risk in the sense of the reversed hazard rate order
and both parties exhibit DARA risk preferences. In particular, when the insured has a CARA utility
function, greater insurance coverage is induced by higher initial wealth of the insurer.

We acknowledge that our analysis relies heavily on the assumption of proportional insurance. It would
be interesting to revisit this problem using other types of insurance contracts. However, stop-loss insur-
ance, which is widely used in the actuarial science literature, may not be a suitable choice. This is because
the corresponding set of bargaining outcomes may not be convex, which prevents the direct application
of the representation theorem for asymmetric Nash bargaining in Kalai (1977). On the other hand, this
paper analyzes the effect of changes in the insurer’s constant initial wealth on the optimal insurance
coverage under the strict assumption that the insured has a CARA utility function. It would be valuable
to investigate whether this comparative statics result remains valid when the CARA assumption on the
insured’s risk preference is relaxed. We leave these questions to future research.
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A Proofs
A.1 Proof of Proposition 1
First, we show that the Pareto optimality of the status quo is equivalent to

0 ∈ arg max
θ∈[0,1]

ψ(θ ) := E[u(w0 − X + Iθ (X) − P−(θ ))], (A1)

where P−(θ ) is the solution to Equation (2.2). More specifically, according to the definition of P+(θ ) in
Equation (2.3), the Pareto optimality of the status quo is equivalent to P−(θ ) � P+(θ ) for any θ ∈ [0, 1].
It is further equivalent to

E[u(w0 − X + θX − P−(θ ))] � E[u(w0 − X + θX − P+(θ ))]

= E[u(w0 − X)] =E[u(w0 − X − P−(0))],

where the last equality is derived by the fact P−(0) = 0. In other words, 0 is a solution to the optimization
problem maxθ∈[0,1] ψ(θ ).

Next, we can show that the function ψ(θ ) is concave. More specifically, for any θ1, θ2 ∈ [0, 1] and any
λ ∈ [0, 1], the concavity of v implies

E[v(W1)] = λE[v(W1 + P−(θ1) − (1 + τ )θ1X)] + (1 − λ)E[v(W1 + P−(θ2) − (1 + τ )θ2X)]

� E [v(W1 + λP−(θ1) + (1 − λ)P−(θ2) − (1 + τ )(λθ1 + (1 − λ)θ2)X)] ,

which together with Equation (2.2) implies

λP−(θ1) + (1 − λ)P−(θ2) � P−(λθ1 + (1 − λ)θ2).

In other words, P−(θ ) is convex. As a result, the concavity of u implies

ψ(λθ1 + (1 − λ)θ2) = E [u(w0 − X + (λθ1 + (1 − λ)θ2)X − P−(λθ1 + (1 − λ)θ2))]

� E [u (w0 − X + λ(θ1X − P−(θ1)) + (1 − λ)(θ2X − P−(θ2)))]

� λE [u(w0 − X + θ1X − P−(θ1))] + (1 − λ)E [u(w0 − X + θ2X − P−(θ2))]

= λψ(θ1) + (1 − λ)ψ(θ2).

Finally, it is easy to get from Equation (2.2) and the Implicit Function Theorem that P−(θ ) is
differentiable with

P′
−(θ ) = (1 + τ )E[v′(W1 + P−(θ ) − (1 + τ )θX)X]

E[v′(W1 + P−(θ ) − (1 + τ )θX)]

almost everywhere, which in turn implies

ψ ′(θ ) = E[u′(w0 − X + Iθ (X) − P−(θ ))]

×
{
E[u′(w0 − X + Iθ (X) − P−(θ ))X]

E[u′(w0 − X + Iθ (X) − P−(θ ))]
− (1 + τ )E[v′(W1 + P−(θ ) − (1 + τ )θX)X]

E[v′(W1 + P−(θ ) − (1 + τ )θX)]

}
.
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Recall that ψ(θ ) is a concave function. A necessary and sufficient condition for Equation (A1) is
limθ↓0 ψ

′(θ ) � 0. Equivalently,

0 � lim
θ↓0

{
E[u′(w0 − X + Iθ (X) − P−(θ ))X]

E[u′(w0 − X + Iθ (X) − P−(θ ))]
− (1 + τ )E[v′(W1 + P−(θ ) − (1 + τ )θX)X]

E[v′(W1 + P−(θ ) − (1 + τ )θX)]

}

= E[u′(w0 − X)X]

E[u′(w0 − X)]
− (1 + τ )

E[v′(W1)X]

E[v′(W1)]
.

It is indeed Equation (3.3). The proof is thus completed.

A.2 Proof of Proposition 2
We first show that the set S is compact. For any convergence sequence {an ∈ S:n = 1, 2, ...}, there exist
θn ∈ [0, 1] and Pn ∈ [P−(θn), P+(θn)] such that

an =
(

E[u(w0 − X + Iθn (X) − Pn)]

E[v(W1 + Pn − (1 + τ )Iθn (X))]

)
.

Due to θn ∈ [0, 1] and Pn ∈ [0, M], we can get a convergence subsequence
{
(θnk , Pnk )

}∞
k=1

. Without loss
of generality, we denote

θ = lim
k→∞

θnk and P = lim
k→∞

Pnk ,

then θ ∈ [0, 1] and P−(θ ) � P � P+(θ ). Due to the continuity of the expected utilities with respect to the
proportion and the insurance premium, we can get

lim
n→∞

an = lim
k→∞

ank =
(

E[u(w0 − X + Iθ (X) − P)]

E[v(W1 + P − (1 + τ )Iθ (X))]

)
∈ S.

Thus, we can claim that S is compact.
Next, we proceed to prove that S is convex. Note that for any ai ∈ S, there exist θi ∈ [0, 1] and Pi ∈

[P−(θi), P+(θi)] such that

ai =
(

E[u(w0 − X + Iθi (X) − Pi)]

E[v(W1 + Pi − (1 + τ )Iθi (X))]

)
, i = 1, 2.

Given any λ ∈ (0, 1), we define P̃−(θ ) and P̃+(θ ) as the solutions to the following equations

λE[v(W1 + P1 − (1 + τ )Iθ1 (X))] + (1 − λ)E[v(W1 + P2 − (1 + τ )Iθ2 (X))]

=E[v(W1 + P − (1 + τ )Iθ (X))], P ∈R

and

λE[u(w0 − X − P1 + Iθ1 (X))] + (1 − λ)E[u(w0 − X − P2 + Iθ2 (X)]

=E[u(w0 − X − P + Iθ (X)], P ∈R,

respectively for each θ ∈ [0, 1]. Using the concavity property of u and v, we can easily find that P̃−(θ )
is convex while P̃+(θ ) is concave, and get

P̃−(λθ1 + (1 − λ)θ2) � λP1 + (1 − λ)P2 � P̃+(λθ1 + (1 − λ)θ2).

