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A Reconfigurable Architecture for Real-time Event-based
Multi-Object Tracking

YIZHAO GAO, SONG WANG, and HAYDEN KWOK-HAY SO, University of Hong Kong, Hong
Kong

Although advances in event-based machine vision algorithms have demonstrated unparalleled capabilities in
performing some of the most demanding tasks, their implementations under stringent real-time and power
constraints in edge systems remain a major challenge. In this work, a reconfigurable hardware-software archi-
tecture called REMOT, which performs real-time event-based multi-object tracking on FPGAs, is presented.
REMOT performs vision tasks by defining a set of actions over attention units (AUs). These actions allow AUs
to track an object candidate autonomously by adjusting its region of attention and allow information gathered
by each AU to be used for making algorithmic-level decisions. Taking advantage of this modular structure,
algorithm-architecture codesign can be performed by implementing different parts of the algorithm in either
hardware or software for different tradeoffs. Results show that REMOT can process 0.43-2.91 million events
per second at 1.75-5.45 W. Compared with the software baseline, our implementation achieves up to 44 times
higher throughput and 35.4 times higher power efficiency. Migrating the Merge operation to hardware fur-
ther reduces the worst-case latency to be 95 times shorter than the software baseline. By varying the AU
configuration and operation, a reduction of 0.59-0.77 mW per AU on the programmable logic has also been
demonstrated.

CCS Concepts: « Computer systems organization — Real-time system architecture; Reconfigurable
computing; - Computing methodologies — Tracking;

Additional Key Words and Phrases: REMOT, Dynamic Vision Sensors, multi-object tracking, event sensors,
event camera, hardware/software co-design, attention unit, FPGA, HOTA
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1 INTRODUCTION

Event cameras are neuromorphic imaging devices that have been receiving renewed interest in re-
cent years due to their unique capabilities, including high temporal resolution, high dynamic range,
low lighting imaging, and energy efficiency [15]. At the heart of an event camera is a dynamic
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vision sensor (DVS), sometimes simply referred to as an event sensor, which detects changes in
exposed light intensity and reports them asynchronously as spiking events localized to the pixels
involved. This contrasts with a conventional image sensor that reports the light intensity of every
pixel synchronously at a regular frame rate regardless of the activity level of the scene. With their
unique imaging capabilities, event cameras are driving a new generation of event-based vision
applications, from internet-of-thing sensing to high-speed autonomous vehicle guidance.

From a data processing point of view, the outputs of event sensors are sparse and asynchro-
nous, while that of traditional image sensors are dense and synchronous. As a result, depending
on the activity level of the scene, an event sensor output can switch from an idle state where no
event is produced to an active state that produces millions of events per second within microsec-
onds. To cope with such highly varied data processing requirements, it is desirable to develop a
flexible architecture that can operate at low power mode efficiently during low activity periods,
while being able to transition into a high-performance mode to process bursts of events during
high activity periods. Further adding to this processing challenge is the fact that the output event
sensors are fragmented with limited visual information when compared to the images produced
by a conventional frame-based sensor. Although techniques such as time-surface construction can
serve as an intermediate representation on which sophisticated learning-based algorithms may be
built upon [22, 38], performing such complex algorithms in edge devices with limited processing
capabilities in real time remains an open challenge.

In this work, we present REMOT, a reconfigurable event-based multi-object tracking hardware-
software system, which performs the complex high-level vision task of multi-object tracking
(MOT) in real-time on FPGA with an event camera input. The REMOT tracking algorithm is co-
designed with the hardware architecture to facilitate high-performance processing of the event
input using a modular framework surrounding the concept of an attention unit (AU). In a REMOT
system, an AU is an autonomous entity that tracks the subset of the events falling under its region
of attention (ROA). The overall tracking algorithms are then constructed by defining the way
these AUs interact with one another, either in hardware or software, based on their aggregated
information about the events in its ROA.

To demonstrate the flexibility of the REMOT architecture, a family of event-based multi-object
tracking algorithms has been implemented with a wide range of hardware and software configu-
rations. In our baseline architecture, a layer of AUs is implemented in hardware to provide high
throughput distributed processing of vision events as they are produced. On top of that, software
running on the embedded processor queries the status of each hardware AU and makes decisions
to merge or split these AUs to enhance tracking accuracy. In addition, an enhanced architecture
with hardware-accelerated AU Merge is presented, demonstrating the benefit of REMOT’s modu-
lar design. Finally, two low-level hardware techniques have been explored to enhance the power
efficiency of the system. In the first case, the maximum number of AUs is configured on the pro-
grammable logic of the FPGA, but their usage is limited dynamically during runtime. In the second
case, the number of AUs configured is adjusted through the reconfiguration of FPGAs.

Our results show that the proposed architecture is scalable and is capable of processing
0.43 to 2.91 million events per second (Meps) while consuming 1.75 to 5.45 W of system power.
With regard to MOT accuracy, we show that our proposed attention-guided MOT algorithms can
achieve 43.1 % to 73.2 % in terms of the Higher Order Tracking Accuracy (HOTA) metric across
a range of datasets. By utilizing novel hardware-software codesign strategies, REMOT is able to
implement high-level event-based computer vision tasks efficiently on FPGAs. To this end, we
consider the main contributions of this work as follows:

e We proposed a reconfigurable event-based multi-object tracking hardware-software system
that can effectively support real-time operations in FPGA;
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Fig. 1. Comparing working principles of event camera and conventional frame-based cameras. (a) Event is
encoded with its pixel location (x, y), polarity p (shown as red and blue dots), and is typically timestamped
at 1-us intervals, t. As the star shape moves, events are produced near the edges of the star where light
intensity changes. (b) (Top) Accumulating events forms a two-dimensional representation in the original x-y
coordinate. (Bottom) Original frame captured by the APS sensor of DAVIS.

e We demonstrated the flexibility, scalability, power efficiency, and real-time performance of
the proposed architecture by performing design space exploration for implementations on
two FPGA-based edge platforms;

e We proposed a family of real-time event-based attention-guided multi-object tracking algo-
rithms that run on our proposed architecture and demonstrated their efficacy using a set of
real-world traffic monitoring data.

An earlier version of this work appeared in Reference [16]. We extend the original work by intro-
ducing additional dynamic power-saving strategies that further improve the system’s power effi-
ciency and developing new hardware AU Merge module that greatly enhanced the performance of
the original implementation. In the next section, background and related works on event-based vi-
sion algorithms will first be discussed. The REMOT hardware-software architecture and algorithm
will be discussed in Section 3. An extensive evaluation of our proposed system will be shown in
Section 4. Limitations of our current system will be discussed in Section 5, and we will conclude
in Section 6.

2 BACKGROUND AND RELATED WORK
2.1 Dynamic Vision Sensors

Dynamic Vision Sensors only report local brightness changes asynchronously for each pixel.
Whenever the change in log intensity of a pixel is higher than a predefined threshold, it emits
an event, or spike, which is usually encapsulated in an address event representation (AER) for-
mat for downstream processing [15]. A typical event in AER can be written as [x, y, p, t], where
x, y is the location of the event, p is the polarity of brightness change in +1, and ¢ is the timestamp
generated by the sensor.

Figure 1 illustrates the working principle of a DVS by showing the outputs of an event sen-
sor alongside a conventional frame-based sensor in a segment of shapes_6dof dataset. The figure
shows the period when the star shape moves relative to the camera. As shown at the top half
of Figure 1(a), a DVS reports changes in light intensity asynchronously as spiking events shown
as red and blue dots. These events are produced around the edges of the star shape, where the
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Fig. 2. Dynamic properties of a DVS camera.

dark color of the shape interacts with the light background. The events are produced in an almost-
continuous fashion as long as there is relative movement between the camera and the star with a
temporal resolution of about 1 ps. Conversely, events are rarely produced when there is no change
in light intensity, such as near the background and in the middle segment of the star trajectory.
When the events in a small time window are accumulated, they form a projection of the events in
the original imaging two-dimensional (2D) x-y coordinate as illustrated at the top of Figure 1(b).
The bottom of the figure shows the corresponding frame captured during this time.

