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Visual sensors, including 3D light detection and ranging, neuromorphic
dynamic vision sensor, and conventional frame cameras, are increasingly inte-
grated into edge-side intelligent machines. However, their data are hetero-
geneous, causing complexity in system development. Moreover, conventional
digital hardware is constrained by von Neumann bottleneck and the physical
limit of transistor scaling. The computational demands of training ever-growing
models further exacerbate these challenges. We propose a hardware-software
co-designed random resistive memory-based deep extreme point learning
machine. Data-wise, the multi-sensory data are unified as point set and pro-
cessed universally. Software-wise, most weights are exempted from training.
Hardware-wise, nanoscale resistive memory enables collocation of memory and
processing, and leverages the inherent programming stochasticity for gen-
erating random weights. The co-design system is validated on 3D segmentation

(ShapeNet), event recognition (DVSI28 Gesture), and image classification
(Fashion-MNIST) tasks, achieving accuracy comparable to conventional sys-
tems while delivering 6.78 x /21.04 x /15.79 x energy efficiency improvements
and 70.12%/89.46%/85.61% training cost reductions.

The burgeoning field of intelligent machines has seen a rapid
integration of diverse visual sensors such as conventional frame
cameras, light detection and rangings (LiDARs), and dynamic
vision sensors (DVS). These sensors enable machines to better

perceive and comprehend the surrounding environment. How-
ever, the data generated by these sensors can exhibit consider-
able heterogeneity. Specifically, frame camera-derived images
embody grid structures, whereas LiDAR-derived point clouds are
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irregular, unordered’. DVS output is characterized by asynchro-
nous and sparse event streams?.

Consequently, this significant dispersion in data structure leads to
huge complexity and segregation in algorithm design, training strat-
egy, and hardware optimization, making the system development
extremely costly for edge-side intelligent devices**. This complexity is
further exacerbated by the exhaustive training required for each data
modality. Although efforts have been made to unify the processing of
point cloud, event data, and images using CNNs® or transformers®, they
lead to information degradation (e.g., for converting event data) or
memory cost (e.g., for voxelizing the 3D point cloud)”*, not to mention
their prohibitive training complexity.

The performance of the multi-sensory intelligent machine is fur-
ther limited by its hardware. Conventional digital hardware—currently
the de facto platform for most machine learning software—suffers
from drastic energy inefficiency, which can be fatal for edge-side
intelligence machines. The separation of the processing and memory
units in conventional digital hardware, known as the von Neumann
bottleneck, results in heavy data traffic between the two units, con-
tributing a considerable amount of energy consumption of Al
algorithms’. In addition, the size of complementary metal-oxide
semiconductor (CMOS) is approaching its physical limit, causing the
slowing down of Moore’s law and limiting the further fundamental
improvement in the energy efficiency of conventional digital
hardware.

To address the aforementioned challenges, we unify the proces-
sing of heterogeneous multi-sensory data from the perspectives of
data interpretation, software design, and hardware development.

Data from these diverse sensors can be interpreted into a unified
data structure, e.g., point set, with minimal pre-processing overhead
and no information loss. Point cloud, as a collection of three-
dimensional spatial points, can be represented as a point set by nat-
ure. Event streams, by interpreting the time dimension as a spatial one,
can also be construed as a point set in (x, y, t) three-dimensional space,
with each 3D point representing an event'’. For images, each pixel is
actually a point in (x, y, grayscale) space, enabling images to be
seamlessly interpreted as a set containing these pixels as points".
Consequently, the processing of point clouds from LiDARs, event
streams from DVS sensors, and images from frame cameras can be
unified. This unification minimizes computational complexity and data
memory footprint, simplifies sensing pipeline, and reduces in-memory
hardware footprint using weight sharing, as discussed in Supplemen-
tary Note 3.

In terms of software, drawing inspiration from extreme learning
machines (ELM)™" that mimic the human neural networks, wherein
general low-level cortices are fixed, and task-specific higher-level cor-
tices exhibit greater flexibility, we propose a deep extreme point
learning machine (DEPLM). This DEPLM facilitates the processing of
varied modal data using identical software and hardware architectures
while obviating the need for tedious training, and thus the frequent
write operations on resistive memory hardware.