Furthermore, due to the rationality conditions (2.2) and (2.3), we obtain

P̃+(0) � 0 � P̃−(0).

More precisely, P̃+(θ ) − P̃−(θ ) is a concave function, which is non-positive at 0 and non-negative at
λθ1 + (1 − λ)θ2. Thus, there must exist a θ ∈ [0, λθ1 + (1 − λ)θ2] such that P̃+(θ ) = P̃−(θ ) � P̃−(0) � 0.
Setting P = P̃+(θ ), we can verify that the rationality condition (2.1) is satisfied by the proportional
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insurance (Iθ , P), and (
E[u(w0 − X + Iθ (X) − P)]

E[v(W1 + P − (1 + τ )Iθ (X))]

)
= λa1 + (1 − λ)a2.

Thus, the set S is convex.

A.3 Proof of Proposition 3
From the proof of Proposition 1 in Appendix A.1, we can see that

lim
θ↓0
ψ ′(θ ) =E[u′(w0 − X)]

(
E[u′(w0 − X)X]

E[u′(w0 − X)]
− (1 + τ )

E[v′(W1)X]

E[v′(W1)]

)
> 0

under Assumption 1. In other words, for the θ very close to 0, ψ ′(θ )> 0 such that

ψ(θ )>ψ(0) =E[u(w0 − X)] =E[u(w0 − X + Iθ (X) − P+(θ ))],

which in turn implies P−(θ )< P+(θ ). Therefore, all such θ belong to the set � and hence the point 0 is
on the boundary of �.

Next, we show that P+(θ ) is concave. More specifically, for any θ1, θ2 ∈ [0, 1] and λ ∈ [0, 1], we have

E[u(w0 − X)]

= λE
[
u(w0 − X − P+(θ1) + Iθ1 (X))

]+ (1 − λ)E
[
u
(
w0 − X − P+(θ2) + Iθ2 (X)

)]
�E[u

(
w0 − X − λP+(θ1) − (1 − λ)P+(θ2) + Iλθ1+(1−λ)θ2 (X)

)
],

where the inequality is derived by the concavity of u. Thus, we have

P+(λθ1 + (1 − λ)θ2) � λP+(θ1) + (1 − λ)P+(θ2).

Finally, since P−(θ ) has been shown to be convex in Appendix A.1, then P+(θ ) − P−(θ ) is a concave
continuous function, equals to zero when θ = 0, and is positive at a neighbourhood of 0. Further, if
P+(1)> P−(1), then this function is positive over (0,1] such that �= (0, 1]. Otherwise, this function
has a zero point θ0 ∈ (0, 1] such that it is positive over (0, θ0) and non-positive afterwards. For this case,
it is natural to have �= (0, θ0). The proof is thus completed.

A.4 Proof of Proposition 4
Define the set

D := {(θ , P) : θ ∈�, P−(θ )< P< P+(θ )} .

For any two points (θ1, P1) and (θ2, P2) in D, recalling that P+(θ ) is concave and P−(θ ) is convex, we
have

P+(λθ1 + (1 − λ)θ2) � λP+(θ1) + (1 − λ)P+(θ2)

> λP1 + (1 − λ)P2

> λP−(θ1) + (1 − λ)P−(θ2)

� P−(λθ1 + (1 − λ)θ2)

for any λ ∈ (0, 1). We can get from Proposition 3 and the above equation that (λθ1 + (1 − λ)θ2, λP1 +
(1 − λ)P2) ∈D. Thus, D is a convex set.

Over the set D, the optimization objective of Problem (3.4) is positive. Taking its log yields


(θ , P): = δ ln{E[v(W1 + P − (1 + τ )Iθ (X))] −E[v(W1)]}
+(1 − δ) ln{E[u(w0 − X + Iθ (X) − P)] −E[u(w0 − X)]}.
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Noting that E[v(W1 + P − (1 + τ )Iθ (X))] and E[u(w0 − X + Iθ (X) − P)] are strictly concave in parame-
ter vector (θ , P) and that the log function is an increasing concave function, we can get that 
(θ , P) is
also strictly concave in (θ , P) such that the optimal solution to Problem (3.4) must be unique.

For any θ ∈�, we denote by P∗(θ ) the solution to

max
P−(θ)<P<P+(θ)


(θ , P).

Recalling that 
(θ , P) is concave in (θ , P), we can get

0 = ∂
(θ , P∗(θ ))

∂P

= δE[v′(W1 + P∗(θ ) − (1 + τ )Iθ (X))]

E[v(W1 + P∗(θ ) − (1 + τ )Iθ (X))] −E[v(W1)]
− (1 − δ)E[u′(w0 − X + Iθ (X) − P∗(θ ))]

E[u(w0 − X + Iθ (X) − P∗(θ ))] −E[u(w0 − X)]
,

which in turn implies that P∗(θ ) is an increasing function. Denoting by �(θ ) =
(θ , P∗(θ )), we have

�′(θ )

= (1 − δ)E[u′(w0 − X + Iθ (X) − P∗(θ ))]

E[u(w0 − X + Iθ (X) − P∗(θ ))] −E[u(w0 − X)]

×
{
− (1 + τ )E[v′(W1 + P∗(θ ) − (1 + τ )Iθ (X))X]

E[v′(W1 + P∗(θ ) − (1 + τ )Iθ (X))]
+ E[u′(w0 − X + Iθ (X) − P∗(θ ))X]

E[u′(w0 − X + Iθ (X) − P∗(θ ))]

}

and

�′′(θ ) = ∂2
(θ , P∗(θ ))

∂θ 2
+ ∂2
(θ , P∗(θ ))

∂θ∂P
P∗′(θ )

= ∂2
(θ , P∗(θ ))

∂θ 2
−
(
∂2
(θ ,P∗(θ))

∂θ∂P

)2

∂2
(θ ,P∗(θ))
∂P2

= 1
∂2
(θ ,P∗(θ))

∂P2

(
∂2
(θ , P∗(θ ))

∂θ 2

∂2
(θ , P∗(θ ))

∂P2
−
(
∂2
(θ , P∗(θ ))

∂θ∂P

)2
)

� 0,

where the last inequality follows from Theorem 4.5 in Rockafellar (1970). Thus, �(θ ) is concave.
If P+(1)> P−(1), then it follows from Proposition 3 that 1 ∈� and P̂ = P∗(1) according to Equation

(3.8). Thus, we have

�′(1) = (1 − δ)u′(w0 − P̂)

u(w0 − P̂) −E[u(w0 − X)]

×
{

− (1 + τ )E[v′(W1 + P̂ − (1 + τ )X)X]

E[v′(W1 + P̂ − (1 + τ )X)]
+E[X]

}
.

