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SUMMARY

Artificial intelligence (AI)-driven materials discovery offers rapid design of novel material compositions, yet 
synthesis and characterization lag behind. Characterization, in particular, remains bottlenecked by labor-

intensive experiments using expert-operated instruments that typically rely on electromagnetic spectros-

copy. We introduce SpectroGen, a generative AI model for transmodality spectral generation, designed to 
accelerate materials characterization. SpectroGen generates high-resolution, high-signal-to-noise ratio 
spectra with 99% correlation to ground truth and a root-mean-square error of 0.01 a.u. Its performance is 
driven by two key innovations: (1) a novel distribution-based physical prior and (2) a variational autoencoder 
(VAE) architecture. The prior simplifies complex structural inputs into interpretable Gaussian or Lorentzian 
distributions, while the VAE maps them into a physically grounded latent space for accurate spectral 
transformation. SpectroGen generalizes across spectral domains and promises rapid, accurate spectral 
predictions, potentially transforming high-throughput discovery in domains such as battery materials, cata-

lysts, superconductors, and pharmaceuticals.

PROGRESS AND POTENTIAL Recent advances in artificial intelligence (AI) have propelled materials discov-

ery by identifying unique composition pathways at unprecedented speed. However, experimental character-

ization—the step where new materials are actually tested—still lags behind. Traditional characterization 

requires specialized instruments that measure electromagnetic responses in a painstaking, expert-driven 

process. SpectroGen offers a transformative solution. By coupling physics-inspired distribution models 

(e.g., Gaussians and Lorentzians) with a robust variable autoencoder framework, SpectroGen rapidly gener-

ates ‘‘virtual’’ spectra that correlate almost perfectly with actual measurements. This approach effectively 

bridges the gap between AI-driven materials discovery and real-world verification. SpectroGen’s universal 

compatibility also makes it flexible: any spectroscopy technique that can be represented by analytic func-

tions may be harnessed within its platform.

The potential impact is substantial. High-throughput screening—vital for developing next-generation 

catalysts, batteries, superconductors, and pharmaceuticals—can now be accelerated without sacrificing 

accuracy. Researchers stand to gain significant time and resource savings, as they can prioritize the most 

promising candidate materials for detailed follow-up. This synergy of fast AI-driven discovery and swift 

AI-enabled characterization could catalyze breakthroughs vital to society, from clean energy solutions to 

advanced medical treatments. Beyond accelerating fundamental research, SpectroGen’s capacity for rapid 

prototyping and validation is poised to reshape how we innovate, ultimately translating into critically needed 

technologies that better serve humanity.
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INTRODUCTION

High-throughput materials discovery aims to accelerate the 

identification and optimization of novel materials with fit-for-pur-

pose exceptional properties. 1 However, the rate of synthesis and 

characterization of computer-generated material candidates 

remains a significant challenge to the need for speed. Spectros-

copy-based modalities are the core of materials characteriza-

tion, as they enable molecular- and atomic-level analysis. 2–5 

For example, infrared (IR) absorption reveals functional groups 

within molecules; Raman scattering provides insights into 

molecular vibrations, symmetry, and crystal structures; 6–9 

X-ray scattering determines the elemental composition; and 

X-ray diffraction (XRD) visualizes crystal structures. 10,11 

However, it is a time-consuming and expensive endeavor, 

costing up to half a million USD per equipment and domain 

expertise for data interpretation. Furthermore, samples are often 

scarce, fragile, and/or hazardous, limiting experimental interro-

gation. 12 These limitations present significant challenges to 

achieving high-throughput characterization—an essential 

element for keeping pace with the speed of computational mate-

rial generation. Thus, there is a need for a paradigm shift in how 

materials are characterized.

