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In brief

SpectroGen seamlessly couples physics-
driven distribution models with a variable
autoencoder to generate synthetic
spectra indistinguishable from real data.
By speeding up high-throughput
screening, it closes the gap between Al-
based materials discovery and
experimental confirmation. Its flexible
architecture accommodates diverse
spectroscopic techniques, extending its
utility across multiple scientific domains.
The synergy of rapid Al-driven design and
swift Al-enabled characterization
expedites validation of innovative
materials, bridging lab-based discovery
and industry-ready applications to
address urgent societal needs.
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PROGRESS AND POTENTIAL Recent advances in artificial intelligence (Al) have propelled materials discov-
ery by identifying unique composition pathways at unprecedented speed. However, experimental character-
ization—the step where new materials are actually tested—still lags behind. Traditional characterization
requires specialized instruments that measure electromagnetic responses in a painstaking, expert-driven
process. SpectroGen offers a transformative solution. By coupling physics-inspired distribution models
(e.g., Gaussians and Lorentzians) with a robust variable autoencoder framework, SpectroGen rapidly gener-
ates “virtual” spectra that correlate almost perfectly with actual measurements. This approach effectively
bridges the gap between Al-driven materials discovery and real-world verification. SpectroGen’s universal
compatibility also makes it flexible: any spectroscopy technique that can be represented by analytic func-
tions may be harnessed within its platform.

The potential impact is substantial. High-throughput screening—uvital for developing next-generation
catalysts, batteries, superconductors, and pharmaceuticals—can now be accelerated without sacrificing
accuracy. Researchers stand to gain significant time and resource savings, as they can prioritize the most
promising candidate materials for detailed follow-up. This synergy of fast Al-driven discovery and swift
Al-enabled characterization could catalyze breakthroughs vital to society, from clean energy solutions to
advanced medical treatments. Beyond accelerating fundamental research, SpectroGen’s capacity for rapid
prototyping and validation is poised to reshape how we innovate, ultimately translating into critically needed
technologies that better serve humanity.

SUMMARY

Artificial intelligence (Al)-driven materials discovery offers rapid design of novel material compositions, yet
synthesis and characterization lag behind. Characterization, in particular, remains bottlenecked by labor-
intensive experiments using expert-operated instruments that typically rely on electromagnetic spectros-
copy. We introduce SpectroGen, a generative Al model for transmodality spectral generation, designed to
accelerate materials characterization. SpectroGen generates high-resolution, high-signal-to-noise ratio
spectra with 99% correlation to ground truth and a root-mean-square error of 0.01 a.u. lts performance is
driven by two key innovations: (1) a novel distribution-based physical prior and (2) a variational autoencoder
(VAE) architecture. The prior simplifies complex structural inputs into interpretable Gaussian or Lorentzian
distributions, while the VAE maps them into a physically grounded latent space for accurate spectral
transformation. SpectroGen generalizes across spectral domains and promises rapid, accurate spectral
predictions, potentially transforming high-throughput discovery in domains such as battery materials, cata-
lysts, superconductors, and pharmaceuticals.
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INTRODUCTION

High-throughput materials discovery aims to accelerate the
identification and optimization of novel materials with fit-for-pur-
pose exceptional properties.’ However, the rate of synthesis and
characterization of computer-generated material candidates
remains a significant challenge to the need for speed. Spectros-
copy-based modalities are the core of materials characteriza-
tion, as they enable molecular- and atomic-level analysis.”™
For example, infrared (IR) absorption reveals functional groups
within molecules; Raman scattering provides insights into
molecular vibrations, symmetry, and crystal structures;®°
X-ray scattering determines the elemental composition; and
X-ray diffraction (XRD) visualizes crystal structures.'®'"
However, it is a time-consuming and expensive endeavor,
costing up to half a milion USD per equipment and domain
expertise for data interpretation. Furthermore, samples are often
scarce, fragile, and/or hazardous, limiting experimental interro-
gation.’ These limitations present significant challenges to
achieving high-throughput characterization—an essential
element for keeping pace with the speed of computational mate-
rial generation. Thus, there is a need for a paradigm shift in how
materials are characterized.