If condition (3.7) is not satisfied, then�′(1) � 0 such that (θ ∗, P∗) = (1, P̂). Otherwise, the optimal insur-
ance solution cannot appear on the boundary {(1, P) : P−(1)< P< P+(1)}. In other words, the optimal
solution must be an interior point of D and satisfy the first-order condition⎧⎪⎨

⎪⎩
∂
(θ , P)

∂P
= 0,

∂
(θ , P)

∂θ
= 0,

(A2)

where
∂
(θ , P)

∂P
= δE[v′(W1 + P − (1 + τ )Iθ (X))]

E[v(W1 + P − (1 + τ )Iθ (X))] −E[v(W1)]
− (1 − δ)E[u′(w0 − X + Iθ (X) − P)]

E[u(w0 − X + Iθ (X) − P)] −E[u(w0 − X)]
,
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and
∂
(θ , P)

∂θ
= − δ(1 + τ )E[v′(W1 + P − (1 + τ )Iθ (X))X]

E[v(W1 + P − (1 + τ )Iθ (X))] −E[v(W1)]
+ (1 − δ)E[u′(w0 − X + Iθ (X) − P)X]

E[u(w0 − X + Iθ (X) − P)] −E[u(w0 − X)]
.

As a result, Equation (3.6) can be obtained by simplification. The proof is thus completed.

A.5 Proof of Proposition 5
Since it is assumed that W1 is independent of X, then condition (3.7) is satisfied, and we can introduce
an indirect utility function ṽ(w) =E[v(W1 + w)] for any w ∈R such that{

E
[
ṽ(P − (1 + τ )Iθ (X))

]=E [v(W1 + P − (1 + τ )Iθ (X))] ,

E
[
ṽ′(P − (1 + τ )Iθ (X))Xk

]=E
[
v′(W1 + P − (1 + τ )Iθ (X))Xk

]
,

for k = 0, 1. The function ṽ(w) is increasing concave and exhibits CARA because v has the CARA
property. Thus, Equation (3.6) implies that the optimal Nash bargaining solution for v(w), and W1 is
same as that for ṽ(w) and a deterministic W1.

It follows from Kalai (1977) that any asymmetric Nash bargaining solution is Pareto optimal.
For Pareto optimal insurance contracts with exponential utilities and τ = 0, the result is well known
(cf. Example 16 in Gerber and Pafumi 1998).

A.6 Proof of Proposition 6
Since it is assumed that ũ is more risk averse than u, then there exists an increasing concave function κ
such that ũ(w) = κ(u(w)). Thus, we have

E[ũ′(w0 − X)X]

E[ũ′(w0 − X)]
= E[κ ′(u(w0 − X))u′(w0 − X)X]

E[κ ′(u(w0 − X))u′(w0 − X)]

� E[u′(w0 − X)X]

E[u′(w0 − X)]
,

where the last inequality is derived by
E[κ ′(u(w0 − X))u′(w0 − X)X] ×E[u′(w0 − X)]

−E[κ ′(u(w0 − X))u′(w0 − X)] ×E[u′(w0 − X)X]

=E
[
u′(w0 − X)u′(w0 − Y)κ ′(u(w0 − X))(X − Y)

]
= 1

2
E
[
u′(w0 − X)u′(w0 − Y)

(
κ ′(u(w0 − X)) − κ ′(u(w0 − Y))

)
(X − Y)

]
� 0.

Here, Y is an independent copy of random variable X. In other words, Assumption 1 is more likely held
for ũ than for u.

Next, we assume that Assumption 1 holds for utility function u. Since it is assumed that −W1 ↑hr

X, then we have W1 ↓st X1 such that condition (3.7) is met, then the optimal insurance solution must
satisfy the first-order condition. We will prove the result by using a slight modification to the proof of
Proposition 2 in Chi et al. (2024). The proof is very lengthy and will be divided into several steps.

First, we will show that the upper premium bound Pu
+(θ ) for the utility function u is smaller than that

for ũ. More specifically, we have
E[ũ(w0 − X + Iθ (X) − Pu

+(θ ))] −E[ũ(w0 − X)]

=E
[
κ(u(w0 − X + Iθ (X) − Pu

+(θ ))) − κ(u(w0 − X))
]

�E
[
κ ′(u(w0 − X + Iθ (X) − Pu

+(θ )))
(
u(w0 − X + Iθ (X) − Pu

+(θ )) − u(w0 − X)
)]

� κ ′(u(w0 − x0 + θx0 − Pu
+(θ ))))E

[
u(w0 − X + Iθ (X) − Pu

+(θ )) − u(w0 − X)
]

= 0, (A3)
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where the last equality follows directly from Equation (2.3) and the second inequality is derived by the
fact {

κ ′(u(w0 − X + Iθ (X) − Pu
+(θ ))) − κ ′(u(w0 − x0 + θx0 − Pu

+(θ )))
}

× (
u(w0 − X + Iθ (X) − Pu

+(θ )) − u(w0 − X)
)

� 0.

Here, x0 := min{Pu
+(θ )/θ , M}. Using Equation (2.3) again, we thus have Pũ

+(θ ) � Pu
+(θ ) for any θ ∈

[0, 1]. Thus, the set � for ũ is larger than that for u.
Second, we will show that

E[ũ′(W0(X))]

E[ũ(W0(X))] −E[ũ(w0 − X)]
� E[u′(W0(X))]

E[u(W0(X))] −E[u(w0 − X)]
(A4)

for P ∈ [0, Pu
+(θ )), where W0(X) := w0 − X + Iθ (X) − P. More specifically, due to Equation (A3), we

have
E[ũ′(W0(X))]

E[ũ(W0(X))] −E[ũ(w0 − X)]
� E[κ ′(u(W0(X)))u′(W0(X))]

E [κ ′(u(W0(X))) (u(W0(X)) − u(w0 − X))]
.