Conventional deep learning techniques, which focus primarily 

on classification and regression tasks, have been employed for 

performance prediction, 13 the analysis and preprocessing 

of microscopic images and spectroscopic data, 14–17 and the 

design of novel materials. 18 Furthermore, physics-informed neu-

ral networks, which embed physical principles, e.g., conserva-

tion laws, differential equations, and boundary conditions into 

the network architecture or loss function, 19 are reducing the 

‘‘black-box’’ nature of such models and enhancing interpret-

ability. Recently, generative artificial intelligence (AI) algorithms, 

such as variational autoencoder (VAE), 20 which learns a probabi-

listic representation of the data by encoding the input as a distri-

bution in the latent space, thus capturing inherent uncertainty in 

the data and enabling more accurate generation, are being intro-

duced. VAEs are ideal as compared to traditional deterministic 

methods (such as autoencoders or regression models) that 

directly map inputs to outputs: they provide a means to learn 

the uncertainty involved in the spectral transformation process, 

and unlike other generative networks (e.g., generative adversa-

rial networks [GANs]), VAEs learn the latent representation of 

the data, making them particularly suitable for applications 

where understanding the underlying data structure and gener-

ating diverse yet plausible outputs are critical. VAEs have been 

successfully used in gene editing, 21 protein design, 22 drug 

discovery, 23 and inverse design of solid-state materials. 24 How-

ever, almost all the output data from these VAE models are new 

structures for discovery applications, and implementation in 

transmodality transfer applications is yet to be demonstrated. 

Furthermore, the generated data fidelity of existing VAEs is ques-

tionable, whereas materials characterization, such as spectral 

data generation, requires high data fidelity, as the generated 

spectra need to match otherwise experimentally collected 

fingerprints. Thus, there is a need for a high-fidelity custom 

generative AI model that can address the following two critical 

challenges: (1) a computationally efficient representation of

material structure-to-characterization output pairs and (2) a sim-

ple interpretation of the said characterization output for the 

network to understand and train on. A notable example of a suc-

cessful generative AI implementation task that addressed these 

challenges is the protein structure generation tool AlphaFold, 25 

which received the 2024 Nobel Prize. Here, instead of the daunt-

ing, nearly impossible task of computing every molecule repre-

sentation and intermolecular force at play, the task of generation 

was creatively simplified to a triangle inequality problem, which 

the algorithm superbly optimized, leading to highly accurate pre-

dictions. A similar creative approach is needed for transmodality 

generation for applications in materials characterization.

Here, we introduce SpectroGen, a custom generative AI 

model that can computationally generate high-resolution 

spectra from multiple types of spectroscopic techniques using 

only a single spectroscopy modality experimental input 

(Figure 1), enabling high-throughput materials characterization. 

We demonstrate successful transmodality spectral generation 

with 99% correlation to experimental results by (1) creatively rep-

resenting spectral data as a mathematical distribution curve, 

such as a Lorentzian, Gaussian, or Voigt distribution, to repre-

sent Raman, IR, and XRD spectra instead of computationally 

dense molecular and crystal structure inputs and (2) building a 

physical-prior-informed custom variable autoencoder-based 

generative algorithm. Our model outputs spectral transforma-

tions that are both physically meaningful and computationally 

accurate, sensitively accounting for characteristics like line 

broadening, superposition, and wavenumber shifts (Figure 2). 

Our mathematical distribution-based physical priors act as 

fundamental constraints, successfully capturing the inherent 

complexity of the fingerprint, enhancing the interpretability of 

the model, and reducing its black-box nature. We demonstrate 

SpectroGen on the RRUFF dataset, 26 comprising 6,006 Interna-

tional Mineralogical Association (IMA)-approved standard min-

eral samples (Figure 1B), from which 319 IR-Raman and 371 

XRD-Raman data pairs were examined (Data S1–S4; Figure 3). 

We computed wavenumber shifts, peak heights, and the full 

width at half maximum (FWHM) of peaks to evaluate the 

accuracy of spectrum generation (Figure 4). Furthermore, we 

conducted a material source classification task to compare the 

classification accuracy of the generated spectra with that of 

experimentally collected spectra, thereby assessing the infor-

mational efficacy of the generated spectra (Figure 5; Notes S1 

and S2; Data S5 and S6). SpectroGen exhibited 99% correlation 

on peak characteristics, a root-mean-square error (RMSE) of 

0.01 on intensity (in arbitrary units [a.u.]), and a peak signal-to-

noise ratio (PSNR) of 43 ± 4 dB normalized by the peak heights, 

compared to experimentally acquired ground-truth spectra. 

Moreover, it achieves a mean classification accuracy of 

90.476% on the classification test, surpassing the 69.879% ac-

curacy obtained from experimentally acquired Raman spectra. 