However, the lower half of Figure 1(a) illustrates the output of a conventional frame-based cam-
era. With a conventional camera, frames are captured at regular intervals regardless of the activity
of the scene. The frame capturing rate determines the temporal resolution of the camera. Each
frame is a dense representation of the entire field of view regardless of any object movement. As
a result, redundant information, such as identical background, is captured between frames, while
information during the time between two consecutive is lost.

Due to its asynchronous behavior, a variable data rate can be expected from DVS depending on
the activity level of the scene. Figure 2(a) shows the rate of events produced over time in a traffic
scene. As the cars move toward the camera, the relative speed in the view increases, which results
in higher event rates. Common industrial DVS timestamps events in 1-ps resolution. However,
in some active dynamic scenes, more than one event might share the same timestamp value.
Figure 2(b) shows the statistics in our traffic dataset. The special column labeled as “0” corresponds
to the percentage of time when no event is generated, which captures its sparsity in the time di-
mension. In this particular example, the DVS was idle 90% of the time. Furthermore, among all the
timestamps with events, 83% contains only 1 event. On average, the data rate of our current dataset
ranges from 0.22 to 0.3 Meps. This rate ultimately determines the minimum average processing
throughput our proposed hardware-software system must achieve to avoid dropping events.

In this work, we employed an advanced Dynamic and Active Pixel Vision Sensor (DAVIS)
camera [7] that implements both a dynamic vision sensor and a conventional frame-based active
pixel sensor (APS) on the same pixel array. Since the two sensors are integrated at the pixel level,
no image registration is needed between the events and frame output. We took advantage of this
feature to produce ground-truth bounding boxes in our dataset.

2.2 Hardware Processing of DVS Output

The asynchronous and sparse nature of DVS output brings both opportunities and challenges to
processing them efficiently in hardware. Table 1 shows a list of previous works that demonstrated
efficient hardware processing of DVS output. Depending on the operating principle of a work’s
main algorithm, two different performance measurements have typically been used in the litera-
ture regarding DVS processing in hardware. Designs with their main algorithms operating on raw
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Table 1. Previous Hardware Deployments of Event-based Vision Tasks Using Dynamic Vision Sensors

I;:ff‘::: Task Main Algorithm ;)::cf:sil;tg Performance Clljl‘:lv’:esry:‘t;;“
[36] Loihi Object Tracking SNN v - —/—=
[40] FPGA+TrueNorth | Object Tracking, Classification | Event-based Tracker+SNN X 15 fps 0.55/-
[37] | Neuromorphic Chips | Object Recognition, Tracking SNN v 3 Meps 0.4/—
[24, 25] FPGA Object Tracking Center of Mass Calculation v 120-140 ns —/10
[39] FPGA Gesture Recognition Hierarchy of Time Surface v 0.16-2 Meps 0.077/1.6
[32] FPGA Pedestrain Detection BNN X 130 fps —/—
[35] FPGA Object Detection PCA, kd-tree, SVM v 550 ns 0.37/3
[26] FPGA Object Classification CNN X 160 fps 0.27/1
[33] GPU Object Detection CNN X 25 fps —/—
REMOT FPGA Object Tracking Attention-Guided MOT v 0.43-2.91 Meps | —/(1.75-5.45)

event input from the DVS usually emphasize their event processing throughput as measured in
Meps. These works are marked with a checkmark in the table under the “Per-event processing”
column. However, a group of event-based hardware algorithms performed computer vision tasks
using framelike intermediate representations such as by aggregating events over a time window.
In these cases, the literature typically reports performance in terms of frames per second (fps).

Owing to the neuromorphic nature of DVS, a number of works have explored the use of spiking
neural networks (SNN) [19] to perform dynamic vision tasks including object classification [10,
27] and object tracking [36, 37]. Subsequently, from a hardware implementation perspective, both
dedicated SNN chip [37] or general-purpose SNN accelerators including Intel Loihi [11] and IBM
TrueNorth [29] have been used to accelerate the corresponding SNN inference task, resulting in
highly energy-efficient processing in general.

At the same time, another school of work approached the challenge of performing event-based
vision tasks by developing custom architecture and algorithms that operate on the DVS events
natively. For instance, Reference [25] developed a real-time object-tracking system based on center-
of-mass computation using FPGA for object tracking. In Reference [39], a hand-gesture recognition
system with real-time FPGA implementation by using a hierarchy of time-surface was proposed.
In Reference[35], object classification and detection was performed by mapping and categorizing
the input events using PCA-RECT transform on FPGA.

Recently, leveraging their extraordinary success in processing conventional frame-based images,
deep learning methods that utilize convolutional neural networks (CNNs) have also been ex-
ploited to process DVS output for various dynamic vision tasks [26, 32, 33]. Unfortunately, typical
CNN accelerators are designed to operate with dense tensors and thus cannot fully take advantage
of the sparseness of DVS output to improve power efficiency. To address that, some progress has
been made in accelerating CNN with sparse feature maps, making them suitable for inference on
DVS histogram output [2].

REMOT follows the line of work of operating directly on the event output from a DVS by intro-
ducing a customized HW/SW architecture to perform multi-object tracking. However, we further
expand its flexibility by allowing it to be reconfigurable and programmable through dedicated
codesign strategies.

2.3 Multi-object Tracking Using DVS

Multi-object tracking [34] is a challenging computer vision task that tracks multiple objects in a
dynamic scene. Apart from detecting an object in a scene, it also requires an algorithm to assign
a unique index to each independent object and track its trajectory. There has been a wide variety
of MOT algorithms proposed for the frame-based camera, with “tracking by detection” being the
mainstream [3, 4, 6]. It is mainly composed of two steps: (i) apply a detector to detect objects in
each frame and (ii) perform association on the detected objects across frames.
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Following a similar approach, a number of event-based object-tracking algorithms have been
proposed. For instance, in Reference [23], the authors demonstrated effective tracking using a cor-
relation filter on top of a CNN structure. In the work of EBBIOT [1], a vehicle tracking system
based on event sensors was demonstrated. Using an adaptive time surface formulation of events,
Chen et al. [8] have demonstrated multiple object tracking in a controlled environment. Leveraging
recent advent in machine learning, an offline-online learning approach was proposed in Reference
[21] to perform event-based object tracking with comparable performance to frame-based algo-
rithms. In a recent work of EKLT [17], the use of simultaneous event and frame-based input to
perform feature tracking was proposed.

While the above works have achieved good object-tracking performance, their complex designs
were not optimized for real-time implementations. For that, the authors of E-MS [5] demonstrated
an effective real-time event-based multi-object tracking by performing mean-shift clustering on
the incoming events as they were produced. Subsequently, in Reference [25], the authors demon-
strated a low-latency event-based object tracker by performing inline center-of-mass computation
using FPGA.

Our proposed REMOT framework similarly performs multi-object tracking directly on the dy-
namic vision events as they are produced. Taking advantage of the high temporal resolution and
spatial sparsity of DVS, REMOT identifies and tracks multiple objects simultaneously using a layer
of AUs. Each AU is an independent tracker that only pays attention to a small region that is up-
dated in a per-event manner (Section 3). As an object moves, the attention region follows its motion
based on the corresponding events that are produced, thereby tracking the moving object. During
the lifetime of an AU, it will be assigned a unique global index as the tracking ID. Therefore, no ob-
ject association in the traditional MOT sense is needed. Instead, supervisory functions are needed
to ensure that each AU is indeed tracking useful objects. These high-level decisions are made based
on the status of the AUs and may operate in millisecond scale comparable to a frame speed. In this
way, a hierarchy of vision system is established with different processing rates on different levels.