Conventional deep learning techniques, which focus primarily
on classification and regression tasks, have been employed for
performance prediction,'® the analysis and preprocessing
of microscopic images and spectroscopic data,'*”'” and the
design of novel materials.'® Furthermore, physics-informed neu-
ral networks, which embed physical principles, e.g., conserva-
tion laws, differential equations, and boundary conditions into
the network architecture or loss function,'® are reducing the
“black-box” nature of such models and enhancing interpret-
ability. Recently, generative artificial intelligence (Al) algorithms,
such as variational autoencoder (VAE),”° which learns a probabi-
listic representation of the data by encoding the input as a distri-
bution in the latent space, thus capturing inherent uncertainty in
the data and enabling more accurate generation, are being intro-
duced. VAEs are ideal as compared to traditional deterministic
methods (such as autoencoders or regression models) that
directly map inputs to outputs: they provide a means to learn
the uncertainty involved in the spectral transformation process,
and unlike other generative networks (e.g., generative adversa-
rial networks [GANs]), VAEs learn the latent representation of
the data, making them particularly suitable for applications
where understanding the underlying data structure and gener-
ating diverse yet plausible outputs are critical. VAEs have been
successfully used in gene editing,?’ protein design,?? drug
discovery,?® and inverse design of solid-state materials.>* How-
ever, almost all the output data from these VAE models are new
structures for discovery applications, and implementation in
transmodality transfer applications is yet to be demonstrated.
Furthermore, the generated data fidelity of existing VAEs is ques-
tionable, whereas materials characterization, such as spectral
data generation, requires high data fidelity, as the generated
spectra need to match otherwise experimentally collected
fingerprints. Thus, there is a need for a high-fidelity custom
generative Al model that can address the following two critical
challenges: (1) a computationally efficient representation of
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material structure-to-characterization output pairs and (2) a sim-
ple interpretation of the said characterization output for the
network to understand and train on. A notable example of a suc-
cessful generative Al implementation task that addressed these
challenges is the protein structure generation tool AlphaFold,?®
which received the 2024 Nobel Prize. Here, instead of the daunt-
ing, nearly impossible task of computing every molecule repre-
sentation and intermolecular force at play, the task of generation
was creatively simplified to a triangle inequality problem, which
the algorithm superbly optimized, leading to highly accurate pre-
dictions. A similar creative approach is needed for transmodality
generation for applications in materials characterization.

Here, we introduce SpectroGen, a custom generative Al
model that can computationally generate high-resolution
spectra from multiple types of spectroscopic techniques using
only a single spectroscopy modality experimental input
(Figure 1), enabling high-throughput materials characterization.
We demonstrate successful transmodality spectral generation
with 99% correlation to experimental results by (1) creatively rep-
resenting spectral data as a mathematical distribution curve,
such as a Lorentzian, Gaussian, or Voigt distribution, to repre-
sent Raman, IR, and XRD spectra instead of computationally
dense molecular and crystal structure inputs and (2) building a
physical-prior-informed custom variable autoencoder-based
generative algorithm. Our model outputs spectral transforma-
tions that are both physically meaningful and computationally
accurate, sensitively accounting for characteristics like line
broadening, superposition, and wavenumber shifts (Figure 2).
Our mathematical distribution-based physical priors act as
fundamental constraints, successfully capturing the inherent
complexity of the fingerprint, enhancing the interpretability of
the model, and reducing its black-box nature. We demonstrate
SpectroGen on the RRUFF dataset,”® comprising 6,006 Interna-
tional Mineralogical Association (IMA)-approved standard min-
eral samples (Figure 1B), from which 319 IR-Raman and 371
XRD-Raman data pairs were examined (Data S1-S4; Figure 3).
We computed wavenumber shifts, peak heights, and the full
width at half maximum (FWHM) of peaks to evaluate the
accuracy of spectrum generation (Figure 4). Furthermore, we
conducted a material source classification task to compare the
classification accuracy of the generated spectra with that of
experimentally collected spectra, thereby assessing the infor-
mational efficacy of the generated spectra (Figure 5; Notes S1
and S2; Data S5 and S6). SpectroGen exhibited 99% correlation
on peak characteristics, a root-mean-square error (RMSE) of
0.01 on intensity (in arbitrary units [a.u.]), and a peak signal-to-
noise ratio (PSNR) of 43 + 4 dB normalized by the peak heights,
compared to experimentally acquired ground-truth spectra.
Moreover, it achieves a mean classification accuracy of
90.476% on the classification test, surpassing the 69.879% ac-
curacy obtained from experimentally acquired Raman spectra.
Overall, SpectroGen eliminates the need for multiple time- and
resource-intensive spectroscopic instruments, revolutionizing
materials characterization throughput. Furthermore, by abstract-
ing spectra as “data” independent of physical material proper-
ties, we can decouple the generation of spectra from the
constraints imposed by specific material behaviors or interac-
tions. This “data as a link” concept positions the spectral
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(A) Schematic showing the flow of spectroscopic modality transfer with SpectroGen. Experimental data acquired from one spectroscopic modality are input