Further, we have(
E[u′(W0(X))]

E[u(W0(X))] −E[u(w0 − X)]
− E[κ ′(u(W0(X)))u′(W0(X))]

E [κ ′(u(W0(X))) (u(W0(X)) − u(w0 − X))]

)
×(E[u(W0(X))] −E[u(w0 − X)]) ×E

[
κ ′(u(W0(X))) (u(W0(X)) − u(w0 − X))

]
=E

[
u′(W0(Y))u′(W0(X))(κ ′(u(W0(X))) − κ ′(u(W0(Y))))

u(W0(X)) − u(w0 − X)

u′(W0(X))

]

= 1

2
E

[
u′(W0(Y))u′(W0(X))(κ ′(u(W0(X))) − κ ′(u(W0(Y))))

×
(

u(W0(X)) − u(w0 − X)

u′(W0(X))
− u(W0(Y)) − u(w0 − Y)

u′(W0(Y))

) ]
,

where Y is an independent copy of X and the second equality is derived by the fact

E

[
u′(W0(Y))u′(W0(X))(κ ′(u(W0(X))) − κ ′(u(W0(Y))))

u(W0(X)) − u(w0 − X)

u′(W0(X))

]

=E

[
u′(W0(Y))u′(W0(X))(κ ′(u(W0(Y))) − κ ′(u(W0(X))))

u(W0(Y)) − u(w0 − Y)

u′(W0(Y))

]
.

It is easy to see that κ ′(u(W0(X))) � κ ′(u(W0(Y))) whenever X � Y . Furthermore, for x � min{P/θ , M},
we have W0(x) � w0 − x such that u(w0 − x) � u(W0(x)) and u′(w0 − x) � u′(W0(x)). Therefore, when
x � min{P/θ , M}, we have(

u(W0(x)) − u(w0 − x)

u′(W0(x))

)′

� (1 − θ )

u′(W0(x))

{
u′(w0 − x) − u′(W0(x)) +Au(W0(x)) × (u(w0 − x) − u(W0(x)))

}
= (1 − θ ) (u(w0 − x) − u(W0(x)))

u′(W0(x))

(
u′(w0 − x) − u′(W0(x))

u(w0 − x) − u(W0(x))
+Au(W0(x))

)

= (1 − θ ) (u(w0 − x) − u(W0(x)))

u′(W0(x))
{−Au(w0 − x + α(θx − P)) +Au(w0 − x + (θx − P))}

� 0

for some α ∈ [0, 1], where the last equality is obtained by using Cauchy’s mean value theorem and the
last inequality follows from the DARA property of utility function u. On the other hand, for any x strictly
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larger than P/θ , we have θx> P and thus u(W0(x)) � u(w0 − x). Then,(
u(W0(x)) − u(w0 − x)

u′(W0(x))

)′

� (1 − θ ) (u(W0(x)) − u(w0 − x))

u′(W0(x))
{Au(w0 − x + α(θx − P)) −Au(w0 − x + (θx − P))}

� 0

for some α ∈ [0, 1]. In summary, the function u(W0(x))−u(w0−x)
u′(W0(x))

is increasing over [0,M] such that

E[u′(W0(X))]

E[u(W0(X))] −E[u(w0 − X)]
� E[κ ′(u(W0(X)))u′(W0(X))]

E [κ ′(u(W0(X))) (u(W0(X)) − u(w0 − X))]
.

Thus, Equation (A4) can be obtained.
Third, recalling that 
(θ , P) is concave in P, we can get from Equations (A2) and (A4) that given an

admissible θ , the optimal insurance premium for ũ is larger than that for u, that is, P∗
ũ(θ ) � P∗

u(θ ). We
further demonstrate that

E[u′(W0(X))X]

E[u′(W0(X))]
� E[ũ′(W0(X))X]

E[ũ′(W0(X))]
. (A5)

More specifically, using the similar arguments as in the previous analysis, we have(
E[u′(W0(X))X]

E[u′(W0(X))]
− E[ũ′(W0(X))X]

E[ũ′(W0(X))]

)
×E[u′(W0(X))] ×E[ũ′(W0(X))]

=E
[
u′(W0(X))u′(W0(Y))κ ′(u(W0(Y)))(X − Y)

]
= −1

2
E
[
u′(W0(X))u′(W0(Y))

(
κ ′(u(W0(X))) − κ ′(u(W0(Y)))

)× (X − Y)
]
� 0.

Fourth, we prove that the function h2(x)/h1(x) is increasing, where

h2(x) := E[− v′′(W1 + P − (1 + τ )Iθ (X))|X = x]

and

h1(x) := E[v′(W1 + P − (1 + τ )Iθ (X))|X = x].

Obviously, the function h2(x) is positive, while h1(x) is positive and increasing because v′′ < 0 and
−W1 ↑hr X. For any x1, x2 in the support of X and satisfying x1 < x2,

h2(x2)

h1(x2)
= E[Av(W1 + P − (1 + τ )θx2)v′(W1 + P − (1 + τ )θx2)|X = x2]

E[v′(W1 + P − (1 + τ )θx2)|X = x2]

� E[Av(W1 + P − (1 + τ )θx1)v′(W1 + P − (1 + τ )θx2)|X = x2]

E[v′(W1 + P − (1 + τ )θx2)|X = x2]

� E[Av(W1 + P − (1 + τ )θx1)v′(W1 + P − (1 + τ )θx1)|X = x2]

E[v′(W1 + P − (1 + τ )θx1)|X = x2]

� E[Av(W1 + P − (1 + τ )θx1)v′(W1 + P − (1 + τ )θx1)|X = x1]

E[v′(W1 + P − (1 + τ )θx1)|X = x1]

= h2(x1)

h1(x1)
,

where the first inequality is derived by the DARA property of v, the last inequality follows from the
assumption −W1 ↑hr X and Lemma 4 in Chi et al. (2025), while the second inequality can be obtained
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by showing that

Q(x) := E[Av(W1 + P − (1 + τ )θx1)v′(W1 + P − (1 + τ )θx)|X = x2]

E[v′(W1 + P − (1 + τ )θx)|X = x2]

is increasing in x over [x1, x2]. Taking the derivative of Q(x) with respect to x yields

Q′(x)

θ (1 + τ )

(
E[v′(W1 + P − (1 + τ )θx)|X = x2]

)2

= −E[Av(W1 + P − (1 + τ )θx1)v
′′(W1 + P − (1 + τ )θx)|X = x2]E[v′(W1 + P − (1 + τ )θx)|X = x2]

+E[Av(W1 + P − (1 + τ )θx1)v
′(W1 + P − (1 + τ )θx)|X = x2]E[v′′(W1 + P − (1 + τ )θx)|X = x2]