Overall, SpectroGen eliminates the need for multiple time- and 

resource-intensive spectroscopic instruments, revolutionizing 

materials characterization throughput. Furthermore, by abstract-

ing spectra as ‘‘data’’ independent of physical material proper-

ties, we can decouple the generation of spectra from the 

constraints imposed by specific material behaviors or interac-

tions. This ‘‘data as a link’’ concept positions the spectral
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fingerprint as a bridge between the physical and computational 

domains, enabling SpectroGen to generate spectra with greater 

flexibility and efficiency through understanding spectra in a 

mathematical approach rather than deconstructing molecular 

structures and representations from spectra. We believe that 

SpectroGen could be transformational in bringing the much-

needed throughput to match advances in material, accelerating 

the real-life translation of efficient materials and life-saving 

pharmaceuticals.

RESULTS

SpectroGen is as accurate as experimental collection 

We demonstrate SpectroGen on the RRUFF dataset, 26 a publicly 

available IMA-approved standard mineral samples dataset, from 

which 319 IR-Raman and 371 XRD-Raman data pairs were 

examined (Data S1–S4). For the transformation from IR to Raman 

with a Gaussian distribution prior, SpectroGen precisely cap-

tures and reconstructs the information of 8 peaks in the barrerite

Raman spectrum (Figure 3B) from their respective IR spectra 

(Figure 3A). Notably, the generated barrerite Raman spectrum 

matches the respective broadening and peak height and exhibits 

a smoother waveform. Similarly, for the actinolite sample 

(Figure 3C), the generated Raman spectrum closely follows the 

peak heights, peak number, and wavenumber of the experimen-

tally collected data, with low residual values (Figure 3D). We 

evaluated the accuracy of peak positions by measuring their 

absolute peak position deviation (APPD), which all demonstrate 

low values smaller than 0.2 cm − 1 (Figures S1 and S15). As for the 

XRD-Raman transformation test, the sample spectra of clinohu-

mite show that the generated Raman spectrum precisely 

matches the peak positions and heights with lower noise 

compared to the experimentally collected Raman spectra, 

where the SNRs for the generated and experimentally collected 

Raman spectra are 11.10 and 3.11, respectively. For the demon-

stration of XRD-to-Raman transformation for cordierite, the 

generated Raman spectrum aligns with the peak heights and 

wavenumber shifts, showing low residual values. Here, we

Figure 1. SpectroGen workflow

(A) Schematic showing the flow of spectroscopic modality transfer with SpectroGen. Experimental data acquired from one spectroscopic modality are input 

into the physical-prior-informed variational autoencoder model. Mathematical distributions of the spectroscopic curve (e.g., Gaussian distribution, Lorentzian 

distribution, and Voigt distribution) are used as a physical prior to represent the input and output spectra. Spectra output from another modality is then generated.

(B) The dataset used for SpectroGen model training and testing: images of example single-crystalline materials (left) and example infrared, Raman, and XRD 

spectra data pairs for material samples (right).
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sampled four sets of results: two using a Gaussian distribution 

prior for the input of IR (Figures 3A–3D) with their corresponding 

residual value plots (supplemental methods, Equation S3-1) and 

two using a Voigt distribution prior for XRD spectra with their 

residual value plots (Figures 3E–3H; supplemental methods, 

Equation S3-3), and the complete generated spectral dataset 

is available in Data S1 and S20.

The quality of the generated spectrum was evaluated using 

spectrum-based and image-based evaluation metrics to assess 

its performance, as illustrated in Figure 4. We quantified the 

average peak height, FWHM, and SNR for all 97 and 110 test 

pairs of SpectroGen-generated and experimentally obtained 

Raman spectra in the IR-Raman and XRD-Raman datasets, 

respectively. We performed a Jensen-Shannon (JS) divergence 

test, which typically shows a relatively small value (e.g., <0.1), 

indicating strong alignment between distributions. 27 Structural 

similarity index (SSIM), RMSE, PSNR, and correlation assess-

ments were performed as part of the image-based evaluation, 

which compares graphical structure and image content. SSIM 

is a dimensionless metric ranging from 0 to 1 and can evaluate 

pixel intensity, image structure, and context similarity, which, in 

our research task, refers to the evaluation of peak height, wave-

number shifts, and noise level. The value of SSIM approaches 1

as the similarity between the two images increases. 28 RMSE is 

calculated based on the spectra intensity (a.u.), and PSNR is 

normalized by the maximum intensity on the spectrum data. A 

lower RMSE value signals a smaller difference between the 

two spectra, while a PSNR exceeding 40 dB demonstrates a 

high degree of similarity of the generated spectrum to the refer-

ence spectrum.