into the physical-prior-informed variational autoencoder model. Mathematical

distributions of the spectroscopic curve (e.g., Gaussian distribution, Lorentzian

distribution, and Voigt distribution) are used as a physical prior to represent the input and output spectra. Spectra output from another modality is then generated.
(B) The dataset used for SpectroGen model training and testing: images of example single-crystalline materials (left) and example infrared, Raman, and XRD

spectra data pairs for material samples (right).

fingerprint as a bridge between the physical and computational
domains, enabling SpectroGen to generate spectra with greater
flexibility and efficiency through understanding spectra in a
mathematical approach rather than deconstructing molecular
structures and representations from spectra. We believe that
SpectroGen could be transformational in bringing the much-
needed throughput to match advances in material, accelerating
the real-life translation of efficient materials and life-saving
pharmaceuticals.

RESULTS

SpectroGen is as accurate as experimental collection

We demonstrate SpectroGen on the RRUFF dataset,*® a publicly
available IMA-approved standard mineral samples dataset, from
which 319 IR-Raman and 371 XRD-Raman data pairs were
examined (Data S1-S4). For the transformation from IR to Raman
with a Gaussian distribution prior, SpectroGen precisely cap-
tures and reconstructs the information of 8 peaks in the barrerite

Raman spectrum (Figure 3B) from their respective IR spectra
(Figure 3A). Notably, the generated barrerite Raman spectrum
matches the respective broadening and peak height and exhibits
a smoother waveform. Similarly, for the actinolite sample
(Figure 3C), the generated Raman spectrum closely follows the
peak heights, peak number, and wavenumber of the experimen-
tally collected data, with low residual values (Figure 3D). We
evaluated the accuracy of peak positions by measuring their
absolute peak position deviation (APPD), which all demonstrate
low values smaller than 0.2 cm™" (Figures S1 and S15). As for the
XRD-Raman transformation test, the sample spectra of clinohu-
mite show that the generated Raman spectrum precisely
matches the peak positions and heights with lower noise
compared to the experimentally collected Raman spectra,
where the SNRs for the generated and experimentally collected
Raman spectraare 11.10 and 3.11, respectively. For the demon-
stration of XRD-to-Raman transformation for cordierite, the
generated Raman spectrum aligns with the peak heights and
wavenumber shifts, showing low residual values. Here, we
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(A) SpectroGen employs an experimentally derived spectrum from modality A.
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(B) Physical priors are employed to deconstruct the spectral distribution and map it to latent features z via a frequency encoder g, (z|x) (Methods S3).
SpectroGen designs a probabilistic decoder py(y|z) to reconstruct the second (generated) spectral distribution that would have been experimentally collected

from modality B.

(C) SpectroGen computes Kullback-Leibler (K-L) divergence to perform spectral fitting (Methods S5).
(D) The network’s fitting capabilities are fully exploited to accommodate the irregular environmental broadening present in the spectra (Methods S4).

sampled four sets of results: two using a Gaussian distribution
prior for the input of IR (Figures 3A-3D) with their corresponding
residual value plots (supplemental methods, Equation S3-1) and
two using a Voigt distribution prior for XRD spectra with their
residual value plots (Figures 3E-3H; supplemental methods,
Equation S3-3), and the complete generated spectral dataset
is available in Data S1 and S20.