From a hardware perspective, we resort to an in-memory com-
puting system based on emerging memory. Such systems integrate
nanoscale resistive memory cells in a crossbar configuration, enabling
vector-matrix multiplication (VMM) via voltage-amplitude-vector
multiplying with conductance-matrix using Ohm’s law and Kirhoff’s
law. As computation is performed right where the data is stored, it
leads to minimal data traffic and energy consumption,

In addition, we leverage the programming stochasticity of resis-
tive memory to produce sparse Gaussian distributed random weights
of DEPLM, transforming the disadvantage into a benefit. The sparsity
also endows the hardware with enhanced robustness against the cycle-
to-cycle read noise in analog computing®**,

In this Article, we present such a deep extreme point learning
machine with 40 nm resistive memory array on edge learning different

data modalities. The system is evaluated on the 3D point cloud seg-
mentation task ShapeNet, the event-based gesture recognition task on
the DVSI28 Gesture dataset, and the image classification task Fashion-
MNIST. Compared to the conventional digital hardware-based sys-
tems, our co-design system achieves 6.78 x , 21.04 x , and 15.79 x
energy consumption improvements on these three tasks, respectively.
Additionally, the system achieves 70.12, 89.46, and 85.61% reduction in
training cost compared to conventional digital systems. Our work may
pave the way for future energy-efficient and training affordable edge Al
with multi-sensory data.

Results

Hardware-software co-designed deep extreme point learning
machine

Figure 1 illustrates the hardware-software co-design of the deep extreme
point learning machine. Figure 1a shows the algorithmic schematic of
DEPLM. In general, the DEPLM is composed of several layers of
mapping-aggregating operation, following the PointNet++ styled point-
based methods®**. Without loss of generality, we assume that the input
data, resembling the digit “8” in this figure, is a set of points in three-
dimensional Euclidean space S={p;|p € R3,i € {1, ...,N}}, where N is
the number of points in the set, and each point p; is represented by its
3D coordinate vector p;= (x;, ¥;, z;). The coordinate vector of each point
is first mapped to a higher dimensional feature space with a resistive-
memory-array-implemented fully connected layer W& ¢ R?*3 shown
in Fig. 1b, mathematically f, = Wp e R, where d is dimension of the
mapped space. The point feature vectors are then grouped into over-
lapping subsets according to their 3D coordinate distance (see details of
grouping in “Method”). Point feature vectors in the same subset are then
aggregated, using sum pooling, into a single feature vector representing
the information of the entire subset. The subset feature vectors form a
new point set which is the input to the next layer. After L layers of
mapping-aggregating operation, the entire point set is abstracted into a
single representation vector, which can be used for downstream tasks,
like 3D segmentation and classification in this article. The fully con-
nected layers {W'|/ € {1, ..., L}} in DEPLM are physically implemented on
the random resistive memory arrays, where L is the number of layers.
Figure 1c shows a 50 x50 sub-array of the weight matrix of a fully
connected layer. The weights follow a zero-inflated Gaussian mixture
distribution with three Gaussian sub-distributions centered at -34.12,
34.43, and 0.00, respectively. Physically, the weights are conductance
difference of two half-sparse 50 x 50 resistive memory sub-arrays, which
are stochastically electroformed to be 50% sparse. The resistive memory
conductance follows a zero-inflated Gaussian distribution with the
Gaussian model centered at ~35.85uS show in Fig. 1d (their imple-
mentation in resistive crossbar shown in Fig. le). As such, DEPLM
leverages the programming stochasticity of resistive memory in gen-
erating high density, large-scale and true random weights, and can be
robust to read noise (to be discussed in the later section). Figure 1f
shows the photo of such a resistive memory chip. Its micro structure is
shown in Fig. 1g, h, corresponding to the cross-sectional transmission
electron microscopy (TEM) of the resistive memory crossbar structure
and the composing cell, respectively (see details of the system in Sup-
plementary Fig. 1 and device characteristics in Supplementary Fig. 2).

3D point cloud segmentation

The system is first evaluated on a prominent three-dimensional point
cloud part segmentation benchmark, ShapeNet* (see Supplemen-
tary Fig. 4 for 3D point cloud classification task on ModelNet®). Part
segmentation is a challenging fine-grained 3D task to recognize a
specific part of an object to which a certain point belongs. For
example, given a 3D chair point cloud sample, the system is expected
to discern which points correspond to the chair’s back, seat, and legs.
The ShapeNet dataset contains 16 types of 3D objects that can be
segmented into a total of 50 parts. Figure 2a shows the data flow of
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Fig. 1| Hardware-software co-design the random resistive memory-based deep
extreme point learning machine. a The point set encoding process of DEPLM.
b The fully connected layer. Each three-dimensional (in the input layer in this
example) point in the point set is fed into the layer and mapped into an
n-dimensional vector. ¢ A 50 x 50 random weight matrix and its distribution his-
togram. The weight matrix is implemented using two 50 x 50 random resistive

memory arrays in (d). The matrix with red (green) bounding box represents the
positive (negative) part of the differential conductance matrix. The resistive

|
,'"““‘D—-J
i

memory conductance distribution follows a zero-inflated Gaussian distribution,
with half conductance being zero (remaining insulating). e The circuit schematic of
resistive memory crossbar array separated into the positive (red) and negative
(green) sub-arrays for the differential conductance matrix. f Optical photo of the
resistive memory chip. g The cross-sectional TEM of resistive memory array. (Scale
bar: 500 nm). h The cross-sectional TEM of a single resistive memory cell. (Scale
bar: 20 nm).