As shown in Figures 4A and 4D and Table S1, the average 

peak height and FWHM of the generated spectra exhibit a similar 

distribution to that of the collected spectra, with JS divergences 

of 0.11 and 0.09 for IR-to-Raman and 0.05 and 0.06 for XRD-to-

Raman tasks, respectively. Notably, the generated spectra, on 

average, possess a higher SNR compared to the experimentally 

collected spectra, which is consistent with the spectral exam-

ples provided in Figures 4B and 4E. In the residual plots, the 

generated Raman spectra exhibit small residual values, indi-

cating minimal differences from the experimentally collected 

spectra. As depicted in Figure 4B and Table S2, for the IR-to-

Raman task, the SpectroGen-generated spectrum has a mean 

SSIM of 0.96 ± 0.03, RMSE of 0.010 ± 0.006, correlation of 

0.99 ± 0.01, and PSNR of 39 ± 4 dB. The XRD-to-Raman trans-

formation task also shows similar outstanding performance. As 

shown in Figure 4E, SpectroGen displays a 0.97 ± 0.04 mean

Figure 2. Modeling strategy

(A) SpectroGen employs an experimentally derived spectrum from modality A.

(B) Physical priors are employed to deconstruct the spectral distribution and map it to latent features z via a frequency encoder q ϕ (z|x) (Methods S3). 

SpectroGen designs a probabilistic decoder p θ (y|z) to reconstruct the second (generated) spectral distribution that would have been experimentally collected 

from modality B.

(C) SpectroGen computes Kullback-Leibler (K-L) divergence to perform spectral fitting (Methods S5).

(D) The network’s fitting capabilities are fully exploited to accommodate the irregular environmental broadening present in the spectra (Methods S4).
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SSIM, a 0.010 ± 0.009 RMSE, a 43 ± 4 dB PSNR, and a 0.98 ± 

0.08 correlation. In the area under the curve (AUC) test (see 

Figures 4C and 4F), for both the IR-to-Raman task and XRD-

to-Raman task, the generated spectra are well aligned with 

experimentally collected spectra (Data S5–S9). These results 

demonstrate the exceptional similarity of the visually observed 

trajectory of the generated and experimentally obtained spectra. 

SpectroGen is able to make accurate cross-modality spectral 

generation, primarily because of two key aspects. Firstly, the 

accurate physical priors were input to represent respective 

spectra from the modalities of interest, which removes the 

original model formulation constraints of the decoder. Secondly,

the VAE backbone architecture employed was the best suited for 

matching curves. These combined strengths enable SpectroGen 

to achieve robust and precise spectral generation across diverse 

modalities.

Assessment of information transfer effectiveness via 

classification performance

To evaluate SpectroGen’s information transfer effectiveness, we 

compared its performance on a material-type classification task 

using its generated spectra versus using experimentally obtained 

spectra. The diagonal values in a confusion matrix represent the 

number of correctly classified instances for each class. Each value

Figure 3. SpectroGen accurately generates spectra across different modalities

(A and B) Demonstration of IR-to-Raman transfer test with (A) barrerite IR spectrum and its material sample photo and (B) generated (yellow) and experimentally 

collected (green, termed as ground truth) barrerite Raman spectrum, showing alignment in peak positions and lower noise. The residual plot between the 

generated and experimentally collected Raman spectra shows low residual values across the wavelength range.

(C) Actinolite IR spectrum and its material sample photo.

(D) Generated actinolite Raman spectrum and ground-truth actinolite Raman spectrum. Peaks are correctly reconstructed with low residual values.