3 REMOT ARCHITECTURE AND ALGORITHMS

REMOT defines a hardware-software architecture and its associated operations that allow real-
time event-based multi-object tracking algorithms to be developed. The design of REMOT is based
on the notion of an AU. An AU is an autonomous entity that observes events from a DVS as they
are produced. An AU maintains an ROA that defines the area in the imaging field where this AU
is currently paying attention to. An implementation of REMOT will typically include a large set of
independent AUs, which collectively attend to different parts of the imaging field where there are
interesting events. Furthermore, a set of high-level algorithms oversee the operations of the entire
set of AUs and make group decisions based on the state of each individual AU. It is by carefully
manipulating the actions of the AUs that a family of attention-guided multi-object algorithms can
be defined. The basic abstractions of AU actions are as follows.

Expand. An AU may choose to expand its ROA when it observes an event that falls within its
ROA. In other words, this event is considered as interested by the AU. In that case, the AU captures
the event and adjusts its ROA centered around the new events. All the events that fall outside the
current ROA will be ignored by the AU. Consequently, the ROA remains unchanged. The expanded
region is designed to be a d X d square area center at the new events as shown in Figure 3(a) our
current implementation. The captured events will be pushed into an Active Event FIFO.

Shrink. An AU may choose to shrink its ROA as events age and no longer require attention. In
that case, the AU may forget the event according to criteria set up by the algorithm. In REMOT, the
order to shrink events is identical to the order as it is captured, which follows a First-in, First-out
manner. Thus, we use an Active Event FIFO to temporarily store events considered as interested.
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Fig. 3. Primitives of AU actions. (a) Expand: An AU expands its ROA when a new event falls within its ROA.
(b) Shrink: An AU shrinks its ROA when an old event is discarded. (c) Merge: Two AUs aggregate and become
a new AU. (d) Split: An AU splits into multiple AUs.

As shown in Figure 3(b), the event popped out from the Active Event FIFO will shrink the attention
center around its location similar to the Expand operation.

Merge. An algorithm may choose to merge two AUs during runtime as more information about
each AU is aggregated. When two AU merges, a new AU is formed with a combined ROA that is the
union of the two original ROAs. We propose two Merge algorithms, the Distance-based algorithm
and the Ratio-based algorithm. If the Hausdorff distance [20] between two sets of active events
from two AUs is less than a threshold value, or the ratio of Interaction over Minimum (IoM) is
larger than a threshold value, then the neighboring AUs will be merged.

Split. An algorithm may decide that an AU should split into multiple AUs depending on
algorithm-specific criteria. When an AU splits, two new AUs are formed with each of them inherit-
ing a subset of the original region of attention. In REMOT, we leverage different cluster algorithms
to determine whether the internal events develop into different separated groups. We employ two
clustering algorithms to partition AUs: density-based Split algorithm and hierarchy-based Split
algorithm. Each attention region of the separated AU is reconstructed using the new clustered
events.

Spawn. An AU is spawned when no existing AU is interested in a new coming event and the
ROA of the new AU will center around the new event. Besides, Merge/Split algorithms can also
decide to spawn a new AU with aggregated/separated events. In software implementations, an
unlimited number of AUs can be spawned. However, in hardware implementations, the number
of physical AUs is fixed and limits the maximum number of AU that can be spawned.

Delete. An AU is deleted when its information is already aggregated by the Merge operation.
An AU can also be deleted when its ROA remains unchanged for a long period of time. In hardware
implementations, the deleted AU will be idle and wait to be spawned by new events or Merge/Split.

3.1 A Reconfigurable Architecture for REMOT

Figure 4 shows the overall system architecture of REMOT. It typically targets an embedded system
with both microprocessor and FPGA fabric, e.g., a Zynq MPSoC device with Programmable Logic
(PL) and Processing System (PS) units.

In its basic form, the Expand and Shrink operations are implemented on hardware to process
each event while a software-based controller running on the microprocessor with Merge and Split
algorithm will oversee all AUs on hardware and perform group decisions. The proposed hardware
architecture takes the event stream as input. Each event will be broadcast to all hardware AUs to
check whether the event lies within their attention region. The AU that considers the new event
interested will push the event into its Active Events FIFO and updates its ROA. If none of the active
AU is interested in the new event, then a new hardware AU will be spawned if there is still an idle
AU. When an old event is popped out by the AU from its Active Event FIFO, the corresponding
attention region will then shrink. The hardware also provides interfaces that allow the controller
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Fig. 4. HW/SW architecture.

ALGORITHM 1: Expand Algorithm with AMAP

Input: event [x, y, p, t]
1: if amap[x, y] > 0 then > Check if interested in the new event
2: efifo.push(event)

3 fori=—(d-1)/2+x:(d-1)/2+x do

4: forj=-(d-1)/2+y:(d-1)/2+ydo

5: if i >0AND i < W AND j > 0 AND j < H then > Check boundary
6: amapli, j] +=1 > Expand attention
7 end if

8 end for

9: end for

10: end if

on PS to read and manipulate the status of AUs, e.g., the attention map and Active Event FIFO, to
enable Merge and Split operations.

However, the hardware/software architecture can be constructed differently by reconfiguring
the system with different implementations of the AU functions. For example, a hardware Merge
unit can also be implemented on PL to facilitate the decision-making and attention aggregation
of the Merge algorithm. Besides, the hardware can also be reconfigured with different maximum
numbers of AUs or different micro-architectures of AUs to achieve flexible tradeoffs in power
efficiency, throughputs, and so on. In the next few sections, we will further discuss the detailed
design of the reconfigurable architecture for different functional units.

3.2 Implementation of AU with Expand/Shrink Actions

3.2.1 Software Implementation. In this section, we first discuss the software implementation of
AU with Expand and Shrink actions. The software-only implementation is considered the baseline
and is also used to study the MOT algorithms. Then we introduce three different hardware imple-
mentations of AU with Expand/Shrink operations that can achieve high-throughput and real-time
processing of events in situ as they are produced by the event camera.

The software-based Expand and Shrink are centered around the use of an attention map
(AMAP) in each AU that records its current ROA. An AMARP can be realized as a 2D matrix with
the size of the camera that records the magnitude of attention in each pixel location. Each AU also
contains an Active Event FIFO to store its recently interested events. When a new event arrives
within the ROA of an AU (i.e., AMAP[x, y] > 0), the d X d area of the AMAP centered at [x, y] is
incremented by 1 and the event is pushed into the FIFO.

Algorithm 1 shows the pseudo code of the described Expand algorithm. However, the Active
Event FIFO is set to a fixed depth. As a result, the oldest event in the FIFO will be popped out if the
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Fig. 5. Three different hardware implementations of an AU. (a) FuLL-AMAP implementation uses a full W x H
size attention map to record attention. (b) HAsH-AMAP implementation reduces the size of the buffer by using
a hash table. (c) FiFo-oNLY implementation relies merely on Active Event FIFO by comparing the Chebyshev
distances between new events and the captured events. The “closed” function returns True if the distance is
smaller than the Expand/Shrink ROA radius (d — 1)/2.

FIFO is full and a new event is pushed in, which works similarly to a circular buffer. When an event
is popped out from the FIFO, the corresponding d X d area will be decremented by 1, shrinking the
AMAP accordingly.

3.22 Hardware Implementation. In terms of the hardware implementation of AU, we introduce
three different designs: FurL-amapr, HasH-AMAP, and Firo-oNLy with different tradeoffs between
accuracy, throughput, resource, and power consumption. The hardware diagram of the three im-
plementations are shown in Figure 5.