DEPLM. Given a 3D point cloud sample, the system first encodes its
feature hierarchically with the random encoder, producing a single
feature vector as the representation of the entire sample, shown in
the middle of Fig. 2a. This representation is then hierarchically
decoded to get the feature of each point (see “Method” for details of
the random decoder and Supplementary Fig. 14 for the feature of
each layer). The features are subsequently fed into a single-layered
readout map (classification head) to determine which object parts
the points correspond to. With the color of points representing their
feature distances, the output feature of the decoder shows a color
discrepancy among the points on the chair’s back, seat, and legs,
indicating the discriminative nature of the point feature in seg-
menting these three object parts. Figure 2b shows the selected fea-
ture vector of each point (each column), grouped according to its
part class. It is clear that feature vectors of points from the same

object part are similar across channels, while those from different
parts of the object are distinct (see Supplementary Fig. 5 for the
original feature vector). The readout layer segments the 3D point
cloud samples into different parts. The mean intersection over union
(mloU) of each object type is shown in Fig. 2c. The mloU of the
hardware experiment is shown in yellow bars, while that of the
software simulated DEPLM and the trainable baseline is shown in
green and blue bars, respectively. The performance of hardware
DEPLM on the majority of classes is comparable to the fully-trained
baseline and the software-simulated DEPLM, but exhibits a notice-
able decline for long tail classes like bag, car, and motorbike, due to
the cycle-to-cycle conductance fluctuation and scarcity of samples in
these classes (see Supplementary Fig. 3 for mloU distributions of the
hardware outperformed categories). The overall instance average
mloU (accuracy) of the hardware experiment is 66.28% (83.79%),

Nature Communications | (2025)16:960


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-56079-3

o

O O

-0

b 030 C Trained baseline [ ]
Software DEPM 1 I
Hardware DEPM [ ] I 3 B
025 08 1 | A I s 1 I L
[} I [ ]
[ | I i I |
S e - 020 06 I
5 2 | I
o £ 1 | ! | L
o -0.15
E 0.4
©
]
w -0.10 I I
0.2 [ |
-0.05
0.0
TETESEI Air Bag Cap Car Chair Ear Guitar Knife Lamp Lap Motor Mug Pistol Rocket Skate Table Instance
3 -0.00 plane phone top  bike board average
Point Category
e f
I DEPM
108 mmm Fully trained net.
102 |
107
= 1)
2 5
g 10! | ‘E 108
& g
O s
- |
10*
|

Resisitive Peripheral
memory  circuits

Energy breakdown

Fig. 2 | Experimental point cloud part segmentation using ShapeNet dataset.
a Segmentation dataflow of the DEPLM. The input 3D point cloud is hierarchically
encoded into a single representation vector, shown in the middle, using the DEPLM.
The representation vector is then decoded with the random decoder with skip
connection. The color of the points shows the distance of their features. b Selected
feature vectors. ¢ The class-wise mean intersection over union (mloU) and the
instance average mloU of the hardware experimented DEPLM (yellow bars), soft-
ware simulated DEPLM (green bars), and trained baseline (blue bars). The hardware
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similar to the trained counterpart and the software DEPLM on the majority of
classes. The overall instance average mloU of the hardware DEPLM is similar to that
of the trained baseline and the software simulated DEPLM. Error bar: standard
deviation over 10 runs. d Visualization of segmentation results. The color of points
indicates the part to which they belong. e Energy breakdown of the DEPLM on
inferring a sample, compared to a state-of-the-art digital system. The energy
reduction is attributed to in-memory computing with resistive memory. f Training
cost breakdown, showing complexity reduction due to random weights in DEPLM.

compared to 81.49% (92.79%) of the trained baselines and 69.14%
(86.97%) of the software simulated DEPLM (see Supplementary
Table 13 for baseline comparison). Figure 2d visualizes the segmen-
tation results. The part of a point is marked with its color (see up-
scaled simulation result on large scaled point cloud datasets in
Supplementary Table 8).