=E
[−Av(W

(1)
1 + P − (1 + τ )θx1)v

′′(W (1)
1 + P − (1 + τ )θx)v′(W (2)

1 + P − (1 + τ )θx)
]

+E
[Av(W

(1)
1 + P − (1 + τ )θx1)v

′(W (1)
1 + P − (1 + τ )θx)v′′(W (2)

1 + P − (1 + τ )θx)
]

=E

{
Av(W

(1)
1 + P − (1 + τ )θx1)v

′(W (1)
1 + P − (1 + τ )θx)v′(W (2)

1 + P − (1 + τ )θx)

× (Av(W
(1)
1 + P − (1 + τ )θx) −Av(W

(2)
1 + P − (1 + τ )θx)

) }

= 1

2
E

[
v′(W (1)

1 + P − (1 + τ )θx) × (Av(W
(1)
1 + P − (1 + τ )θx1) −Av(W

(2)
1 + P − (1 + τ )θx1)

)
× (Av(W

(1)
1 + P − (1 + τ )θx) −Av(W

(2)
1 + P − (1 + τ )θx)

)× v′(W (2)
1 + P − (1 + τ )θx)

]
� 0,

where random variables W (1)
1 and W (2)

1 are independent and have the same distribution as [W1|X = x2].
Fifth, we can show that both functions

Lv(P) := −E[v′(W1 + P − (1 + τ )Iθ (X))X]

E[v′(W1 + P − (1 + τ )Iθ (X))]
and Lu(P) := E[u′(w0 − X + Iθ (X) − P)X]

E[u′(w0 − X + Iθ (X) − P)]

are increasing in P. More specifically, it is easy to get

L′
v(P) = −E[v′′(W1(X))X]E[v′(W1(X))] −E[v′(W1(X))X]E[v′′(W1(X))]

(E[v′(W1(X))])2

= E[h2(X)X]E[h1(X)] −E[h1(X)X]E[h2(X)]

(E[v′(W1(X))])2

=
E

[
h1(X)h1(Y)(X − Y) h2(X)

h1(X)

]
(E[v′(W1(X))])2

=
E

[
h1(X)h1(Y)(X − Y)

(
h2(X)
h1(X)

− h2(Y)
h1(Y)

)]
2 (E[v′(W1(X))])2

� 0, (A6)

where W1(X) is shorthand for W1 + P − (1 + τ )Iθ (X), Y is an independent copy of X, and the last inequal-
ity is derived by the increasing property of h2(x)/h1(x). Using the similar arguments, we can obtain that
Lu(P) is increasing when u is a DARA utility function.
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Finally, let �u(θ ) := 
u(θ , P∗
u(θ )). Using the similar arguments as in Appendix 7.4, we can get that

�u(θ ) is concave. Further, the optimality of proportion θ ∗
u for u implies

0 = �′
u(θ

∗
u ) × E[u(w0 − X + Iθ∗

u
(X) − P∗

u(θ ∗
u ))] −E[u(w0 − X)]

(1 − δ)E[u′(w0 − X + Iθ∗
u
(X) − P∗

u(θ ∗
u ))]

= −(1 + τ )
E[v′(W1 + P∗

u(θ ∗
u ) − (1 + τ )Iθ∗

u
(X))X]

E[v′(W1 + P∗
u(θ ∗

u ) − (1 + τ )Iθ∗
u
(X))]

+ E[u′(w0 − X + Iθ∗
u
(X) − P∗

u(θ ∗
u ))X]

E[u′(w0 − X + Iθ∗
u
(X) − P∗

u(θ ∗
u ))]

� −(1 + τ )
E[v′(W1 + P∗

ũ(θ ∗
u ) − (1 + τ )Iθ∗

u
(X))X]

E[v′(W1 + P∗
ũ(θ ∗

u ) − (1 + τ )Iθ∗
u
(X))]

+ E[u′(w0 − X + Iθ∗
u
(X) − P∗

ũ(θ ∗
u ))X]

E[u′(w0 − X + Iθ∗
u
(X) − P∗

ũ(θ ∗
u ))]

� −(1 + τ )
E[v′(W1 + P∗

ũ(θ ∗
u ) − (1 + τ )Iθ∗

u
(X))X]

E[v′(W1 + P∗
ũ(θ ∗

u ) − (1 + τ )Iθ∗
u
(X))]

+ E[ũ′(w0 − X + Iθ∗
u
(X) − P∗

ũ(θ ∗
u ))X]

E[ũ′(w0 − X + Iθ∗
u
(X) − P∗

ũ(θ ∗
u ))]

= �′
ũ(θ

∗
u ) × E[ũ(w0 − X + Iθ∗

u
(X) − P∗

ũ(θ ∗
u ))] −E[u(w0 − X)]

(1 − δ)E[ũ′(w0 − X + Iθ∗
u
(X) − P∗

ũ(θ ∗
u ))]

,

where the first inequality is derived by the increasing property of Lv(P) and Lu(P) and the fact P∗
ũ(θ ) �

P∗
u(θ ), while the last inequality follows from Equation (A5). Noting that�ũ(θ ) is concave, we thus have
θ ∗

ũ � θ ∗
u . Further, it is easy to see that ∂
ũ(θ ,P)

∂θ
is increasing in P, then

P∗
ũ
′(θ ) = −∂

2
ũ(θ , P∗
ũ(θ ))

∂θ∂P
/
∂2
ũ(θ , P∗

ũ(θ ))

∂P2
� 0,

which implies

P∗
ũ = P∗

ũ(θ ∗
ũ ) � P∗

ũ(θ ∗
u ) � P∗

u(θ ∗
u ) = P∗

u.

That is, the optimal proportion and insurance premium increase as the insured becomes more risk averse
in the Arrow-Pratt sense.