Furr-amap Implementation of AU. The FULL-AMAP is a straightforward implementation similar
to the software implementation without additional hardware optimization. Each AU is composed
of a W X H AMAP and an Active Event FIFO, where W and H are the width and height of the
camera. The hardware Expand and Shrink behaviors follow the same procedures as the software
implementation described above. Block RAM (BRAM) is used to store AMAP on FPGA, which
takes around d X d cycles to update for every Expand or Shrink operation. The FULL-AMAP is
considered as a costly hardware baseline without taking advantage of the inherent spatial sparsity
of the DVS. The BRAM usage for an AU in FULL-AMAP can be estimated as

Bryii-amar = |—(W X H X 16 + Dprro X 64)/16Kb1’ (1)

where Dprpo is the depth of the 64 bits Active Event FIFO and the attention map uses 16 bits
precision. In addition, the throughput of the FuLL-amAP implementation is mainly determined by
Expand and Shrink size d, which can be estimated using

Tryri-amar = freq/(2(d2 +C)), (2)

where freq is the clock frequency of the programmable logic and C is a constant overhead includ-
ing the pipeline latency.

HasHa-AmAP Implementation of AU. As mentioned above, the inherent spatial sparsity in DVS
brings great opportunities for hardware optimization. Thus, hash table becomes a good candidate
to implement a sparse attention map in AU. By only storing non-zero attention regions in a hash
table, large on-chip memory is saved for each AU. In this way, more AUs can be deployed under the
same resource constraints. Figure 6 shows the diagram of the hashing scheme. For each location
[x, y], the hash key can be generated using

key = f(x,y) =yxW+x+1 (3)
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Fig. 6. The hashing diagram of the sparse attention map in HAsH-AMAP implementation. Function f and h,
refer to Equations (3) and (4).

ALGORITHM 2: Check attention with HaAsH-AMAP implementation

Input: event [x, y, p, t]
Output: If an AU is interested in an event
1: key = f(x.y)
2: i = hg(key)
3: forall sin S do > S number of slots in each hash table entry
4 k = key[i][s]
5: v = value[i][s]
6
7
8
9

if key == k AND v > 0 then
return True
end if
: end for
10: return False

where W is the width of the camera screen. This key generation function calculates the flattened
1D array index of [x,y] in the original 2D W X H space. It ensures that a unique hash key can
be assigned to each location in the W X H space. Other mapping functions that can guarantee
this uniqueness are also acceptable. In addition, we choose the binary multiplicative hashing func-
tion [13] to obtain the index of the hash table entry to store a key—value pair. For a hash table with
2! entries and w bits hash key, the hashing function can be described as

idx = hg(key) = (a X key)[w —1:w—1], (4)

where a is a w bits constant number and [w — 1 : w — [] refers to w — [ to w — 1 bits of the
2w bits multiplication result. In this way, we obtain an [ bits index to store a key—value pair in
the hash table. For a sparse attention map in Figure 6, the hash table only stores the non-zero
locations, which also corresponds to the ROA of the AU. When a new event comes, it will query
the hash table using Equations (3) and (4). If finding a matched key and its associated value is
positive, then this event will be considered interested, shown in Algorithm 2. Similarly to Furr-
AMAP implementation, the newly captured event will be pushed into the Active Event FIFO. The
AU will also iterate through the d X d area center at the newly captured event and increment the
attention values in the hash table.

However, using a hash table to store the sparse attention map also brings in the problem of hash
collision. In other words, two different non-zero locations might be mapped into the same hash
table entry. To simplify the design and achieve higher throughput, we use chaining as the collision
handling strategy by allocating multiple slots for each hash table entry. If a collision happens, then
the new key-value pair goes to the next available slot. Otherwise, this key-value pair will simply
be dropped. The throughput of the Hasu-amAP implementation is similar to the FULL-AMAP in
Equation (2). However, the BRAM consumption can be largely reduced by using hash table, which

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 4, Article 58. Pub. date: September 2023.



A Reconfigurable Architecture for Real-time Event-based Multi-Object Tracking 58:11

can be written as
Biiasuamar = [((w +16) X 2! X § + Dprro X 64)/16Kb], 5

where S is the number of slots in one hash table entry. Similarly, the precisions of the attention
map and FIFO are 16 and 64 bits. The hash key precision w is set to 18 in our implementation.

Frro-onNLy Implementation of AU. Both FurL-amap and HasH-amMAP implementation keep a
record of the attention map to determine whether the new coming event is considered interested.
They achieve constant query time but spend around d? cycles to update the ROA. The Firo-oNLY
implementation reformulates the attention-based algorithm differently and leads to a different de-
sign tradeoff. It compares the location of a new coming event with all the existing events in the
Active Event FIFO. If its location lies within the expanding region of any active event, then the
new event will be considered interested and be pushed into the Active Event FIFO. The algorithm
can be formulated as

interested = de e F,s.t. lex—x| < (d—-1)/2&ley—y| < (d-1)/2, (6)

where F is the Active Event FIFO. The above formulation is also equivalent to finding whether
there exists an event in the FIFO with Chebyshev distance less than (d — 1)/2 from the new
event.

Different from the attention-map-based methods, the complexity of query is O(n), and the com-
plexity of updating FIFO is O(1) for Firo-onLy, where n refers to the depth of the Active Event
FIFO. Therefore, the throughput of Firo-oNLy is bounded by how fast it can traverse the en-
tire FIFO. This generally means that the conventional hardware implementation of a FIFO with
one push/pop operation per cycle is incapable of this design. For example, if the FIFO depth is
1,024, then it takes at least 1,024 cycles to determine whether a new event is interested or not. As-
suming the PL fabric runs at 100 MHz, the throughput will be less than 0.1 Meps, which is slower
than the real-time requirement. Thus, as depicted in Figure 5(c), we can achieve parallel access to
the FIFO by partitioning. Given a target throughput T, we can estimate the partition factor of the
FIFO and the overall BRAM consumption using

P = [Drrro/(T/freq)] o

Briro-oniy = P X [64 X DFIFO/(P X 16Kb)-|,
which leads to a different throughput-resources tradeoff compared to the attention-map-based
implementations.

3.2.3 Applicability of Different AU Implementations. Previous sections have introduced the soft-
ware implementation and three hardware implementations of AU. In general, their functionalities
are the same but can tradeoff between performances and resources to satisfy the actual application
constraints. Specifically, one can choose the Firo-oNLy implementation if a specific throughput re-
quirement should be satisfied. This can be done by using different FIFO partition factors (shown
in Equation (7)) to tradeoff between BRAM consumption and performances. While the FurL-amar
and HasH-AMAP implementations are able to provide opportunities to be integrated with other
frame-based algorithms like CNN by using the attention map. Last, the software version of AU can
apply to cases in a CPU-only system with fewer AU requirements, but the performances hardly
scale with a large number of AUs. More detailed results of different tradeoffs in AU implementa-
tions will be discussed in Section 4.2.3.
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ALGORITHM 3: Merge Algorithm

1: for i = 0 : Number of AUs — 1 do
2 for j = i + 1 : Number of AUs do
3 if IOM(AUs[i], AUs[j]) > « then
4 events = Unique(AU[i].efifo, AU[j].efif o) > Combine the events and remove identical ones
5: events = Sort(events.t) > Sort events using timestamps in descending order
6 events = events[0: FIFO_DEPTH] > Shrink old events to fit maximum FIFO size
7 amap = [W, H] > Create new empty attention map
8 for all e in events do > Reconstruct attention map
9: Expand(amap, e)

10: end for

11: delete AUs[i], AUs[j]

12: au = AU(events, amap) > Instantiate new AU

13: AUs.append(au)

14: end if

15: end for

16: end for

3.3 Implementation of Merge Algorithms

3.3.1 Software Implementation. We propose two Merge decision algorithms for software
implementation running on the processor to oversee hardware AUs, the Distance-based and the
Ratio-based algorithms.