In addition to the segmentation performance, we conducted a
comprehensive analysis of our system'’s efficiency. Figure 2e shows
the energy breakdown of the DEPLM when segmenting a sample
from the ShapeNet dataset in comparison to a state-of-the-art digital
system. In our system, the VMM operations of both the random
encoder and decoder are executed on the random resistive memory.
The energy for segmenting a single 3D sample on the resistive
memory and its peripheral circuits is 218.09 nJ and 7.68 p, respec-
tively, significantly lower than that of VMM on digital system
(522.24 p)). The distance calculation occurred in point set grouping
and the final readout layer is performed on the digital component of
our hybrid system, contributing 102.45 pJ and 21.20 1 to the energy
consumption, respectively. This is consistent with the conventional

digital system (see Supplementary Note 1 for layer-wise energy
breakdown in Supplementary Note 1). The overall energy consump-
tion of the DEPLM is 13511, realizing ~6.78 ximprovement in
energy efficiency, compared to 916.08 i of the digital system. Fig-
ure 2f presents the detailed breakdown of estimated DEPLM training
complexity for a single sample, compared to a fully trained baseline.
The complexity of the forward pass is 131.40 MOPs, which is lower
than the 214.43 MOPs observed on the fully trained baseline, due to
the swapped “grouping” and “mapping” operations (see Supple-
mentary Fig. 6). The complexity of backward pass (weight update)
for DEPLM is 47.92 MOPs (11.70 KOPs), significantly lower than 385.53
MOPs (161.04 KOPs) of the trained baseline. The overall training
complexity for the DEPLM is reduced by 70.12% compared to that of
the fully trained baseline.

Event-based gesture recognition

To prove the effectiveness of the DEPLM system in event stream
learning task, the system is evaluated on the DVSI128 Gesture*® classi-
fication task. The event stream is treated as a series of 3D points within
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Fig. 3 | Experimental event-based gesture classification with DVS128 Gesture
dataset. a Samples from the DVS128 Gesture dataset. The top and bottom samples
belong to the Right-hand-wave and Left-arm-counterclockwise gesture, respec-
tively. The spatial projections and the three-dimensional spatial-temporal visuali-
zation of the input sample with 1024 events are shown in the left. The event stream
samples are aggregated into 256 and 128 points during the forward pass in our co-
design. They are finally abstracted into a single representation vector and classified
by the trainable readout layer. b Linear discriminative analysis with reduced three-
dimensional features, showing clear clustering of same category features.

Training complexity breakdown

c Distance matrix of the feature vectors in the dataset. The sub-matrices along the
diagonal show smaller distances within each class. d Confusion matrix of the
datasets, with dominating diagonal elements. e Accuracy comparison with other
software solutions. The whistle represents the standard deviation. Error bar: stan-
dard deviation over 10 runs. f Forward pass energy breakdown. The significant
reduction is due to in-memory computing with resistive memory. g Training
complexity breakdown, showing complexity reduction due to random weights

in DEPLM.

the spatial-temporal domain (see “Method” for data processing). In
Fig. 3a, we illustrate two instances from the DVS128 Gesture dataset,
showcasing the Right-hand-wave (RHW) and Left-arm-
counterclockwise (LACC) gestures. The event stream sample is fed
into three layers of mapping-aggregating operation to hierarchically
abstract its semantic feature, with the weights of mapping operations
(fully connected layers) physically implemented on random resistive
memory. A single representation vector is generated for each event
stream sample and subsequently classified by the readout layer (see
Supplementary Fig. 7 for representation vectors of all samples in the
dataset). Figure 3b shows the linear discriminative analysis (LDA) for
the representation vectors of entire datasets. Notably, the repre-
sentation vectors generated by the random resistive memory from
different gesture classes (indicated by different colors) roughly form
into separated clusters, enabling the readout map (linear classifier) to
differentiate. Furthermore, Fig. 3c presents an L2 distance matrix of