A.7 Proof of Proposition 7
First, we analyze the effect of the change of the insurer’s bargaining power δ on the welfare increments
of the insured and the insurer. The proof of this part is a slight modification to that of Proposition 4 in
Chi et al. (2024). More specifically, it is trivial that the optimal solution (θ ∗, P∗) to Problem (3.4) relies
heavily upon the bargaining power δ. To emphasize this dependence, we rewrite (θ ∗, P∗) by (θ ∗

δ
, P∗

δ
). For

any 0< δ2 < δ1 < 1, the optimality of (θ ∗
δ
, P∗

δ
) can imply

δ1 ln
(
E[v(W1 + P∗

δ1
− (1 + τ )Iθ∗

δ1
(X))] −E[v(W1)]

)
+(1 − δ1) ln

(
E[u(w0 − X + Iθ∗

δ1
(X) − P∗

δ1
)] −E[u(w0 − X)]

)
� δ1 ln

(
E[v(W1 + P∗

δ2
− (1 + τ )Iθ∗

δ2
(X))] −E[v(W1)]

)
+(1 − δ1) ln

(
E[u(w0 − X + Iθ∗

δ2
(X) − P∗

δ2
)] −E[u(w0 − X)]

)
and

δ2 ln
(
E[v(W1 + P∗

δ2
− (1 + τ )Iθ∗

δ2
(X))] −E[v(W1)]

)
+(1 − δ2) ln

(
E[u(w0 − X + Iθ∗

δ2
(X) − P∗

δ2
)] −E[u(w0 − X)]

)
� δ2 ln

(
E[v(W1 + P∗

δ1
− (1 + τ )Iθ∗

δ1
(X))] −E[v(W1)]

)
+(1 − δ2) ln

(
E[u(w0 − X + Iθ∗

δ1
(X) − P∗

δ1
)] −E[u(w0 − X)]

)
.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/asb.2025.10073
Downloaded from https://www.cambridge.org/core. IP address: 147.8.21.63, on 14 Jan 2026 at 03:13:31, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/asb.2025.10073
https://www.cambridge.org/core


ASTIN Bulletin 265

Recalling from Equations (3.6) and (3.8) that P∗
δi

satisfies

δiE[v′(W1 + P∗
δi

− (1 + τ )Iθ∗
δi

(X))]
(
E[u(w0 − X + Iθ∗

δi
(X) − P∗

δi
)] −E[u(w0 − X)]

)
= (1 − δi)E[u′(w0 − X + Iθ∗

δi
(X) − P∗

δi
)]
(
E[v(W1 + P∗

δi
− (1 + τ )Iθ∗

δi
(X))] −E[v(W1)]

)
,

(A7)
we can get from the above two inequalities that

(1 − δ1) ln

(
1 − δ1

δ1

)
+ ln

(
E[v(W1 + P∗

δ1
− (1 + τ )Iθ∗

δ1
(X))] −E[v(W1)]

)

+(1 − δ1) ln
E[u′(w0 − X + Iθ∗

δ1
(X) − P∗

δ1
)]

E[v′(W1 + P∗
δ1

− (1 + τ )Iθ∗
δ1

(X))]

� (1 − δ1) ln

(
1 − δ2

δ2

)
+ ln

(
E[v(W1 + P∗

δ2
− (1 + τ )Iθ∗

δ2
(X))] −E[v(W1)]

)

+(1 − δ1) ln
E[u′(w0 − X + Iθ∗

δ2
(X) − P∗

δ2
)]

E[v′(W1 + P∗
δ2

− (1 + τ )Iθ∗
δ2

(X))]
,

which in turn implies

ln
E[v(W1 + P∗

δ1
− (1 + τ )Iθ∗

δ1
(X))] −E[v(W1)]

E[v(W1 + P∗
δ2

− (1 + τ )Iθ∗
δ2

(X))] −E[v(W1)]

� (1 − δ1)

{
ln

E[u′(w0 − X + Iθ∗
δ2

(X) − P∗
δ2

)]

E[v′(W1 + P∗
δ2

− (1 + τ )Iθ∗
δ2

(X))]
− ln

E[u′(w0 − X + Iθ∗
δ1

(X) − P∗
δ1

)]

E[v′(W1 + P∗
δ1

− (1 + τ )Iθ∗
δ1

(X))]

}

+(1 − δ1)

(
ln

(
1 − δ2

δ2

)
− ln

(
1 − δ1

δ1

))
.

Similarly, we can obtain

ln
E[v(W1 + P∗

δ1
− (1 + τ )Iθ∗

δ1
(X))] −E[v(W1)]

E[v(W1 + P∗
δ2

− (1 + τ )Iθ∗
δ2

(X))] −E[v(W1)]

� (1 − δ2)

{
ln

E[u′(w0 − X + Iθ∗
δ2

(X) − P∗
δ2

)]

E[v′(W1 + P∗
δ2

− (1 + τ )Iθ∗
δ2

(X))]
− ln

E[u′(w0 − X + Iθ∗
δ1

(X) − P∗
δ1

)]

E[v′(W1 + P∗
δ1

− (1 + τ )Iθ∗
δ1

(X))]

}

+(1 − δ2)

(
ln

(
1 − δ2

δ2

)
− ln

(
1 − δ1

δ1

))
.

Then the following results can naturally be drawn:

1 − δ2

δ2

E[u′(w0 − X + Iθ∗
δ2

(X) − P∗
δ2

)]

E[v′(W1 + P∗
δ2

− (1 + τ )Iθ∗
δ2

(X))]
� 1 − δ1

δ1

E[u′(w0 − X + Iθ∗
δ1

(X) − P∗
δ1

)]

E[v′(W1 + P∗
δ1

− (1 + τ )Iθ∗
δ1

(X))]

and
E[v(W1 + P∗

δ1
− (1 + τ )Iθ∗

δ1
(X))] −E[v(W1)] �E[v(W1 + P∗

δ2
− (1 + τ )Iθ∗

δ2
(X))] −E[v(W1)].

In other words, the increment of the insurer’s expected utility becomes larger as he has more power in
bargaining.

Using Equation (A7) again, we have

ln
(
E[v(W1 + P∗

δi
− (1 + τ )Iθ∗

δi
(X))] −E[v(W1)]

)
+ ln

1 − δi

δi

= ln
(
E[u(w0 − X + Iθ∗

δi
(X) − P∗

δi
)] −E[u(w0 − X)]

)
− ln

E[u′(w0 − X + Iθ∗
δi

(X) − P∗
δi
)]

E[v′(W1 + P∗
δi

− (1 + τ )Iθ∗
δi

(X))]
,
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which together with the first inequality of this proof implies

ln
(
E[u(w0 − X + Iθ∗

δ1
(X) − P∗

δ1
)] −E[u(w0 − X)]

)
−δ1 ln

E[u′(w0 − X + Iθ∗
δ1

(X) − P∗
δ1

)]

E[v′(W1 + P∗
δ1

− (1 + τ )Iθ∗
δ1

(X))]
− δ1 ln

(
1 − δ1

δ1

)

� ln
(
E[u(w0 − X + Iθ∗

δ2
(X) − P∗

δ2
)] −E[u(w0 − X)]

)
−δ1 ln

E[u′(w0 − X + Iθ∗
δ2

(X) − P∗
δ2

)]

E[v′(W1 + P∗
δ2

− (1 + τ )Iθ∗
δ2

(X))]
− δ1 ln

(
1 − δ2

δ2

)
.