Distance-based Merge Algorithm. This method uses the Hausdorff distance to determine whether
two neighboring AUs should be merged into a single AU. If the Hausdorff distance between two
sets of active events from two AUs is less than a threshold value, then a Merge operation will
be carried out. The Hausdorff distance is effective in evaluating the distance between two sets of
points, defined as

H(A,B) = max(h(A,B), h(B,A))
h(A,B) = maxminlla— b, (8)
acA beB
where || - || denotes the L2 norm and A and B are two set of points.

Ratio-based Merge Algorithm. This Merge algorithm decides whether to merge two neighboring
AUs based on the ratio of ToM. If the [oM ratio is larger than a threshold value, then the neighboring
AUs will be combined. The IoM ratio is defined as the overlapping area over the minimum area of
ith and jth AUs, which can be written as

IoM = (area(i) N area(j))/min(area(i), area(j)), 9)

where area(-) returns the bounding box area of an AU.

When two AUs are decided to merge by the algorithms, the events in the Active Event FIFO
from both AUs will be joined and sorted based on the timestamp. Since old events have a larger
timestamp, sorting the aggregated events maintains the First-In, First Out order of events in the
new AU, and old events can also shrink properly. When two AUs are merged, it is very likely that
they have paid attention to similar events for a period of time. As a result, identical events captured
by two AUs should also be reduced. After reducing duplicated events, the new AU can operate as if
it captures these events by itself throughout the tracking history. Algorithm 3 shows the example
pseudo code of the Ratio-based Merge algorithm.

3.3.2  Hardware Implementaion. Besides software-based Merge, we also implement a hardware-
based Merge with the Ratio-based Merge decision algorithm. As Merge can happen on any
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Fig. 7. Overall system diagram with hardware implementation of Merge operation. The hardware Merge
unit is mainly composed of a Merge Scheduler, a Merge Decision Unit, and an Event FIFO Merger. The
Merge Scheduler iterates through all possible combinations of AUs. In each iteration, the Merge Scheduler
selects two AUs (marked as ith, jth) for Merge Decision Unit to decide whether to be merged, also used in
Algorithm 3. If the Merge condition is satisfied, then the captured events will be merged by the Event FIFO
Merger.

combination of two AUs (as shown in Algorithm 3), the complexity is O(n?), where n is the
total number of AUs. When the number of AU increases, the time spent on the Merge operation
grows quadratic and can possibly be the bottleneck running on PS. In that case, a hardware-based
Merge unit can help to eliminate this bottleneck. In addition, implementing a hardware Merge
unit not only parallelizes some of the computation but also saves the frequent IO between PS
and PL to synchronize the AU status during Merge. Figure 7 shows the overall system diagram
that incorporates a hardware Merge unit on top of the FiIro-oNLY implementation. By using the
Frro-oNLy implementation, we only need to aggregate the Active Event FIFOs of two AUs. The
hardware Merge unit is mainly composed of three different parts: (1) Merge Scheduler, (2) Merge
Decision Unit, and (3) Event FIFO Merger.

Merge Scheduler. The Merge Scheduler will schedule all the possible combinations of active AUs
one by one to the Merge decision unit to decide whether to perform a Merge. For example, if all the
AUs are active, then there will be in total C(n, 2) = n(n —1)/2 possible combinations. After a valid
Merge is carried out, the aggregated events will be placed in one AU while the other will be deleted.

Merge Decision Unit. We implement the Ratio-based Merge algorithm on hardware as mentioned
above. This decision algorithm uses the bounding boxes of two AUs to calculate their IoM ratio. If
the IoM is larger than a given threshold, then two AUs will be merged. Computing the bounding
box of an AU is realized as finding the minimum and maximum locations of the x- and y-axes
of all the events in an Active Event FIFO. Figure 8(a) shows the hardware implementation of the
bounding box unit. It iterates all the events one by one and compares each x, y value with current
min/max values in the registers. Each AU is equipped with one bounding box unit, and they can
operate in parallel. When the Merge Scheduler selects ith and jth AUs in a round, the Merge
Decision Unit will compute the IoM value using Equation (9). If the IoM is larger than the threshold,
then these two AUs will be merged by the Event FIFO Merger.

Event FIFO Merger. If the decision unit decides to merge the ith and jth AUs, then the Event FIFO
Merger will merge the corresponding Active Event FIFOs. Since all the events are sorted in the time
dimension in the Active Event FIFO, the Event FIFO Merger can compare the timestamps of two
events from 2 AU one by one and output the one with the smaller timestamp first to maintain the
sorted pattern. This procedure is similar to the merge phase of merge-sort algorithms on the time
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Fig. 8. (a) Hardware bounding box unit. (b) Event FIFO Merger that merges two Active Event FIFOs.

ALGORITHM 4: Split Algorithm

1: for i = 0 : Number of AUs do

2 clusters = DBSCAN(AUs[i].efif o)

3 if Number of clusters > 2 then

4: for all event cluster in clusters do
5 amap = [W, H]

6 for all e in event_cluster do

7 Expand(amap, e)

8 end for

9: au = new AU(event_cluster, amap)
10: AUs.append(au)
11: end for
12: Delete AU s[i]
13: end if

14: end for

dimension. Similarly to the software implementation, the Event FIFO Merger should also need to
reduce the duplicated events from two AUs in the pipeline. If the events from the two AU FIFO
are the same, then both events will be popped out from the FIFO and only one copy of it will be
written out. Figure 8(b) shows the diagram of the hardware Event FIFO Merger.

3.3.3  Applicability of Different Merge Implementations. In its basic form, the hardware AUs on
the PL process raw events from the sensors, and the CPU on the PS side carry out high-level
Merge/Split decisions to manipulate the hardware AUs status. In some demanding cases where
having a large number of AUs, the hardware implementation of the Merge algorithm can offload
the computation to PL and further improve the system performance. Results show that the hard-
ware Merge unit can achieve 95X faster than the software version in worst-case latency with
11 AUs configuration. More results will be discussed in Section 4.4.2.

3.4 Implementation of Split Algorithms
In REMOT, we employ two Split algorithms to decide whether to partition an AU: a density-based
Split algorithm and a hierarchy-based Split algorithm. Each attention region of the separated AU
is reconstructed using the new clustered events. In the current design, we only have the software-
based implementation of the Split algorithms.

Density-based Spilt Algorithm. It uses the density-based spatial clustering of applications
with noise (DBSCAN) algorithm [14]. DBSCAN describes the spatial density of a location by the
number of points in a given neighborhood radius. The points in high-density regions are clustered
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together. If the active events of one AU have at least two clusters, then the AU will be split, shown
in Algorithm 4.

Hierarchy-based Spilt Algorithm. This method utilizes the Hierarchical Agglomerative Clus-
tering (HAC) algorithm [31], which builds a hierarchy of clusters to split events. HAC aggregates
events from clusters, starting from one event per cluster. Two nearest clusters are merged into
one at each iteration, until all the events are amalgamated into one cluster, forming a hierarchy of
clusters. If the last two clusters are too far apart to merge, then the events will be split.

3.5 Dynamic Power Saving

Energy efficiency is one of the unique advantages of DVS as it only produces events when there are
dynamic activities in the scene. In real-world applications, the system may want to save its energy
by running in power saving mode when there is no outstanding activity happening for a period of
time. For example, in a traffic monitoring system, there can be few cars late at night. A traditional
frame-based system still needs to process frame by frame regardless of whether the traffic is heavy
or not. However, in an event-based system, both sensing and processing stages can conserve a lot
of energy during the low-activities period thanks to the working principle of event cameras. Thus,
in this work, we propose two different mechanisms that allow the system to dynamically adjust the
number of active AUs to achieve a better tradeoff between energy efficiency and tracking abilities.