The quality of the generated spectrum was evaluated using
spectrum-based and image-based evaluation metrics to assess
its performance, as illustrated in Figure 4. We quantified the
average peak height, FWHM, and SNR for all 97 and 110 test
pairs of SpectroGen-generated and experimentally obtained
Raman spectra in the IR-Raman and XRD-Raman datasets,
respectively. We performed a Jensen-Shannon (JS) divergence
test, which typically shows a relatively small value (e.g., <0.1),
indicating strong alignment between distributions.”” Structural
similarity index (SSIM), RMSE, PSNR, and correlation assess-
ments were performed as part of the image-based evaluation,
which compares graphical structure and image content. SSIM
is a dimensionless metric ranging from 0 to 1 and can evaluate
pixel intensity, image structure, and context similarity, which, in
our research task, refers to the evaluation of peak height, wave-
number shifts, and noise level. The value of SSIM approaches 1

4 Matter 9, 102434, January 7, 2026

as the similarity between the two images increases.”® RMSE is
calculated based on the spectra intensity (a.u.), and PSNR is
normalized by the maximum intensity on the spectrum data. A
lower RMSE value signals a smaller difference between the
two spectra, while a PSNR exceeding 40 dB demonstrates a
high degree of similarity of the generated spectrum to the refer-
ence spectrum.

As shown in Figures 4A and 4D and Table S1, the average
peak height and FWHM of the generated spectra exhibit a similar
distribution to that of the collected spectra, with JS divergences
of 0.11 and 0.09 for IR-to-Raman and 0.05 and 0.06 for XRD-to-
Raman tasks, respectively. Notably, the generated spectra, on
average, possess a higher SNR compared to the experimentally
collected spectra, which is consistent with the spectral exam-
ples provided in Figures 4B and 4E. In the residual plots, the
generated Raman spectra exhibit small residual values, indi-
cating minimal differences from the experimentally collected
spectra. As depicted in Figure 4B and Table S2, for the IR-to-
Raman task, the SpectroGen-generated spectrum has a mean
SSIM of 0.96 + 0.03, RMSE of 0.010 + 0.006, correlation of
0.99 + 0.01, and PSNR of 39 + 4 dB. The XRD-to-Raman trans-
formation task also shows similar outstanding performance. As
shown in Figure 4E, SpectroGen displays a 0.97 + 0.04 mean



Matter

A
el
<
- ﬁ Barrerite IR
G g spectrum
c
2
£
500 1000 1500 2000 2500 3000 3500 4000
Wavenumber (cm™')
B
gen. Barrerite
- Raman spectrum
2 \/ . gro. Barrerite
‘g L j \ Raman spectrum
£

residual values

B e

-
200 400 600 800 1000 1200 1400
Wavenumber (cm™')
C
3
& * Actinolite IR
2 spectrum
2
2
< 500 1000 1500 2000 2500 3000 3500 4000
Wavenumber (cm)
D
gen. Actinolite
- Raman spectrum
3 |
&
2 gro. Actinolite Raman
% SN M spectrum
S
_ residual values
200 400 600 800 1000 1200 1400

Wavenumber (cm™)

¢? CellPress

E
3
s
> . .
z Clinohumite XRD
5 I L PR | A L l Spedmm
£
10 20 30 40 50 60 70 80 90
2 Theta
F
gen. Clinohumite
Raman spectrum
e
L {W gro. Clinohumite
%‘ Raman spectrum
g
£
residual values

200 400 600 800 1000 1200 1400
Wavenumber (cm™)
G
E
> N Cordierite XRD
@ — spectrum
é l.IIle;l.. Ak I ek
10 20 30 40 50 60 70 80 90
2 Theta
H
gen. Cordierite
Raman spectrum
E)
L gro. Cordierite
£ Raman spectrum
8
£
residual values

200 400 600 800 1000

Wavenumber (cm™)

1200 1400

Figure 3. SpectroGen accurately generates spectra across different modalities

(A and B) Demonstration of IR-to-Raman transfer test with (A) barrerite IR spectrum and its material sample photo and (B) generated (yellow) and experimentally
collected (green, termed as ground truth) barrerite Raman spectrum, showing alignment in peak positions and lower noise. The residual plot between the
generated and experimentally collected Raman spectra shows low residual values across the wavelength range.

(C) Actinolite IR spectrum and its material sample photo.

(D) Generated actinolite Raman spectrum and ground-truth actinolite Raman spectrum. Peaks are correctly reconstructed with low residual values.

(E-H) Demonstration of XRD-to-Raman transfer tests with (E) clinohumite-input XRD spectrum and its material sample photo; (F) the generated and experi-
mentally collected clinohumite Raman spectra, along with the residual plot between the two spectra; (G) cordierite XRD spectrum and its material sample photo;
and (H) the generated and ground-truth cordierite Raman spectra with their residual values. SpectroGen accurately predicts the Raman spectrum from XRD
inputs for both clinohumite and cordierite samples using a Voigt distribution prior, correctly identifying their peak locations with reduced noise levels, which

correspond to low residual values across the wavelength range.