(E–H) Demonstration of XRD-to-Raman transfer tests with (E) clinohumite-input XRD spectrum and its material sample photo; (F) the generated and experi-

mentally collected clinohumite Raman spectra, along with the residual plot between the two spectra; (G) cordierite XRD spectrum and its material sample photo; 

and (H) the generated and ground-truth cordierite Raman spectra with their residual values. SpectroGen accurately predicts the Raman spectrum from XRD 

inputs for both clinohumite and cordierite samples using a Voigt distribution prior, correctly identifying their peak locations with reduced noise levels, which 

correspond to low residual values across the wavelength range.
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on the diagonal corresponds to the count of samples where the 

predicted class matches the true class. As shown in Figures 5A 

and 5B, the confusion matrix reveals that the classification perfor-

mance of generated spectra and experimentally collected spectra 

is similar for individual categories on a randomly selected training 

round. The correctly predicted samples of each class have similar 

values for the generated and experimentally collected spectra. 

(Detailed data from the 10 rounds of repetitive classification tests 

are available in Data S39–S68. The confusion matrices for the full 

dataset are shown in Figures S23 and S24.) As shown in

Figures 5C and 5D, generated spectra achieved a mean accuracy 

of 90.476% across 26 categories of mineral materials (test set ac-

curacy: 50.100%) for 10 rounds of repetitive classification tasks. 

Under identical network parameter conditions, the experimentally 

collected spectra had a mean classification accuracy of 69.879% 

(test set accuracy: 61.644%). Detailed data from the 10 rounds of 

repetitive classification tests are available in Data S39–S68. Even 

though it is beyond the scope of our current study, we generally 

observe poor classification performance due to the limited num-

ber of samples in the dataset; the majority of categories have

Figure 4. Spectral characteristic assessments were conducted for the entire generated datasets of IR-to-Raman and XRD-to-Raman tasks

(A) Average peak height, FWHM, and SNR of the generated Raman spectra (yellow) were compared to the experimentally collected Raman spectra (green). The 

Jensen-Shannon (JS) divergence was calculated to assess the similarity between the generated and experimentally collected spectra, showing values smaller 

than 0.11.

(B) SSIM, RMSE, PSNR, and correlation tests were performed between the generated Raman spectra and the experimentally collected Raman spectra, 

demonstrating that SpectroGen achieves high similarity in image-based assessments.

(C) AUC tests of the generated (Gen.) and experimentally collected (Gro.) Raman spectra, along with their standard deviations, revealed near-zero deviations.

(D) For the XRD-to-Raman transformation experiments, average peak height, FWHM, and SNR assessments showed strong alignment between the generated 

(yellow) and experimentally collected (green) Raman spectra datasets. JS divergences close to zero confirmed this alignment.

(E) SSIM, RMSE, PSNR, and correlation tests between the generated Raman spectra and the experimentally collected Raman spectra demonstrated that 

SpectroGen achieved excellent prediction performance on the XRD-to-Raman transformation task.

(F) AUC tests of the generated and ground-truth spectra also revealed a strong alignment.
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fewer than five samples. We believe that the lower accuracy 

observed in the test set of the generated spectra, compared to 

the experimentally collected spectra, may be attributed to the 

instability in classification performance resulting from the small 

dataset size of much less than 10 spectra per material type. 

We expect this to improve significantly with a more substantial da-

taset. Overall, despite these constraints, this result effectively 

demonstrates SpectroGen’s ability to transfer the fingerprint infor-

mation that depicts molecular vibration.

SpectroGen interpretability test via physical prior 

distribution analysis

We validated the importance of the physical prior in the network 

by intentionally misrepresenting the respective spectra and their

distribution, as shown in Figure 6. To this end, when incorrectly 

using a Lorentzian distribution as the physical prior for IR, we 

obtained an average peak height of 0.59, an average FWHM of 

134.54, and an SNR of 47.69 for the generated Raman spectra, 

compared to an average peak height of 0.39, an average FWHM 

of 14.75, and an SNR of 5.22 for the experimentally collected 

Raman spectra. When XRD is incorrectly represented using a 

Gaussian distribution, the performance of SpectroGen on the 

generated Raman spectra similarly declines, yielding an average 

peak height of 0.27, an FWHM of 26.17, and an SNR of 12.87 

compared to an average peak height of 0.24, an FWHM of 

20.21, and an SNR of 7.88 for the experimentally collected 

Raman spectra. Similar drops also appear in image-based as-

sessments (see Figures S4, S5, S12, and S13). These results

Figure 5. SpectroGen precisely transfers information, where generated spectra outperform experimental spectra

(A and B) Confusion matrix of classification test using (A) generated Raman spectra and (B) experimentally collected Raman spectra (confusion matrix for the full 

dataset is shown in Figures S23 and S24). The generated spectra deliver similar classification results to the experimentally collected spectra.