3.5.1 Adjust by Inactivating AUs. One of the strategies is to dynamically inactivate AUs without
changing the configuration of PL. This is done by applying a mask on the hardware AUs that blocks
some of the AUs from processing new events. When an AU is flagged as inactive by the mask, it
will no longer read new events and carry out Expand/Shrink operations anymore. This can save
a certain amount of dynamic power consumption. Figure 9(a) illustrates the procedures of this
method. The controller first reads the current status of all the AUs and chooses some idle AUs
to inactivate. Then it deletes the chosen AUs in the buffer and sends a mask to PL. Finally, the
hardware AUs that are flagged as inactive stop processing new events.

The advantage of this approach is that the time spent on inactivating/activating hardware AUs
can be very short, because the PS only needs to send a mask signal through the control interface.
However, it cannot achieve 100 % of power saving, since the inactivated hardware AUs can still
consume a certain amount of static power.

3.5.2 Adjust by Reconfiguring PL. At the other extreme, we also propose another method that
can fully save the power on hardware AU by reconfiguring the PL with fewer AUs. This is at
a cost of spending a longer time in switching the configuration of hardware. Figure 9(b) shows
the procedures of this method. This requires users to synthesize all the bitstreams with different
numbers of hardware AUs beforehand. During runtime, the controller running on the PS first
stashes all the status and information of hardware AUs in the memory, e.g., Active Event FIFOs and
AMAPs. Then it reprograms the PL by downloading the bitstream corresponding to the targeted
number of hardware AU instances. Finally, all the buffered data are written back to PL, and the
system continues to run. In this way, more power can be saved on the PL side, but it also takes
longer to reconfigure. These two methods together lead to a tradeoff between power efficiency
and configuration overhead.

3.5.3 Applicability of Different Power Saving Strategies. The two dynamic power saving strate-
gies of hardware AUs together form a tradeoff between configuring latency and power saving rate.
In general, Inactivating AUs can respond faster while reconfiguring PL saving more power per AU.
More discussion on the results and tradeoff will be in Section 4.5. In real-world applications, the
power saving decision should cooperate with the other algorithms that can predict the maximum
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Fig. 9. (a) Power saving by deactivating idle AUs. (b) Power saving by reconfiguring PL with fewer AUs.

number of objects throughout different time periods and decide the frequency/strategy to perform
power saving.

4 RESULTS
4.1 Datasets and Evaluation Metrics

We evaluated the proposed algorithms on three event camera datasets. The first one is a 10-s seg-
ment from the open source data shapes_6dof [30], and the other two datasets, inbound traffic, and
outbound traffic, are captured by ourselves that shows the inbound and outbound traffic respec-
tively. The data were captured using a DAVIS 346 camera [7] that produced simultaneous events
and image frames. The ground-truth bounding boxes for object tracking were manually labeled
using frame-based images.

To evaluate tracking performance, we use HOTA [28], which is the default metric for multi-
object tracking in many frame-based object tracking benchmarks including MOTChallenge
MOT20 [12] and KITTI MOTS [18]. HOTA is a unified metric that evaluates both detection and
association accuracy of an algorithm as follows.

Detection accuracy measures the alignment between the predicted bounding boxes and the
ground-truth bounding boxes:

|TPy|
DetA = DetA, = . (10)
0<a<l 0<a<1 [TPa| + [FPg| + |[FNg|

where |[TP,|, |[FP,|, and |FN,| refer to the numbers of true positives, false positives, and false
negatives, with Intersection over Union (IoU) between predicted and ground-truth bounding
boxes larger than the minimum match threshold «.
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Association accuracy measures the alignment between the predicted track and the ground-truth
track:

1 ITPAG |
AssA = AssAy = = - = (11)
b<as1 TP | sz [TPAG] + [FPAG | + [FNAG]

where c is a given true positive, & is minimum IoU, and [TPA¢, |, [FNA¢, |, and [FPA{, | correspond to
the size of true-positive association, false-negative association, and false-positive association.
HOTA unites detection accuracy and association accuracy:

HOTA = f HOTA,, = f \/DetAg - AssAg. (12)
0<a<1 O<a<1

4.2 Hardware Implementation Results

4.2.1 Hardware Experiment Setting. In this section, we present the results of the hardware im-
plementation of REMOT. A series of HW/SW experiments were carried out to demonstrate the
multiple design tradeoffs in accuracy, throughput, resources, and power. To demonstrate the flexi-
bility and scalability of REMOT, we implemented multiple REMOT configurations on two embed-
ded FPGA platforms: PYNQ-Z2 (Zynq 7Z020) and Ultra96 (Zynq UltraScale+ MPSoC ZU3EG). In
addition, a software-only baseline of the proposed algorithm was implemented on the processor
of Ultra96 (Arm CORTEX-A53) for performance comparison.

The power consumption was measured using a power source connected to the development
board, which reflects the total power consumption for the system. Specifically, we set the voltage
of the power source and observed the stable current value of the power source in a continuous
input test. In Section 4.5, we also measured the fine-grained power consumption on the PL side
only through the PMBus rails on Ultra96.

4.2.2  Performance Comparison between FPGA and CPU. Figure 10(b) shows a general picture
of the different performance models of CPU and FPGA for low-level event processing (Expand and
Shrink). Both FPGA and CPU results were measured on Ultra96. The Firo-oNLy implementation
was used for FPGA results, and the throughput was measured on the development board after
synthesis, place, and route with different numbers of AUs deployed. According to Figure 10(b), the
parallel hardware AUs on FPGA achieve a comparable performance across different AU numbers,
while the processing throughput of the CPU decreases dramatically as the number of AU increases.
Even though the throughput of FPGA does drop slightly owing to lower PL clock frequencies as
the resource utilization increases for more AUs, the speed-up continues to grow and achieves
up to 44X. The results demonstrate our hardware architecture in REMOT can lead to a scalable
performance in low-level parallel event processing. In terms of power, the CPU implementation
has a relatively static power consumption of 4.64W while the FPGA implementation with 13 AUs
runs at 5.45W, resulting in 35.4X improvement in terms of power efficiency (Meps/W).

At the same time, more AUs means more capabilities to potentially track objects at the same time.
Figure 10(a) shows the tracking results on different datasets versus the maximum AU allowed. It
points out the fact that if the CPU-only implementation wants to achieve higher tracking accuracy
by using more AUs, then it cannot meet the real-time throughput requirement (>0.3 Meps) for
event processing.

Generally, for a given dataset, the accuracy will saturate at some points depending on how
many objects would appear at the same time. In our case, 10 AUs would be sufficient for all three
datasets. However, this result might not genuinely reflect the situation for other scenarios, e.g., a
heavier traffic scene. The purpose of Figure 10(a) is to illustrate the important accuracy-resource
tradeoff affected by the maximum number of AUs allowed. If more AU can be deployed under
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Fig. 10. Hardware Implementation. Panel (a) shows MOT accuracy with a different maximum number of AUs
on three datasets; panel (b) compares performances between CPU and FPGA; panel (c) presents final per-
formances for the three implementations on Ultra96 and PYNQ-Z2; panel (d) captures throughput-accuracy
tradeoff for HASH-AMAP and FuLL-AMAP implementations; panel (e) shows throughput-resource tradeoff for
Firo-onLy; and (f) illustrates accuracy degradation for different hash-table configurations.

given resource constraints, then a higher multi-object tracking accuracy can be expected to some
extent.

4.2.3  Tradeoffs in Different Hardware Implementations of AU. In this section, we present some
detailed discussions on implementation results with different design tradeoffs.

Tradeoffs in Throughput. For the attention-map-based implementations (FuLL-aMAP and HasH-
AMAP), throughput is bounded by sequentially updating the attention region. Figure 10(d) demon-
strates this accuracy-throughput tradeoff with different Expand and Shrink size d shown in
Figure 4. The results were obtained based on the shapes 6dof dataset, while the throughput is
calculated using Equation (2) assuming a 300-MHz clock frequency. As shown in Figure 10(d), the
optimal value of d is 11 for the shapes_6dof dataset, leading to 1.04 Meps throughput.