Equivalently, we have

ln
E[u(w0 − X + Iθ∗

δ1
(X) − P∗

δ1
)] −E[u(w0 − X)]

E[u(w0 − X + Iθ∗
δ2

(X) − P∗
δ2

)] −E[u(w0 − X)]

� δ1

[
ln

E[u′(w0 − X + Iθ∗
δ1

(X) − P∗
δ1

)]

E[v′(W1 + P∗
δ1

− (1 + τ )Iθ∗
δ1

(X))]
− ln

E[u′(w0 − X + Iθ∗
δ2

(X) − P∗
δ2

)]

E[v′(W1 + P∗
δ2

− (1 + τ )Iθ∗
δ2

(X))]
+ ln

(
1−δ1
δ1

1−δ2
δ2

)]
.

In a similar way, we have

ln
E[u(w0 − X + Iθ∗

δ1
(X) − P∗

δ1
)] −E[u(w0 − X)]

E[u(w0 − X + Iθ∗
δ2

(X) − P∗
δ2

)] −E[u(w0 − X)]

� δ2

[
ln

E[u′(w0 − X + Iθ∗
δ1

(X) − P∗
δ1

)]

E[v′(W1 + P∗
δ1

− (1 + τ )Iθ∗
δ1

(X))]
− ln

E[u′(w0 − X + Iθ∗
δ2

(X) − P∗
δ2

)]

E[v′(W1 + P∗
δ2

− (1 + τ )Iθ∗
δ2

(X))]
+ ln

(
1−δ1
δ1

1−δ2
δ2

)]
.

As a consequence, it can naturally get that

E[u(w0 − X + Iθ∗
δ1

(X) − P∗
δ1

)] −E[u(w0 − X)] �E[u(w0 − X + Iθ∗
δ2

(X) − P∗
δ2

)] −E[u(w0 − X)].

That is to say, the amount of the insured’s welfare improvement is reduced as the bargaining power δ
becomes larger.

Next, we will analyze how the change of the insurer’s bargaining power δ affects the Nash bargaining
solution (θ ∗, P∗). Since it is assumed that −W1 ↑hr X, then condition (3.7) is met such that (θ ∗, P∗) sat-
isfies the first-order condition. Taking the derivative of the first-order conditions in Equation (A2) with
respect to δ yields

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0= ∂2
(θ ∗, P∗)

∂θ∂P

∂θ ∗

∂δ
+ ∂2
(θ ∗, P∗)

∂P2

∂P∗

∂δ
+ E[v′(W∗

1 (X))]

E[v(W∗
1 (X))] −E[v(W1)]

+ E[u′(W∗
0 (X))]

E[u(W∗
0 (X))] −E[u(w0 − X)]

,

0= ∂2
(θ ∗, P∗)

∂θ 2

∂θ ∗

∂δ
+ ∂2
(θ ∗, P∗)

∂θ∂P

∂P∗

∂δ
− (1 + τ )E[v′(W∗

1 (X))X]

E[v(W∗
1 (X))] −E[v(W1)]

− E[u′(W∗
0 (X))X]

E[u(W∗
0 (X))] −E[u(w0 − X)]

,
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where W∗
0 (X) := w0 − X + Iθ∗ (X) − P∗ and W∗

1 (X) := W1 + P∗ − (1 + τ ∗)Iθ∗ (X). The above equation
together with Equation (3.6) can imply{

∂2
(θ ∗, P∗)

∂θ 2

∂2
(θ ∗, P∗)

∂P2
−
(
∂2
(θ ∗, P∗)

∂θ∂P

)2
}
∂θ ∗

∂δ

= 1

δ
(
E[u(W∗

0 (X))] −E[u(w0 − X)]
) {∂2
(θ ∗, P∗)

∂θ∂P
E[u′(W∗

0 (X))] + ∂2
(θ ∗, P∗)

∂P2
E[u′(W∗

0 (X))X]

}

= (1 − δ)E[u′(W∗
0 (X))]E[u′(W∗

0 (X))X]

δ
(
E[u(W∗

0 (X))] −E[u(w0 − X)]
)2

×
{
E[u′′(W∗

0 (X))]

E[u′(W∗
0 (X))]

− E[u′′(W∗
0 (X))X]

E[u′(W∗
0 (X))X]

+ E[v′′(W∗
1 (X))]

E[v′(W∗
1 (X))]

− E[v′′(W∗
1 (X))X]

E[v′(W∗
1 (X))X]

}

and{
∂2
(θ ∗, P∗)

∂θ 2

∂2
(θ ∗, P∗)

∂P2
−
(
∂2
(θ ∗, P∗)

∂θ∂P

)2
}
∂P∗

∂δ

= −
∂2
(θ∗ ,P∗)

∂θ2 E[u′(W∗
0 (X))] + ∂2
(θ∗ ,P∗)

∂P∂θ
E[u′(W∗

0 (X))X]

δ
(
E[u(W∗

0 (X))] −E[u(w0 − X)]
)

= (1 − δ)E[u′(W∗
0 (X))]E[u′(W∗

0 (X))X]

δ
(
E[u(W∗

0 (X))] −E[u(w0 − X)]
)2

×
{
E[u′′(W∗

0 (X))X]

E[u′(W∗
0 (X))]

− E[u′′(W∗
0 (X))X2]

E[u′(W∗
0 (X))X]

+ (1 + τ )

(
E[v′′(W∗

1 (X))X]

E[v′(W∗
1 (X))]

− E[v′′(W∗
1 (X))X2]

E[v′(W∗
1 (X))X]

)}
.

Under the DARA assumption of the utility function u, we have

E[u′′(W∗
0 (X))]E[u′(W∗

0 (X))X] −E[u′′(W∗
0 (X))X]E[u′(W∗

0 (X))]

=E
[Au(W

∗
0 (X))u′(W∗

0 (X))u′(W∗
0 (Y))(X − Y)

]
= 1

2
E
[
u′(W∗

0 (X))u′(W∗
0 (Y))(X − Y)(Au(W

∗
0 (X))) −Au(W∗

0 (Y))
]
� 0,

where Y is an independent copy of X and the last inequality is derived by the fact that W∗
0 (X) is decreasing

in X. Using the similar arguments, we have

E[u′′(W∗
0 (X))X2]E[u′(W∗

0 (X))] �E[u′′(W∗
0 (X))X]E[u′(W∗

0 (X))X].