(C) Accuracy results based on the train set. Green line: ground-truth spectra; orange line: generated spectra. Both the generated and experimentally 

collected spectra improve their classification accuracy during the training process. Generated Raman spectra achieve competitive accuracy results compared to 

ground-truth spectra while reaching a higher final accuracy.

(D) Accuracy based on the test set. Both the generated and experimentally collected spectra show an increasing trend as the number of epochs increases. 

The spectrum generated with SpectroGen provides competitive information effectiveness compared to experimentally collected data. Both the generated 

and experimentally collected spectra show slightly lower accuracy than their training set.
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underscore the critical role of physical prior models in the inter-

pretability of the network, leading to precise generation, in 

contrast to a purely black-box approach, which relies solely on 

the network without incorporating physical priors.

To further elucidate the guidance and impact of the physical 

prior model on the network, we visualized the latent vector 

values (Figure 6) under the two previously tested conditions 

(IR-to-Raman transformation with Gaussian and Lorentzian 

priors). The results after 120 training epochs are shown in 

Figures 6B and 6C. We observed that different physical priors 

influenced the latent space in terms of their spatial distributions 

and values. We further performed principal-component analysis 

(PCA) and calculated the cosine similarity between two distribu-

tions, as presented in Figures 6D and 6E. As shown, we 

observed significant differences in the spatial distribution of 

latent features when using Gaussian versus Lorentzian 

distribution priors for the IR-to-Raman transformation task. The 

Gaussian prior led to a dispersed distribution in principal 

components 1 and 2, whereas the Lorentzian prior resulted in 

a concentrated distribution while using the same input data. 

This substitution not only changed the magnitude of latent

feature values but also their distribution, affecting the generated 

results. Cosine similarity calculations revealed differences 

ranging from − 0.15 to 0.20, highlighting significant variations in 

both the magnitude and direction of the latent features. A value 

of zero would indicate complete overlap between features. 

This stress test demonstrates that physical priors are essen-

tial for maintaining the fidelity and accuracy of spectral transfor-

mations, as they guide the network to produce results that align 

with experimental data. A mismatch in physical priors could 

lead to deviations in the latent space and generated outputs, 

degrading performance and reducing interpretability. Our 

PCA of the latent space vectors obtained from IR-Raman 

spectral transformation using Gaussian and Lorentzian priors 

reveals that the choice of prior influences the distribution 

characteristics of the latent space representation for the 

same spectral data. Specifically, latent vectors derived from 

the Lorentzian prior exhibit a more concentrated distribution 

compared to those generated with the Gaussian prior. This 

suggests that the distribution of latent space vectors can serve 

as a reference for assessing the alignment of physical priors 

with the underlying spectral data.

Figure 6. SpectroGen provides physical-prior-informed spectrum deconvolution and generation

(A) The probabilistic encoder represents the input spectra with latent vectors z with the guidance of physical priors. The probabilistic decoder learns the 

distribution from z to map the generated spectrum. Even with the same input, different physical priors will result in discrepancies in latent vectors (A) (the detailed 

network parameter is provided in Methods S6).

(B and C) Visualization of latent vectors of IR-Raman transfer with (B) Gaussian distribution prior and (C) Lorentzian distribution prior. Latent vectors show 

differences in width, distribution centers, and values for each training epoch between Gaussian and Lorentzian distribution-prior-guided experiments.

(D) Principal-component analysis for latent vector between Gaussian distribution prior and Lorentzian distribution prior. The Gaussian prior led to a dispersed 

distribution in principal components 1 and 2 for the IR-to-Raman transformation, compared to a concentrated distribution with the same input data for the 

Lorentzian prior-guided SpectroGen.