the representation vectors of samples, gathered according to their
classes. Most diagonal sub-matrices exhibit higher intensity, indicating
smaller L2 distances for intra-class features. This corroborates the
capability of random resistive memory to effectively extract features
for different gestures in the event stream. The confusion matrix in
Fig. 3d outlines classification outcomes, with the diagonals dominat-
ing. (see Supplementary Fig. 9 for unnormalized confusion matrix).
Figure 3e compares the accuracy of our hardware implemented
DEPLM with others. Our hardware DEPLM achieves 78.73% accuracy on
the DVSI128 Gesture Recognition dataset, which is slightly lower com-
pared to 83.97% (96.50%) of the software-simulated (fully trained)
version due to read noise impact (fixed weights). In comparison,
PointNet* and PointNet++* with a comparable number of parameters
yield accuracies of 89.27% and 96.46%, respectively (see Supplemen-
tary Table 14). To further demonstrate the effectiveness of the hier-
archical random projection, we conduct two ablation studies. If the
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input point set is directly abstracted with global sum pooling without
random-projection-based feature extraction, the accuracy is sig-
nificantly dropped to 22.04% (the leftmost bar). On the other hand,
when a single (instead of deep) random mapping layer is implemented,
the accuracy will also drop to 49.28% (second bar from left). These
findings show the substantial performance enhancement provided by
our model with deep (three-stage) mapping-aggregating operations.
Figure 3f shows the energy consumption breakdown, in comparison
with conventional digital hardware. The VMM and Peripheral circuits
of the system only consume 0301 and 3.84 1 per inference,
respectively, while the VMM on conventional digital hardware con-
sumes 627.73 . The distance calculation (26.92 pJ) and readout map
(55.80nJ) of our system are both on digital hardware (see Supple-
mentary Note 1 for layer-wise energy breakdown). The overall energy
consumption of our system is 31.12 pJ, compared to 654.71 ) of the
conventional digital hardware, leading to ~21.04 x energy efficiency.
Finally, Fig. 3g illustrates breakdown of training complexity of our
DEPLM compared to the fully trained network. The DEPLM leads to
4.05 x and 8500 x computation saving in forward and backward pas-
ses, respectively, and 13.20 x of computation reduction for updating
weights. Overall, our DEPLM reduces 89.46% training complexity of
the fully trained network.

Classify image as point set

The system is further evaluated on the Fashion-MNIST dataset* to
show its effectiveness on image classification tasks, as shown in
Fig. 4. Each image in the dataset is treated as a 3D point cloud
pi= (x;, y;, grayscale;), with grayscale of a pixel serving as the third
dimension alongside the x and y coordinates (see “Method” for data
processing). For each image with 28 x 28 resolution, this leads to the
creation of 784 points, which are subsequently fed into our system.
Figure 4a depicts the three stages of point mapping-aggregating that
produce 512 (middle) and 128 (right) points in the second and third
stages undergo the transformations physically implemented on
random resistive memory. The final representation vector produced
by the random resistive memory-based DEPLM encoder is then
classified into 10 classes by the readout layer (see Supplementary
Fig. 8 for representation vectors of all samples in the dataset). Fig-
ure 4b shows the linear discriminative analysis by projecting the final
representation vector into three-dimensional space. Different clas-
ses, denoted by distinct colors, are approximately mapped into dis-
tinct clusters, thanks to the random resistive memory implemented
DEPLM encoder. This indicates that representation vector produced
by DEPLM encoder can indeed be classified by a simple linear clas-
sifier (readout map). Figure 4c presents the L2 distances of repre-
sentation vectors between all samples in the dataset. In general,
diagonal submatrices exhibit brighter spots, indicating closer rela-
tionships among the intra-class representation vectors. The dis-
tances between samples from several different classes can be small,
due to their intrinsic similarity. For example, the Shirt class with the
lowest classification accuracy (53%), exhibits shorter distances to
other clothing types like T-shirt, Pullover, and Coat. Correspond-
ingly, the confusion matrix in Fig. 4d also demonstrates the elevated
likelihood of Shift class being incorrectly classified as T-Shirt (11%),
Pullover (26%), and Coat (19%), echoing their smaller inter-class
feature distances (see Supplementary Fig. 9 for unnormalized con-
fusion matrix), albeit the diagonal values are still dominating. Fig-
ure 4e compares the classification performance of our system with
software methods. Our random resistive memory-based DEPLM on
the Fashion-MNIST dataset achieves 77.20% accuracy, slightly lower
than the software-simulated (fully trainable) counterpart attains
83.62% (91.06%), due to the hardware noise (fixed random weights).
PointNet** and PointNet++> with same weight population achieve
91.34% and 90.87% accuracy, respectively, which is comparable to
the trainable DEPLM (see Supplementary Table 15. Also see up-scaled

simulation result on ImageNet-100 in Supplementary Table 8.)
Ablation studies show that directly feeding the image point set into a
global pooling layer and a readout layer only achieves 10.36% accu-
racy. In addition, if only a single mapping-aggregating layer is
implemented, the accuracy drops to 68.9%, showing the effective-
ness of our deep architecture.