SSIM, a 0.010 + 0.009 RMSE, a 43 + 4 dB PSNR, and a 0.98 +
0.08 correlation. In the area under the curve (AUC) test (see
Figures 4C and 4F), for both the IR-to-Raman task and XRD-
to-Raman task, the generated spectra are well aligned with
experimentally collected spectra (Data S5-S9). These results
demonstrate the exceptional similarity of the visually observed
trajectory of the generated and experimentally obtained spectra.

SpectroGen is able to make accurate cross-modality spectral
generation, primarily because of two key aspects. Firstly, the
accurate physical priors were input to represent respective
spectra from the modalities of interest, which removes the
original model formulation constraints of the decoder. Secondly,

the VAE backbone architecture employed was the best suited for
matching curves. These combined strengths enable SpectroGen
to achieve robust and precise spectral generation across diverse
modalities.

Assessment of information transfer effectiveness via
classification performance

To evaluate SpectroGen’s information transfer effectiveness, we
compared its performance on a material-type classification task
using its generated spectra versus using experimentally obtained
spectra. The diagonal values in a confusion matrix represent the
number of correctly classified instances for each class. Each value
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Figure 4. Spectral characteristic assessments were conducted for the entire generated datasets of IR-to-Raman and XRD-to-Raman tasks
(A) Average peak height, F’WHM, and SNR of the generated Raman spectra (yellow) were compared to the experimentally collected Raman spectra (green). The
Jensen-Shannon (JS) divergence was calculated to assess the similarity between the generated and experimentally collected spectra, showing values smaller
than 0.11.

(B) SSIM, RMSE, PSNR, and correlation tests were performed between the generated Raman spectra and the experimentally collected Raman spectra,
demonstrating that SpectroGen achieves high similarity in image-based assessments.

(C) AUC tests of the generated (Gen.) and experimentally collected (Gro.) Raman spectra, along with their standard deviations, revealed near-zero deviations.
(D) For the XRD-to-Raman transformation experiments, average peak height, FWHM, and SNR assessments showed strong alignment between the generated
(yellow) and experimentally collected (green) Raman spectra datasets. JS divergences close to zero confirmed this alignment.

(E) SSIM, RMSE, PSNR, and correlation tests between the generated Raman spectra and the experimentally collected Raman spectra demonstrated that

SpectroGen achieved excellent prediction performance on the XRD-to-Raman transformation task.
(F) AUC tests of the generated and ground-truth spectra also revealed a strong alignment.

on the diagonal corresponds to the count of samples where the
predicted class matches the true class. As shown in Figures 5A
and 5B, the confusion matrix reveals that the classification perfor-
mance of generated spectra and experimentally collected spectra
is similar for individual categories on a randomly selected training
round. The correctly predicted samples of each class have similar
values for the generated and experimentally collected spectra.
(Detailed data from the 10 rounds of repetitive classification tests
are available in Data S39-S68. The confusion matrices for the full
dataset are shown in Figures S23 and S24.) As shown in

6 Matter 9, 102434, January 7, 2026

Figures 5C and 5D, generated spectra achieved a mean accuracy
of 90.476% across 26 categories of mineral materials (test set ac-
curacy: 50.100%) for 10 rounds of repetitive classification tasks.
Under identical network parameter conditions, the experimentally
collected spectra had a mean classification accuracy of 69.879%
(test set accuracy: 61.644%). Detailed data from the 10 rounds of
repetitive classification tests are available in Data S39-S68. Even
though it is beyond the scope of our current study, we generally
observe poor classification performance due to the limited num-
ber of samples in the dataset; the majority of categories have
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Figure 5. SpectroGen precisely transfers information, where generated spectra outperform experimental spectra

(A and B) Confusion matrix of classification test using (A) generated Raman spectra and (B) experimentally collected Raman spectra (confusion matrix for the full
dataset is shown in Figures S23 and S24). The generated spectra deliver similar classification results to the experimentally collected spectra.

(C) Accuracy results based on the train set. Green line: ground-truth spectra; orange line: generated spectra. Both the generated and experimentally
collected spectra improve their classification accuracy during the training process. Generated Raman spectra achieve competitive accuracy results compared to

ground-truth spectra while reaching a higher final accuracy.