(E) Cosine similarity with Gaussian and Lorentzian distribution priors. Both positive and negative cosine similarities indicate significant differences in the latent 

features in terms of their magnitudes and directions.
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DISCUSSION

It has long been recognized that the analysis of interactions be-

tween matter and electromagnetic waves illuminates structure, 

property, and function across broad fields such as biology, 

chemistry, and materials sciences. Using the latest advance-

ments in generative deep learning, we demonstrate effective 

cross-modality spectral transfer with precise multi-dimensional 

molecular, structural, and other material property representa-

tions. SpectroGen, our physical-prior-informed deep generative 

model, achieves state-of-the-art performance in cross-domain 

spectral transformation, with generated spectra showing 99% 

average correlation and a 0.01 RMSE in intensity (in a.u.) 

compared to experimentally obtained spectra. Furthermore, 

transformation testing of multiple spectral modalities provides 

compelling evidence of SpectroGen’s strong generalization 

capabilities. Experimental results indicate that, under the prem-

ise of objective, spectrum-based physical priors, we can accu-

rately generate spectral data from another completely different 

spectroscopy modality. Our results demonstrate comparable 

peak ratio, FWHM, and AUC. Notably, we have statistically 

significant improvement in SNR compared to experimentally 

generated spectra, which led to a competitive classification 

test accuracy and 16% higher training performance.

We evaluate extrapolation performance by including spectra 

data excluded from the training set and adopt a random separa-

tion strategy for the training and test sets, with the test set poten-

tially containing both seen and unseen crystal structures. To 

reduce overfitting and improve generalization, we employ 

normalization strategies during training and implement several 

safeguards: incorporating low-SNR spectra to simulate real-

world noise, using a Gaussian distribution as the default prior 

for non-strictly matching spectra and spectra with an unknown 

prior, and applying regularization techniques. 29 Additionally, 

we explore zero-shot learning to transfer knowledge of unseen 

crystal structures from trained crystal categories. 30,31

This first-of-its-kind demonstration promises spectroscopy 

implementation without the need for physical instrumentation, 

which is key to matching the pace of AI-enabled materials 

discovery efforts. In addition, our approach is key for research 

work where sample-specific experimental challenges, such as 

active specimens or in vivo biological samples, impose consid-

erable limitations on spectral acquisition. By treating spectral 

data as an abstract mathematical distribution representation, 

our model enables the generation of spectra independent of 

the canonical physical representation of bonds and crystal 

structures, traditionally tied to specific materials. This abstrac-

tion allows SpectroGen to bridge the gap between physical 

experimentation and computational analysis, expanding the 

versatility of spectral generation across various domains. The 

success of AlphaFold similarly underscores the importance of 

physical priors, as it incorporates biochemical and physical 

constraints to bridge the gap between raw data and the 

complex rules governing protein folding. Without such priors, 

both SpectroGen and AlphaFold would lack the necessary 

physical grounding, leading to reduced fidelity, interpretability, 

and generalization. This highlights the indispensable role of 

physical priors in advancing computational approaches to

complex systems, including vibrational spectroscopy and 

molecular biology.

SpectroGen effectively revolutionizes the reach of spectros-

copy-based analysis across disciplines and research areas. 

Our study demonstrates that computational technologies can 

be integrated with the principles of spectroscopy to provide 

potential solutions for addressing challenges in materials 

characterization. This approach holds significant potential to 

advance the applications of spectroscopy in areas such as 

molecular structure analysis, material performance prediction, 

and biomolecular dynamic monitoring. By enhancing the 

interpretive capabilities of spectroscopic data, improving 

cross-modal applications, and driving the intelligent evolution 

of traditional high-precision methodologies, it paves the way 

for technological innovation. In addition, the spectral modalities 

are governed by shared principles of light-matter interac-

tions, 2,4,5,8,9 and their complementary strengths can be har-

nessed through AI to provide a more holistic understanding of 

materials and molecules. Further study using surface-sensitive 

spectral information such as surface-enhanced Raman spec-

troscopy, 10,32 X-ray photoelectron spectroscopy, 33 and others 

will provide insight into surface property representations and 

enrich the latent space representation. We believe that our 

approach not only enhances existing technologies but could 

also assist in pioneering novel spectroscopic methods, revealing 

previously uncharacterized material properties and generating 

characteristics of materials that are challenging to probe 

experimentally.