Despite a slight accuracy drop compared to those software
methods, our co-design demonstrates superior energy efficiency and
training complexity. As shown in Fig. 4, the VMM on random resistive
memory only consumes 0.48 i per inference, while the peripheral
circuits only use 5.14 pJ. This leads to 118.52 x energy reduction com-
pared to the VMM on conventional digital hardware (666.36 pJ). The
distance calculation and software readout layer, both taken place on
digital hardware, consume 38.97 i and 89.26 nJ, respectively (see
Supplementary Note 1 for layer-wise energy breakdown). The overall
energy consumption of our hybrid system is 44.68 1, compared to
70542 of the conventional digital system, leading to
~15.79 x energy efficiency. Figure 4g reveals the reduction in training
complexity achieved with DEPLM. The necessity to compute gradients
using back-propagation is limited to the linear readout layer, sig-
nificantly reducing computational efforts by a factor of 8 x10* in the
backward pass. Moreover, the forward pass and weight updating
computation also diminished by 2.56 x and 12.21 x , respectively. The
overall training complexity of our system is 60.26 MOPs, while that of
the fully trained network is 418.73 MOPs, resulting in ~85.61% reduc-
tion in training cost.

Sparse resistive array for noise robustness
We further demonstrate the benefits of weight sparsity of DEPLM in
mitigating the impact of the read stochasticity (cycle-to-cycle varia-
tion) associated with nano-scale resistive memory***>*, Figure 5a
shows the conductance values of 20 resistive memory cells in 30
thousand read operations, with an averaged standard deviation of
0.27 S for these 20 devices. Figure 5b illustrates the standard
deviation map over 30 thousands read operations for a dense resis-
tive memory array (upper left) and a sparse one (upper right), and
their respective distributions (bottom). It is evident that the sparse
resistive memory array exhibits a lower average standard deviation
since half of the cells remain un-electroformed (see Supplementary
Fig. 10 for the coefficient of variation of the conductance maps). It
implies a lower overall noise disturbance of sparse resistive memory
array on the network, as the network’s weights are mapped physically
as differential pairs of two random resistive sub-arrays. Figure 5c
presents the standard deviation map and the corresponding dis-
tribution of a 50 x 50 weight matrix derived from the conductance
matrix of differential resistive memory pairs, where the distribution
of dense (sparse) weight map is depicted in blue (orange) bars. The
standard deviation of dense weights ranges between 0.32 (25%
quantile) and 0.38 (75% quantile), while that of sparse weight pre-
sents a mixture of three sub-distributions. The first sub-distribution
(zero-centered spike) represents the weights derived from the dif-
ferential pairs of un-electroformed cells. As these weights are com-
posed of two insulated cells, they barely suffer from cycle-to-cycle
variation. The second group of weights comprises differential pairs
of an insulated cell and a randomly formed cell. The third group of
weights are differential pairs of both randomly formed cells, the
same as that of the dense weights. The standard deviation distribu-
tion of these weights also coincides with that of dense weights, dis-
playing the largest standard deviation among the three groups (see
Supplementary Fig. 10 for coefficient of variation of the weight
maps). Overall, the standard deviation of sparse weights is 0.22 on
average, demonstrating an advantage over 0.36, observed on the
dense weights.

We subsequently simulated the impact of resistive memory
weight sparsity under various read noise levels on the performance of
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Fig. 4 | Experimental image classification with Fashion-MNIST dataset.

a Examples from the Fashion-MNIST image dataset. Each image from the dataset is
treated as a 3D point cloud by considering the pixel intensity as the third dimension
besides the x and y dimensions. The top three images show the spatial projections
of the point cloud of the input stage, the first and second grouping stages in the
networks. The bottom three images show the corresponding 3D perspective plots.
b Linear discriminative analysis by reducing the feature vectors generated by
DEPLM to three dimensions. Different classes roughly form into separated clusters

Training Procedure

in the space. ¢ Distance matrix. The L2 distances between feature vectors of all the
samples in the dataset. The diagonal matrices show smaller distances within the
same class. d Confusion matrix. e Accuracy comparison with other software
models. The whistle represents the standard deviation. Error bar: standard devia-
tion over 10 runs. f Energy breakdown of forward pass. The reduction roots on the
in-memory computing with resistive memory. g Training complexity breakdown.
The reduction is due to random and fixed weights of DEPLM.

the aforementioned three tasks, as shown in Fig. 5d-f. A general pat-
tern shared by all three tasks indicates that moderating sparsity on
resistive memory arrays with read noise would benefit the system
performance. It is commonly observed in these tasks that the DEPLM
with the fully dense weights is susceptible to the effects of read noise.
When the noise is less than 2%, the performance of DEPLM on DVS task
and the Fashion-MNIST task exhibits a noticeably large standard
deviation, which is reasonable as the noise on all the DEPLM weights
would cause a large accumulated deviation on multilayered VMM