The Firo-oNLY implementation has a different throughput tradeoff compared with attention-
map-based design, which is determined by how fast it can traverse through the entire FIFO as
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Table 2. Resource Utilization When Maximum Number of Hardware
AUs Are Instantiated

DSP | LUTs | BRAM FF Freq (MHz)

PYNQ-Z2 220 | 53200 280 106400

FuLL-amapr 1% 20% 77% 14% 125
HasH-AMAP | 5% 28% 80% 20% 125
Firo-onNLY 0% 20% 96% 13% 125
Ultra96 360 | 70560 432 141120

FuLL-amapr 1% 14% 96% 9% 300
HasH-AMAP | 5% 26% 87% 5% 300
Firo-onNLY 0% 22% 99% 14% 250

described in Equation (7). The throughput grows linearly with the FIFO partition factor while the
BRAM usage for the FIFO also increases. Figure 10(e) shows the theoretical throughput and the
maximum number of AUs that can be deployed on Ultra96 with respect to different FIFO partition
factors. The depth of the Active Event FIFO is set to 1,024 in the experiments. As marked by the
dashed line in Figure 10(e), if the partition factor is 16, then we can embed around 12 AUs with
3 Meps throughput, which is close to the final implementation result shown in Figure 10(c).

Tradeoff in HAsH-AMAP Design. Another accuracy-resource tradeoff exists in HASH-AMAP imple-
mentation. As discussed in Section 3, the HasH-AMAP leverages the intrinsic sparsity in attention-
map to save on-chip memory consumption. However, it also brings in a new problem of hash
collision that can potentially flaw the attention map. Figure 10(f) shows the accuracy degradation
for different hash table configurations on shapes_6dof. The accuracy would hardly drop when the
number of entries exceeds 4,096 compared to a full attention map. The results also show that using
both more slots and hash table entries can benefit the accuracy. However, since the total hash table
size is the number of entries times the number of slots per entry, increasing the entries number
seems to bring more marginal benefits as shown in Figure 10(f). However, this is an empirical con-
clusion that only reflects the overall effects of our hashing function, data accessing pattern, and
collision handling strategy. In the final implementations with a conservative configuration (8,192
X 1), the HAsH-AMAP enables around 4X more AUs to be deployed compared to the FuLL-AMAP as
shown in Figure 10(c). In this way, more potential objects can be tracked with more hardware AUs

deployed.

4.2.4  Scalability and Power Consumption. In the final deployment, we devise three different im-
plementations on both PYNQ-Z2 and Ultra96 and measure their throughput and power consump-
tion. The internal AU configurations are identical for Ultra96 and PYNQ-Z2, leaving the available
hardware resources to determine the maximum number of AUs. The final hardware AU quanti-
ties as well as the corresponding throughput and power consumption are shown in Figure 10(c).
Table 2 lists the detailed resource utilization of different implementations. In general, our design
shows high scalability. The Ultra96 development board has 54% more on-chip BRAM compared
to PYNQ-Z2, resulting in around 60% increase in the maximum number of AUs deployed. The
throughput on Ultra96 is also higher than the corresponding version on PYNQ-Z2 for a higher
clock frequency after place and route.

4.3 MOT Performance

Table 3 summarizes the tracking accuracy of REMOT as measured by the HOTA metrics while
Figure 11 shows the visualization of tracking results. Specifically, the results were produced under
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Table 3. Tracking Results and Data Rates on Different Datasets

inbound | outbound
shapes_6dof traffic traffic
Detection Accuracy (%) 70.4 50.9 39.0
Association Accuracy (%) 76.3 58.0 47.8
HOTA (%) 73.2 54.3 43.1
Average Event Rate (Meps) 0.30 0.26 0.22
Peak Event Rate (Meps) 2.16 1.03 0.84
Frame: 30/230 E§ RREEEN L e 4 ;1023 | 72 @

(a) shapes_6dof (b) inbound traffic (c) outbound traffic

Fig. 11. Visualization of tracking results. The left-hand side of each figure shows the events accumulated
from the 40 ms prior to the corresponding image frame and tracking results from REMOT. The right-hand
side shows the corresponding image frame with the ground-truth bounding boxes.

the distance-based Merge algorithm and DBSCAN Split algorithm. Overall, REMOT performed
best with the relatively simple shapes_6dof benchmark followed by the more complex real-world
benchmark of inbound traffic and outbound traffic. Real-world challenges such as the presence of
shadows, which the AUs regard as part of a vehicle but the human-produced ground-truth labels
did not, caused mismatched bounding box calculations. Furthermore, vehicles movements, such
as when individual cars begin to merge in outbound traffic or when cars emerged from afar in
inbound traffic, challenge our current simplistic AU Merge, Split, and Expand/Shrink actions.

We further compared the performance of REMOT against three related works that addressed
similar event-based MOT challenges and have reported results using shapes_6dof, as shown in
Table 4. E-MS [5] tracks objects by cluster events, while ETD [9] and RMRNet [8] accumulate
events and reconstruct 2D representations that allow other frame-based algorithms to be applied.
Typically, RMRNet uses a Convolution Neural Network and LSTM to perform end-to-end object
motion regression, and both ETD and RMRNet are implemented on GPU. Without access to the
source code of ETD and RMRNet, we instead evaluated REMOT using the specialized metrics em-
ployed in these two papers, namely, average precision (AP), (also known as average overlap rate
in Reference [8]) and average robustness (AR) with our segment from shapes_6dof. The HOTA
value for E-MS was produced by evaluating their released source code using our segment from
shapes_6dof. Minimum enclosing bounding boxes were created based on the segmented clusters

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 4, Article 58. Pub. date: September 2023.



A Reconfigurable Architecture for Real-time Event-based Multi-Object Tracking 58:21

Table 4. Comparison Results with Other Methods on
the shapes_6dof Dataset

Metrics | AP (%) | AR (%) | HOTA (%)
[5] E-MS 61.2 66.8 40.2
[9] | ETD 80.9 | 99.8 N.A.
[8] | RMRNet | 86.6 | 98.0 N.A.
REMOT 76.5 94.3 73.2
1.0 40 40 0.8
| T 23 535
’ £ £30 o7
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loU threshold distance threshold in merging IoM threshold in merging

(a) (b) (©)

Fig. 12. MOT results on different Merge/Split algorithms. (a) Decomposed accuracies using two Split algo-
rithms of DBSCAN and HAC, with the changes of minimum loU between tracked and ground-truth bounding
boxes. ((b) and (c)) Accuracy varies as the changes of Expand/Shrink parameter (vertical) and Merge param-
eter (horizontal). Both y-axes are the size d of Expand and Shrink. The x-axis of (a) is the maximum distance
of Merge, and x-axis of (b) is the minimum loM ratio of Merge.

of events per frame and were labeled with the corresponding segment color for association. The AR
and AP values for E-MS were reproduced from Reference [8]. Results show that REMOT performs
better than E-MS across all three metrics but is shy of achieving the same performance as ETD and
RMRNet in the AP and AR metrics. Nevertheless, REMOT was able to achieve such accuracy in
real time while consuming only a fraction of power (<5.5 W) using low-end FPGA-based HW/SW
systems. Both ETD and RMRNet use NVIDIA GTX 1080 GPU and require 21.97 and 38.75ms to
track one object per frame.

4.4 Flexibility of the High-level Merge/Split Algorithms

As described in Section 3, REMOT decouples the low-level event processing from the high-level
vision decision in a hierarchical way. The high-level Merge/Split algorithms can be highly flexible
and modular in two aspects. On the one hand, Merge/Split can be highly modular by assembling
and combining with different decision algorithms. On the other hand, our reconfigurable architec-
ture allows some of the algorithms like Merge to be implemented either on PS or PL to achieve
different performance tradeoffs.