Overall, SpectroGen can redefine the future of materials 

science and spectroscopy by enabling spectral transformations 

across modalities with minimal experimental input, eliminating 

the need for costly, time-intensive, and limited-access instru-

mentation. This could democratize advanced materials charac-

terization, allowing researchers worldwide to access high-quality 

spectral data without expensive facilities. It could accelerate the 

discovery of next-generation materials, such as high-efficiency 

batteries, superconductors, and catalysts, by providing rapid, 

multi-modal insights into material properties. In pharmaceuti-

cals, it could revolutionize drug development by streamlining 

molecular profiling and quality control processes. Its ability to 

synthesize high-fidelity spectra might pave the way for real-

time diagnostics in healthcare, where portable devices equipped 

with SpectroGen could instantly identify biomarkers or patho-

gens. On a larger scale, SpectroGen could serve as a foundation 

for automated, AI-driven research ecosystems, enabling break-

throughs at a speed and scale previously unimaginable, leading 

to new technologies addressing climate change, novel thera-

pies, and sustainable development.

METHODS

Cross-domain spectral transfer via generation 

SpectroGen is an algorithm that incorporates mathematical 

distribution-based physical prior representation of spectra 

coupled with a deep generative model that specializes in 

tracking curves. It is implemented by first establishing a proba-

bilistic encoder q ϕ (z|x) that learns the physical prior probability 

distribution of experimentally derived input spectrum A, for

Matter 9, 102434, January 7, 2026 9

Article
ll



example, an XRD spectrum with a Voigt distribution prior, 

capturing the physical constraints inherent in the spectral 

transformation process, such as the complex dependencies 

of line broadening, superposition, and wavenumber shifts. 

The intermediate extracted features from the encoder are 

captured in the latent, low-dimensional vectors z. A probabi-

listic decoder p θ (z) then up-samples and reconstructs the 

probability distribution of the generated spectrum B (e.g., a 

Raman spectrum with Lorentzian distribution). The algorithm 

training entails multiple waveform distribution analyses to 

deconstruct single-frequency peaks, wavenumber shifts, and 

broadening (Figure 2A). The stability and performance of the 

spectral generation are verified through physical prior spectral 

deconstruction (Figure 2B), such as a Gaussian distribution 

prior, a Voigt distribution prior, and a Lorentzian distribution 

prior, and model fitting (Figures 2C and 2D).

The physical priors in SpectroGen describe and represent 

the fundamental backbone structure of spectroscopic curves, 

as validated by established findings in the scientific literature. 

For example, it is widely acknowledged that the IR spectra of 

solid mineral materials follow a Gaussian distribution prior, 34 

and the peaks in X-ray spectra follow a Voigt distribution. 33 

The integral width of the intrinsic XRD profile is determined by 

factors such as the average crystallite size and lattice strain. 

The observed XRD profile for a powder reflection is obtained 

by convolving the intrinsic profile with instrumental broadening 

effects, which can be approximated as the convolution of a 

Gaussian function and a Lorentzian function, 34 resulting in a 

Voigt distribution. Based on this, we employed a Gaussian prior 

for IR-to-Raman transformation and a Voigt prior for XRD-to-

Raman transformation. Notably, the experimentally acquired 

spectra, aside from conforming to the physical prior, are also 

influenced by various broadening mechanisms. A key feature 

of our method is its ability to fit the difference between physical 

priors and actual spectra through the network’s automatic 

fitting capabilities to address the non-uniform environmental 

broadening of the spectrum (Figure 2D), e.g., collision broad-

ening, 35 Doppler broadening, 36 transit-time broadening, 37,38 

and instrumental influences (see Methods S4). Notably, this 

approach mitigates the limitations of fitting based solely on 

physical priors with the flexibility of generative learning-based 

curve matching to support the precise model transformations, 

allowing an accurate fitting of peak overlap and broadening. 

Moreover, Kullback-Leibler (KL) divergence loss (Figure 2C; 

Methods S5) between the generated and input spectra is 

computed and iteratively minimized during the training phase, 

increasing generation accuracy. 39,40

Further details regarding the methods can be found in 

Methods S1–S9.
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