results. When the cycle-to-cycle noises are larger than 4%, all three
tasks show a large drop in performance. The standard deviations are
small due to a low average accuracy. With the increase in cell sparsity
(e.g., 50%), the accuracy enhances generally on all three tasks. How-
ever, the standard deviation goes large, as the noise on the small
amount of effective weight would also cause a large deviation in sys-
tem output. With the extreme resistive cell sparsity (>90%), the per-
formances on three tasks are all dropping as the amount of effective
weight are too limited. To balance the performance on three tasks that
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on 30 thousand reading cycles of a 50 x 50 dense weight map (blue bounding box)
and a sparse weight map (orange bounding box), and their distribution. Simulated
influence of resistive memory array sparsity under different noise levels, on mloU
of the ShapeNet 3D point cloud segmentation task (d), the accuracy of the DVSI28
Gesture recognition task (e), and accuracy of Fashion-MNIST image classification

task (f). Band: standard deviation of 10 runs simulation.

share the same memory array, we choose 50% sparsity on cells of the
resistive memory array as they perform well and are stable at the
experimental cycle-to-cycle read noise level.

Discussion

In this study, we present an experimental random resistive memory-
based DEPLM, a hardware-software co-designed system for efficient
and learning-affordable point set processing, which can be used in
various edge applications such as 3D point cloud segmentation, DVS
event stream classification, and image classification. Compared to the
conventional machine learning models on digital hardware, our co-
designed system achieves energy consumption reduction of 5.90 x ,
21.04 x, and 15.79 x for the ShapeNet 3D segmentation task, DVS128
Gesture event-based event stream recognition task, and Fashion-
MNIST image classification task, respectively. Moreover, it attains
training cost reductions of 70.12%, 89.46%, and 85.61%, respectively,
compared to conventional systems. Our work may pave the way for
future efficient and affordable edge Al with multi-sensory inputs.

Methods

Fabrication of random resistive memory chips

The resistive memory array was fabricated using the 40 nm technology
node and has a ITIR structure. Each resistive memory cell was con-
structed between the metal 4 and metal 5 layers of the backend-of-line
process, comprising a bottom electrode (BE), top electrode (TE), and
transition-metal oxide dielectric layer. The BE via was patterned using
photolithography and etching, filled with TaN via physical vapor
deposition, and covered with a10 nm TaN buffer layer. Subsequently, a
5nm Ta layer was deposited and oxidized to form an 8 nm TaOx
dielectric layer. Finally, a 3nm Ta layer and 40 nm TiN layer were
sequentially deposited by physical vapor deposition to form the TE.
Standard logic process was used to deposit the remaining

interconnection metals. The cells in the same row shared BE connec-
tions, while those in the same column shared TE connections, forming
a 512 x 512 crossbar array. The 40 nm memristor chip demonstrated
high yield and strong endurance performance after 30 min of post-
annealing at 400 °C in a vacuum environment.

The hybrid analog-digital computing system

The hybrid analog-digital computing system consists of a 40 nm ran-
dom resistive memory computing-in-memory chip and a Xilinx ZYNQ
system-on-chip (SoC) integrated on a printed circuit board (PCB). The
system offers parallel 64-way analog voltages for signal inputs, gen-
erated using an 8-channel digital-to-analog converter (DAC80508,
TEXAS INSTRUMENTS) with 16-bit resolution, ranging from OV to 5V.
For signal collections, the convergence current is converted to vol-
tages using trans-impedance amplifiers (OPA4322-Q1, TEXAS
INSTRUMENTS) and read out with a 14-bit resolution analog-to-digital
converter (ADS8324, TEXAS INSTRUMENTS). Both analog and digital
conversions are integrated onboard. During vector-matrix multi-
plications, a DC voltage is applied to the RRAM chip’s bit lines through
a 4-channel analog multiplexer (CD4051B, TEXAS INSTRUMENTS) with
an 8-bit shift register (SN74HC595, TEXAS INSTRUMENTS). The mul-
tiplication result carried by the current from the source line is con-
verted to voltages and forwarded to the Xilinx SoC for further
processing. The detailed hardware comparison with recent point cloud
accelerators is discussed in Supplementary Note 4.

Grouping of the points in DEPLM

Given a point set S, we first find a subset containing P points,
Sp=1p,i€{l,..., P}} thatare farthest to each other using farthest point
sampling (FPS) algorithm, where P is a manually set hyper-parameter
These points are functioning as centers in each group. For each point
in S,, we find k-1 points that are nearest to it using the k nearest
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neighbor (kNN) algorithm, these k points are put together as a group.
By this we generate P subsets groups.