(D) Accuracy based on the test set. Both the generated and experimentally collected spectra show an increasing trend as the number of epochs increases.
The spectrum generated with SpectroGen provides competitive information effectiveness compared to experimentally collected data. Both the generated
and experimentally collected spectra show slightly lower accuracy than their training set.

fewer than five samples. We believe that the lower accuracy
observed in the test set of the generated spectra, compared to
the experimentally collected spectra, may be attributed to the
instability in classification performance resulting from the small
dataset size of much less than 10 spectra per material type.
We expect this to improve significantly with a more substantial da-
taset. Overall, despite these constraints, this result effectively
demonstrates SpectroGen’s ability to transfer the fingerprint infor-
mation that depicts molecular vibration.

SpectroGen interpretability test via physical prior
distribution analysis

We validated the importance of the physical prior in the network
by intentionally misrepresenting the respective spectra and their

distribution, as shown in Figure 6. To this end, when incorrectly
using a Lorentzian distribution as the physical prior for IR, we
obtained an average peak height of 0.59, an average FWHM of
134.54, and an SNR of 47.69 for the generated Raman spectra,
compared to an average peak height of 0.39, an average FWHM
of 14.75, and an SNR of 5.22 for the experimentally collected
Raman spectra. When XRD is incorrectly represented using a
Gaussian distribution, the performance of SpectroGen on the
generated Raman spectra similarly declines, yielding an average
peak height of 0.27, an FWHM of 26.17, and an SNR of 12.87
compared to an average peak height of 0.24, an FWHM of
20.21, and an SNR of 7.88 for the experimentally collected
Raman spectra. Similar drops also appear in image-based as-
sessments (see Figures S4, S5, S12, and S13). These results
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Figure 6. SpectroGen provides physical-prior-informed spectrum deconvolution and generation
(A) The probabilistic encoder represents the input spectra with latent vectors z with the guidance of physical priors. The probabilistic decoder learns the
distribution from z to map the generated spectrum. Even with the same input, different physical priors will result in discrepancies in latent vectors (A) (the detailed

network parameter is provided in Methods S6).

(B and C) Visualization of latent vectors of IR-Raman transfer with (B) Gaussian distribution prior and (C) Lorentzian distribution prior. Latent vectors show
differences in width, distribution centers, and values for each training epoch between Gaussian and Lorentzian distribution-prior-guided experiments.

(D) Principal-component analysis for latent vector between Gaussian distribution prior and Lorentzian distribution prior. The Gaussian prior led to a dispersed
distribution in principal components 1 and 2 for the IR-to-Raman transformation, compared to a concentrated distribution with the same input data for the

Lorentzian prior-guided SpectroGen.

(E) Cosine similarity with Gaussian and Lorentzian distribution priors. Both positive and negative cosine similarities indicate significant differences in the latent

features in terms of their magnitudes and directions.

underscore the critical role of physical prior models in the inter-
pretability of the network, leading to precise generation, in
contrast to a purely black-box approach, which relies solely on
the network without incorporating physical priors.

To further elucidate the guidance and impact of the physical
prior model on the network, we visualized the latent vector
values (Figure 6) under the two previously tested conditions
(IR-to-Raman transformation with Gaussian and Lorentzian
priors). The results after 120 training epochs are shown in
Figures 6B and 6C. We observed that different physical priors
influenced the latent space in terms of their spatial distributions
and values. We further performed principal-component analysis
(PCA) and calculated the cosine similarity between two distribu-
tions, as presented in Figures 6D and 6E. As shown, we
observed significant differences in the spatial distribution of
latent features when using Gaussian versus Lorentzian
distribution priors for the IR-to-Raman transformation task. The
Gaussian prior led to a dispersed distribution in principal
components 1 and 2, whereas the Lorentzian prior resulted in
a concentrated distribution while using the same input data.
This substitution not only changed the magnitude of latent
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feature values but also their distribution, affecting the generated
results. Cosine similarity calculations revealed differences
ranging from —0.15 to 0.20, highlighting significant variations in
both the magnitude and direction of the latent features. A value
of zero would indicate complete overlap between features.