Furthermore, we define

h∗
2(x) := E[ − v′′(W∗

1 (X))|X = x] and h∗
1(x) := E[v′(W∗

1 (X))|X = x].

Using the similar arguments as in the proof of Proposition 6 in Appendix A.6, we get that both h∗
2(x)

h∗
1(x)

and
h∗

1(x) are positive and increasing under the assumptions of a DARA v and −W1 ↑hr X1. Thus, similar to
Equation (A6), we have

E[v′′(W∗
1 (X))X]E[v′(W∗

1 (X))] �E[v′′(W∗
1 (X))]E[v′(W∗

1 (X))X] (A8)
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and

E[v′′(W∗
1 (X))X2]E[v′(W1(X))] −E[v′′(W∗

1 (X))X]E[v′(W∗
1 (X))X]

= −E
[
h∗

2(X)X2
]
E[h∗

1(Y)] +E
[
h∗

2(X)X
]
E[h∗

1(Y)Y]

=E

[
h∗

1(X)h∗
1(Y) (Y − X)× h∗

2(X)X

h∗
1(X)

]

= −1

2
E

[
h∗

1(X)h∗
1(Y) (X − Y)×

(
h∗

2(X)X

h∗
1(X)

− h∗
2(Y)Y

h∗
1(Y)

)]
� 0.

Recalling that

∂2
(θ ∗, P∗)

∂θ 2

∂2
(θ ∗, P∗)

∂P2
−
(
∂2
(θ ∗, P∗)

∂θ∂P

)2

> 0,

we thus have ∂θ∗
∂δ

� 0 and ∂P∗
∂δ

� 0. The proof is thus completed.

A.8 Proof of Proposition 8
Noticing that W1 = w1 almost surely, we get that condition (3.7) is met, then (θ ∗, P∗) satisfies the first-
order condition. Taking the derivative of the first-order conditions in Equation (A2) with respect to w1

yields
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = ∂2
(θ ∗, P∗)

∂θ∂P

∂θ ∗

∂w1

+ ∂2
(θ ∗, P)

∂P2

∂P∗

∂w1

+δ
{
E[v′′(W∗

1 (X))](E[v(W∗
1 (X))] − v(w1)) −E[v′(W∗

1 (X))](E[v′(W∗
1 (X))] − v′(w1))

}
(E[v(W∗

1 (X))] − v(w1))2
,

0 = ∂2
(θ ∗, P∗)

∂θ 2

∂θ ∗

∂w1

+ ∂2
(θ ∗, P)

∂θ∂P

∂P∗

∂w1

−δ(1 + τ )
{
E[v′′(W∗

1 (X))X](E[v(W∗
1 (X))] − v(w1)) −E[v′(W∗

1 (X))X](E[v′(W∗
1 (X))] − v′(w1))

}
(E[v(W∗

1 (X))] − v(w1))2
.

Since it is assumed that the insured has a CARA utility function u, then there exists a λ> 0 such that
u′′(w) = −λu′(w), which in turn implies

λ= −E[u′′(W∗
0 (X))X]

E[u′(W∗
0 (X))X]

= −E[u′′(W∗
0 (X))]

E[u′(W∗
0 (X))]

.

Thus, we have

∂2
(θ ∗, P∗)

∂P2

= δE[v′(W∗
1 (X))]

E[v(W∗
1 (X))] − v(w1)

{
E[v′′(W∗

1 (X))]

E[v′(W∗
1 (X))]

+ E[u′′(W∗
0 (X))]

E[u′(W∗
0 (X))]

− E[v′(W∗
1 (X))]

(1 − δ)(E[v(W∗
1 (X))] − v(w1))

}

= δE[v′(W∗
1 (X))]

E[v(W∗
1 (X))] − v(w1)

{
E[v′′(W∗

1 (X))]

E[v′(W∗
1 (X))]

− λ− E[v′(W∗
1 (X))]

(1 − δ)(E[v(W∗
1 (X))] − v(w1))

}
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and
∂2
(θ ∗, P∗)

∂θ∂P

= δ(1 + τ )E[v′(W∗
1 (X))X]

E[v(W∗
1 (X))] − v(w1)

{
−E[v′′(W∗

1 (X))X]

E[v′(W∗
1 (X))X]

− E[u′′(W∗
0 (X))X]

E[u′(W∗
0 (X))X]

+ E[v′(W∗
1 (X))]

(1 − δ)(E[v(W∗
1 (X))] − v(w1))

}

= δ(1 + τ )E[v′(W∗
1 (X))X]

E[v(W∗
1 (X))] − v(w1)

{
−E[v′′(W∗

1 (X))X]

E[v′(W∗
1 (X))X]

+ λ+ E[v′(W∗
1 (X))]

(1 − δ)(E[v(W∗
1 (X))] − v(w1))

}
.

The above equations together with Equation (3.6) can imply

1

δ

{
∂2
(θ ∗, P∗)

∂θ 2

∂2
(θ ∗, P∗)

∂P2
−
(
∂2
(θ ∗, P∗)

∂θ∂P

)2
}
∂θ ∗

∂w1

= ∂2
(θ ∗, P∗)

∂θ∂P

{
E[v′′(W∗

1 (X))](E[v(W∗
1 (X))] − v(w1)) −E[v′(W∗

1 (X))](E[v′(W∗
1 (X))] − v′(w1))

}
(E[v(W∗

1 (X))] − v(w1))2

+ (1 + τ )
{
E[v′′(W∗

1 (X))X](E[v(W∗
1 (X))] − v(w1)) −E[v′(W∗

1 (X))X](E[v′(W∗
1 (X))] − v′(w1))

}
(E[v(W∗

1 (X))] − v(w1))2

×∂
2
(θ ∗, P∗)

∂P2

= δ(1 + τ )

(E[v(W∗
1 (X))] − v(w1))3

{
E[v′′(W∗

1 (X))]E[v′(W∗
1 (X))X] −E[v′′(W∗

1 (X))X]E[v′(W∗
1 (X))]

}

×
{
λ(E[v(W∗

1 (X))] − v(w1)) + δ

1 − δ
E[v′(W∗

1 (X))] + v′(w1)

}
� 0,

where the last inequality is derived by Equation (A8). Recalling that ∂2
(θ∗ ,P∗)
∂θ2

∂2
(θ∗ ,P∗)
∂P2 −

(
∂2
(θ∗ ,P∗)
∂θ∂P

)2

> 0,
we thus obtain ∂θ∗

∂w1
� 0. In other words, the insurance demand is increasing in the insurer’s constant initial

wealth when the insured’s risk preference exhibits CARA.
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