Random decoder on 3D segmentation task

The architecture of the random decoder on 3D segmentation task is
shown in Supplementary Fig. 11c. The encoder part is the same as in
other tasks. For the decoder, each feature propagation (FP) layer
(shown in Supplementary Fig. 11b) is first interpolated according to the
coordinate of its input and the corresponding encoding layer, which is
then concatenated with the feature of the corresponding encoding
layer. All weights in the decoder are physically mapped with the ran-
dom resistive memory.

Population of random weights and weight sharing

The DELPM model backbone is tailored from PointNet series*** with
compressed number of set abstraction (SA) layers and parameters
suitable for edge learning. Different from PointNet++ models, DEPLM
is an extreme learning machine, which uses resistive memory pro-
gramming stochasticity to hardware implement the random weights.
This not only turns the hardware weight mapping imprecision into a
parallel and low-cost random number generator but also harvests the
energy efficiency of in-memory computing. Supplementary Fig. 11c
shows the frozen randomly initialized blocks and trainable blocks in
processing three modal data. Specifically, the encoder and the decoder
in ModelNet segmentation (colored blocks in Figure R10) are ran-
domly initialized without being optimized. Only the final single-layered
task-specific heads (uncolored blocks in Supplementary Fig. 11c) are
trained.

Supplementary Table 6 further lists the number of parameters
being trained and frozen. For all three tasks, the number of untrained
random parameters counts for more than 90% of the total model
parameter count. Specifically, for the ShapeNet point cloud segmen-
tation task, 94.16 k out of 100.01 k parameters are set as randomly
fixed, counting for 94.15% of total parameter of the DEPLM. For DVS
classification task, 62.47 k out of 67.59 k parameters are randomly
initialized and remain fixed during training, counting for 92.60% of the
total parameters. For image classification, 91.81 k out of 100.00 k
parameters are randomly fixed, counting for 91.81% of the entire
network.

The random weights for three tasks are mapped to the crossbar in
both cross-modal and cross-layer sharing mode. See Supplementary
Note 2 for mapping layout of the models and the performance com-
parison between different hardware weight sharing strategy.

Data representation for 3D point cloud segmentation on Sha-
peNet dataset

We use a common ShapeNet configuration that contains 16,874 point
clouds, where each point cloud is sampled to have 2048 points. For
part segmentation, the ground truth of each point cloud contains 2-5
parts, with a total of 50 part classes in the whole dataset. Point cloud in
ShapeNet dataset is naturally a point set S = {py, P>, . . ., Pn}. The dataset
is split to training set and test set with 9:1 ratio. The training set is
further augmented using random scaling and random shift. The
comparison with point cloud in bird eye view image format is shown in
Supplementary Table 11.

Data processing on Event-based DVSI28 Gesture dataset

The DVSI128 Gesture dataset*® is an event-based dataset with 10 dif-
ferent types of human gestures. The dataset was captured using a
DVS128 camera** with 128 x 128 spatial resolution. We follow a similar
data pre-processing scheme used by*, that is, clipping the event
camera recordings into small segments with a time window length of
0.5 S and step sizes of 0.25 S. Before feeding into the random resistive
memory network, each segment of data is first denoised and 1024
events were randomly sampled. This is because the event camera data

is prone to be noisy, we use a simple denoising algorithm that removes
events without spatial neighbors given a time window of 0.01 S. The
(x, y, t) value in the events will then be normalized into range [0, 1] and
be used as the three coordinates in the point cloud. During the net-
work training, the point cloud input is augmented by shifting the point
cloud along a random offset within 10% of maximum ranges. The
comparison with regular frame-based event data processing is shown
in Supplementary Table 10.

Data processing on Fashion-MNIST dataset

The Fashion-MNIST dataset is an image classification dataset with 10
classes of articles of clothing. The images are in grayscale with spatial
resolution 28 x 28. To convert images into point cloud representation,
each pixel is treated as an individual point while its spatial coordinate
(x, y) and its grayscale value grayscale(x, y) are combined as the
coordinates of the points (see Supplementary Table 17 for perfor-
mance without grayscale(x, y) as additional coordinates and Supple-
mentary Table 18 for simulated performance with and without
grayscale as coordinates on ImageNet-100 dataset). The grayscale is
normalized to the range of [-1, 1]. The pixel coordinates (x, y) are
transformed to the range of [-0.5, 0.5], by dividing both x and y by 27
and subsequently subtracting 0.5. In the training process, each image
point set sample is augmented by shifting a randomly generated offset
within 10% of maximum ranges. The comparison with regular grid
image data processing is shown in Supplementary Table 9.

Data availability

All data that support the findings of this study are included in the main
text and Supplementary Information. Processed datasets can be
founded in the github repository*. Other data are available from the
corresponding author upon request.

Code availability
The code that supports the findings within this paper and other find-
ings of this study is available at the github repository*c.
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