This stress test demonstrates that physical priors are essen-
tial for maintaining the fidelity and accuracy of spectral transfor-
mations, as they guide the network to produce results that align
with experimental data. A mismatch in physical priors could
lead to deviations in the latent space and generated outputs,
degrading performance and reducing interpretability. Our
PCA of the latent space vectors obtained from IR-Raman
spectral transformation using Gaussian and Lorentzian priors
reveals that the choice of prior influences the distribution
characteristics of the latent space representation for the
same spectral data. Specifically, latent vectors derived from
the Lorentzian prior exhibit a more concentrated distribution
compared to those generated with the Gaussian prior. This
suggests that the distribution of latent space vectors can serve
as a reference for assessing the alignment of physical priors
with the underlying spectral data.
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DISCUSSION

It has long been recognized that the analysis of interactions be-
tween matter and electromagnetic waves illuminates structure,
property, and function across broad fields such as biology,
chemistry, and materials sciences. Using the latest advance-
ments in generative deep learning, we demonstrate effective
cross-modality spectral transfer with precise multi-dimensional
molecular, structural, and other material property representa-
tions. SpectroGen, our physical-prior-informed deep generative
model, achieves state-of-the-art performance in cross-domain
spectral transformation, with generated spectra showing 99%
average correlation and a 0.01 RMSE in intensity (in a.u.)
compared to experimentally obtained spectra. Furthermore,
transformation testing of multiple spectral modalities provides
compelling evidence of SpectroGen’s strong generalization
capabilities. Experimental results indicate that, under the prem-
ise of objective, spectrum-based physical priors, we can accu-
rately generate spectral data from another completely different
spectroscopy modality. Our results demonstrate comparable
peak ratio, FWHM, and AUC. Notably, we have statistically
significant improvement in SNR compared to experimentally
generated spectra, which led to a competitive classification
test accuracy and 16% higher training performance.

We evaluate extrapolation performance by including spectra
data excluded from the training set and adopt a random separa-
tion strategy for the training and test sets, with the test set poten-
tially containing both seen and unseen crystal structures. To
reduce overfitting and improve generalization, we employ
normalization strategies during training and implement several
safeguards: incorporating low-SNR spectra to simulate real-
world noise, using a Gaussian distribution as the default prior
for non-strictly matching spectra and spectra with an unknown
prior, and applying regularization techniques.”® Additionally,
we explore zero-shot learning to transfer knowledge of unseen
crystal structures from trained crystal categories.**"

This first-of-its-kind demonstration promises spectroscopy
implementation without the need for physical instrumentation,
which is key to matching the pace of Al-enabled materials
discovery efforts. In addition, our approach is key for research
work where sample-specific experimental challenges, such as
active specimens or in vivo biological samples, impose consid-
erable limitations on spectral acquisition. By treating spectral
data as an abstract mathematical distribution representation,
our model enables the generation of spectra independent of
the canonical physical representation of bonds and crystal
structures, traditionally tied to specific materials. This abstrac-
tion allows SpectroGen to bridge the gap between physical
experimentation and computational analysis, expanding the
versatility of spectral generation across various domains. The
success of AlphaFold similarly underscores the importance of
physical priors, as it incorporates biochemical and physical
constraints to bridge the gap between raw data and the
complex rules governing protein folding. Without such priors,
both SpectroGen and AlphaFold would lack the necessary
physical grounding, leading to reduced fidelity, interpretability,
and generalization. This highlights the indispensable role of
physical priors in advancing computational approaches to
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complex systems, including vibrational spectroscopy and
molecular biology.

SpectroGen effectively revolutionizes the reach of spectros-
copy-based analysis across disciplines and research areas.
Our study demonstrates that computational technologies can
be integrated with the principles of spectroscopy to provide
potential solutions for addressing challenges in materials
characterization. This approach holds significant potential to
advance the applications of spectroscopy in areas such as
molecular structure analysis, material performance prediction,
and biomolecular dynamic monitoring. By enhancing the
interpretive capabilities of spectroscopic data, improving
cross-modal applications, and driving the intelligent evolution
of traditional high-precision methodologies, it paves the way
for technological innovation. In addition, the spectral modalities
are governed by shared principles of light-matter interac-
tions,>**%% and their complementary strengths can be har-
nessed through Al to provide a more holistic understanding of
materials and molecules. Further study using surface-sensitive
spectral information such as surface-enhanced Raman spec-
troscopy,'%*? X-ray photoelectron spectroscopy,®® and others
will provide insight into surface property representations and
enrich the latent space representation. We believe that our
approach not only enhances existing technologies but could
also assist in pioneering novel spectroscopic methods, revealing
previously uncharacterized material properties and generating
characteristics of materials that are challenging to probe
experimentally.