4.4.1  Performance of Merge/Split on PS. In its basic form, when implementing the Merge/Split
algorithms on the processing system, they can be highly modular. For example, Figure 12(a) shows
the decomposed accuracies of shapes_6dof dataset under two different Split algorithms. The solid
lines are the accuracies using the DBSCAN Split algorithm, and the dash lines correspond to the
HAC Split algorithm, both combined with the Distance-based Merge algorithm. Results show that
the software under different configurations can exhibit different performances in detection and
association.
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Fig. 13. Latencies of Merge and Split get longer as the maximum number of AUs increases (a) Accuracy drops
slightly as the time interval of Merge and Split operations is prolonged (b).

Figure 12(b) and (c) also demonstrates the performance of the two Merge algorithms, Distance
based and ratio based, assuming the same DBSCAN Split algorithm. The colors of Figure 12(b)
and (c) indicate the HOTA value. The y-axes of the figures are the Expand and Shrink size d. The
x-axis of Figure 12(b) is the maximum distance to merge neighboring AUs, and the x-axis of the
Figure 12(c) is the minimum IoM threshold to merge AUs. Since the size d is a hardened hardware
parameter, Figure 12 brings in additional variability on the software side to explore a better overall
tracking performance.

When implementing the high-level vision algorithms on the PS, it can process at a lower
rate than conventional frame-based vision algorithms. Normally, frame-based tracking algorithm
would process each frame one after another. The real-time requirement for these algorithms is that
the processing frame rate should be higher than the frame rate of the camera, e.g., 25 fps. However,
in REMOT, since the low-level hardware AU is continuously tracking the dynamic scene in real
time, the high-level Merge/Split software does not necessarily need to operate at a fixed frame
rate similar to a frame-based camera. Figure 13(a) shows the average latencies of Merge and Split
operations, measured on Ultra96 using the shapes_6dof dataset. As the maximum number of AUs
grows, it takes longer to perform a Merge/Split operation for all AUs. If using 25 fps as require-
ment, then the maximum number of AUs cannot exceed 11. However, Figure 13(b) shows that
the tracking accuracy would hardly dropped even when the Merge/Split happens every 6 frames
(240 ms). This brings much room for tolerance to a low-end processor on edge platforms.

4.4.2  Performance of Hardware Merge. As described above, the system has a certain degree of
tolerance in latency of Merge and Split depending on the actual application scenario. However,
since the complexity of software Merge is O(n?), it can still potentially be slow, especially with a
large number of AUs. Fast Merge operations are needed to ensure AUs can be merged efficiently
in high-activity scenarios. For that, we explore the benefit of accelerating Merge operation with
hardware.

Table 5 summarizes the hardware resource consumption of the hardware Merge unit. It is based
on the FIro-oNLY implementation on Ultra96 and has an identical implementation configuration
used in Section 4.2. Since hardware-based Merge requires additional hardware resources, the max-
imum number of AU that can be deployed on Ultra96 decreases from 13 to 11. Compared to the
11-AUs baseline, there is 41%, 4%, and 67% additional resource consumption on LUTs, BRAM, and
FF introduced by the Merge unit.

To evaluate the performances of the hardware Merge unit, we compared the worst-case latency
between the software and hardware Merge. This is under the consideration that at the application
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Table 5. Performance of Hardware Merge Using FiFo-oNLY Implementation on Ultra96

Number Event Processing Worst Case
of AUs DSP | LUTs | BRAM | FF Thoughput Latency of Merge PL Power
w.o. HW Merge 11 0 14,374 364 17,886 2.98 Meps 28.5 ms 1.28 W
w. HW Merge 11 0 20,363 378 29,799 2.90 Meps 0.3 ms 1.41W
Software
Merge

merge AUs

Hardware == bbox
Merge == 10
0 5 10 15 20 25

Latency(ms)

Fig. 14. Breakdown latency of software/hardware Merge.

level, e.g., running a shapes_6dof dataset, the number of valid Merge and the number of events in
the Active Event FIFOs can be completely random. As a result, it is difficult to quantitatively ana-
lyze the performances. Thus, to ensure a controllable comparison, we used the worst-case scenario
with artificial data for both hardware and software Merge and measured their execution time. The
worst case corresponds to the situation when all the AUs need to merge together and all the Active
Event FIFOs are completely occupied. The hardware execution time is then measured by writing
artificial data to hardware Active Event FIFOs and directly performing Merge without any event
input. In general, the hardware Merge unit can achieve 95x faster compared to the software-based
Merge as shown in Table 5.

Figure 14 shows the breakdown latency of Merge in the worst-case scenario. Since software
Merge requires reading and writing hardware Active Event FIFO before and after Merge, it also
introduces a significant portion of time on IO between PS and PL. The IO portion in Figure 14 also
includes the time to encode/decode data during PS-PL communication. When the Merge operation
ismoved to hardware, these IO can be saved. The hardware Merge unit can also accelerate decisions
by using distributed bounding box units and also leverage a dedicated pipeline to perform FIFO
merging. In terms of dynamic power consumption, the hardware Merge unit only results in 10%
additional power on PL.

4.5 Tradeoffs in Power Saving Strategies

To improve the power efficiency of the system when there are few dynamic activities in the scene,
we provide two additional power-saving methods on the hardware by inactivating AUs or recon-
figuring PL. Figure 15 shows power consumption versus the number of active AUs using these
two methods. The PL power reflects peak power consumption measured by PMBus rails. Results
show that reconfiguring the PL with different numbers of AUs can achieve the best power effi-
ciency with an estimated 77-mW power reduction per AU. At the same time, it can also benefit
from the higher throughput processing rate with fewer maximum number of AUs on PL as shown
in Figure 10(b). However, this is at a cost of a longer adjustment time to reconfigure the entire PL,
which takes around 640 ms as shown in Table 6.

However, inactivating AUs can provide timely responses to the adjustment request within
around 1 ms without reconfiguring the PL while there is some additional power consumption on
the inactivated hardware AU instances. Results show that an estimated of 77-mW power can be
saved by inactivating one AU. Besides, the event processing throughput of this method is also fixed
at 2.82 Meps.
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Fig. 15. Dynamic power vs. number of active AUs on two different power saving strategies. The two lines
are fitted using linear regression.

Table 6. Comparing Two Power-saving Strategies

Latency of | Estimated power | Event Processing
adjusting AUs | saved per AU Throughput
Inactivate 1.1 ms 59 mW 2.82 Meps
Reconfigure 640 ms 77 mW 2.91-3.93 Meps

5 LIMITATIONS AND FUTURE WORK

While our current design of REMOT works well with our target dataset, it has several limitations
we plan to address in the future. First, the current REMOT algorithm can only track objects against
a clean background that does not produce excessive events. Also, our MOT algorithms currently
cannot handle occlusion well when the tracks of two objects cross. Finally, our proposed algo-
rithms include many heuristic parameters that are sensitive to specific scenarios. For instance, the
Merge/Split decision thresholds, the Expand/Shrink radius, and so on. In the future, we intend
to develop learning-based algorithms that take advantages of the partial information collected by
each AU to guide their Merge and Split operations so they can be aware of occlusions and adapt
to changing scenarios.

6 CONCLUSIONS

In this article, we have presented REMOT, a reconfigurable hardware-software architecture and
a family of multi-object tracking algorithms that run on this system. By partitioning the MOT
task to operate in both hardware and software, we demonstrated that real-time performance can
be achieved even on modest edge FPGA platforms when tested on real-world DVS datasets. The
modular design of REMOT allows different parts of the algorithm to be implemented in either
hardware or software for the tradeoff among power, performance, and accuracy. The superior
power efficiency of REMOT has been demonstrated with multiple implementations on FPGAs, al-
lowing REMOT to be deployed in real-world edge scenarios with stringent power and performance
constraints.
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