Overall, SpectroGen can redefine the future of materials
science and spectroscopy by enabling spectral transformations
across modalities with minimal experimental input, eliminating
the need for costly, time-intensive, and limited-access instru-
mentation. This could democratize advanced materials charac-
terization, allowing researchers worldwide to access high-quality
spectral data without expensive facilities. It could accelerate the
discovery of next-generation materials, such as high-efficiency
batteries, superconductors, and catalysts, by providing rapid,
multi-modal insights into material properties. In pharmaceuti-
cals, it could revolutionize drug development by streamlining
molecular profiling and quality control processes. lts ability to
synthesize high-fidelity spectra might pave the way for real-
time diagnostics in healthcare, where portable devices equipped
with SpectroGen could instantly identify biomarkers or patho-
gens. On a larger scale, SpectroGen could serve as a foundation
for automated, Al-driven research ecosystems, enabling break-
throughs at a speed and scale previously unimaginable, leading
to new technologies addressing climate change, novel thera-
pies, and sustainable development.

METHODS

Cross-domain spectral transfer via generation

SpectroGen is an algorithm that incorporates mathematical
distribution-based physical prior representation of spectra
coupled with a deep generative model that specializes in
tracking curves. It is implemented by first establishing a proba-
bilistic encoder g, (z|x) that learns the physical prior probability
distribution of experimentally derived input spectrum A, for
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example, an XRD spectrum with a Voigt distribution prior,
capturing the physical constraints inherent in the spectral
transformation process, such as the complex dependencies
of line broadening, superposition, and wavenumber shifts.
The intermediate extracted features from the encoder are
captured in the latent, low-dimensional vectors z. A probabi-
listic decoder py(z) then up-samples and reconstructs the
probability distribution of the generated spectrum B (e.g., a
Raman spectrum with Lorentzian distribution). The algorithm
training entails multiple waveform distribution analyses to
deconstruct single-frequency peaks, wavenumber shifts, and
broadening (Figure 2A). The stability and performance of the
spectral generation are verified through physical prior spectral
deconstruction (Figure 2B), such as a Gaussian distribution
prior, a Voigt distribution prior, and a Lorentzian distribution
prior, and model fitting (Figures 2C and 2D).

The physical priors in SpectroGen describe and represent
the fundamental backbone structure of spectroscopic curves,
as validated by established findings in the scientific literature.
For example, it is widely acknowledged that the IR spectra of
solid mineral materials follow a Gaussian distribution prior,34
and the peaks in X-ray spectra follow a Voigt distribution.**
The integral width of the intrinsic XRD profile is determined by
factors such as the average crystallite size and lattice strain.
The observed XRD profile for a powder reflection is obtained
by convolving the intrinsic profile with instrumental broadening
effects, which can be approximated as the convolution of a
Gaussian function and a Lorentzian function,®* resulting in a
Voigt distribution. Based on this, we employed a Gaussian prior
for IR-to-Raman transformation and a Voigt prior for XRD-to-
Raman transformation. Notably, the experimentally acquired
spectra, aside from conforming to the physical prior, are also
influenced by various broadening mechanisms. A key feature
of our method is its ability to fit the difference between physical
priors and actual spectra through the network’s automatic
fitting capabilities to address the non-uniform environmental
broadening of the spectrum (Figure 2D), e.g., collision broad-
ening,*® Doppler broadening,®® transit-time broadening,®”-*
and instrumental influences (see Methods S4). Notably, this
approach mitigates the limitations of fitting based solely on
physical priors with the flexibility of generative learning-based
curve matching to support the precise model transformations,
allowing an accurate fitting of peak overlap and broadening.
Moreover, Kullback-Leibler (KL) divergence loss (Figure 2C;
Methods S5) between the generated and input spectra is
computed and iteratively minimized during the training phase,
increasing generation accuracy.®%“°

Further details regarding the methods can be found in
Methods S1-S9.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be
directed to and will be fulfilled by the lead contact, Loza F. Tadesse (lozat@
mit.edu).

Materials availability
This study did not generate new unique reagents.
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Data and code availability
@ Data used in this research are all from open-source dataset RRUFF.*®
® The code of this research is available at https://github.com/ymzhui9eee/
Raman-generation.
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