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With the shrinking of dimensionality, Coulomb interaction plays a distinct role in two-dimensional (2D)
semiconductors owing to the reduced dielectric screening in the out-of-plane direction. Apart from the dielectric
screening, free particles such as carriers and dipoles or excitons can also make a non-negligible contribution
to the Coulomb interaction. While the Thomas-Fermi model is effective in describing charge carrier screening
in three dimensions, the extent of screening resulting from neutral dipoles or excitons in both two and three
dimensions remains quantitatively unclear. Here, we present an analytical solution based on linear response
theory, offering a comprehensive depiction of the Coulomb screened potential from charge-neutral dipoles or
excitons in both 2D and 3D systems, while the free dipole screening effect is much stronger in the 2D case
than that in the 3D case. Using the derived screened Coulomb potential, we estimate the exciton binding energy
shift arising from the mutual exciton screening effect, which is found to be an order of magnitude larger than
that due to exchange-driven exciton-exciton interaction, yielding excellent agreement with the experimental
observations. Our work provides a practical and insightful framework for directly analyzing and evaluating
Coulomb interaction strength in an excitonic system in atomically thin materials, with implications for the design
of electronic and optoelectronic devices.
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I. INTRODUCTION

The emergence of atomically thin two-dimensional (2D)
materials not only offers a versatile platform for physical
research, but also holds great promise for various applications
owing to their intriguing properties. With reduced dimen-
sionality, Coulomb interaction is greatly enhanced due to
reduced dielectric screening and spatial confinement [1,2].
This enhanced Coulomb interaction plays a more signifi-
cant role in the electronic properties of 2D materials than
in their three-dimensional (3D) counterparts, usually deter-
mining the characteristic optical and electronic properties.
Renowned evidence includes the giant exciton binding en-
ergy [3–5], significant renormalization of the electronic band
gap [6,7], Moiré excitons in 2D heterostructures [8–10], and
enhanced superconductivity [11,12]. Achieving an effective
modification of the Coulomb interaction is crucial for poten-
tial applications based on 2D materials [13–15].

In contrast to the 3D dielectric case, where macro-
scopic Coulomb screening is well described by a single
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macroscopic dielectric constant εs or, more accurately, a per-
mittivity tensor in the modified Coulomb potential [Fig. 1(a)],
macroscopic screening in the 2D dielectric case is highly non-
local [16–18] and the induced polarization is confined to the
2D plane [Fig. 1(b)], resulting in a suppression of dielectric
screening in the out-of-plane direction. The Coulomb poten-
tial due to this contrasting dielectric polarization in the 2D
case is widely described in the Rytova-Keldysh form [19,20],
V2D(ρ, z) = e

8ε0r0
[H0( εsρ

r0
) − Y0( εsρ

r0
)], where H0 and Y0 denote

Struve and Neumann functions, and ρ, r0, and εs are the 2D
spatial coordinates, effective screening length, and effective
dielectric constant, respectively. It displays logarithmic diver-
gence (V app

2D = − e
4πε0r0

[ln( εsρ

2r0
) + γ ]) over a short range and

is reduced to the conventional 3D screened potential (V3D =
e

4πεsε0r ) in the long-range limit [Fig. 1(e)].
Apart from screening from the crystal lattice polarization,

referred to as dielectric screening, the Coulomb potential can
be further screened by free particles, including free charge car-
riers and charge-neutral dipoles or excitons. Typically, in 3D
systems, the screened Coulomb potential arising from charge
carriers is well described by the Debye model, Thomas-Fermi
model, or Lindhard theory [21]. An exponential damping term
is exerted on the long-range Coulomb potential (V carrier

3D =
e

4πεsε0r e−r/rD ), where rD is the Debye screening length, mak-
ing it a short-range potential. For 2D systems, the Coulomb
potential can be screened by free carriers through their re-
distribution as well [Fig. 1(c)]. A quantitative description
accounting for the screening effect by free carriers in 2D sys-
tems has been developed and discussed in many prior studies
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FIG. 1. Schematic illustration of Coulomb screening from dielectric polarization and free particles. Dielectric polarization in the (a) 3D
case and (b) 2D case. The dashed spheres indicate the initial position of ions in a crystal lattice, while the solid spheres represent their displaced
positions after the introduction of a hypothetical point charge. In the 2D case, the polarization occurs only within the 2D plane, leading to a
nonlocal macroscopic screening. (c) Screening by free charge carriers: the dashed circles indicate the initial spatial distribution of carriers
and the solid circles show their redistribution following the introduction of a point charge. (d) Screening by free charge-neutral dipoles: the
dashed ellipses mark the initial configuration of dipoles, while the solid ellipses show their reoriented and redistributed positions following
the introduction of a point charge. (e) Comparison of Coulomb potential under different screening conditions. The gray line shows the bare
Coulomb potential in vacuum, V0 = e

4πε0r ; the red line shows the Coulomb potential screened by a bulk dielectric, V3D = e
4πεsε0r ; the blue

line includes additional screening by free carriers in a bulk dielectric, V carrier
3D = e

4πεsε0r e−r/rD ; the green line represents the Coulomb potential
in a 2D lattice, V2D = e

8ε0r0
[H0( εsρ

r0
) − Y0( εsρ

r0
)]; and the purple line shows the short-distance approximation of the 2D Coulomb potential,

V app
2D = − e

4πε0
[ln( εsρ

2r0
) + γ ].

[20,22–25]. Notably, Stern derived a 2D screening potential
for fermionic carriers in the static limit [22]. However, this ap-
proach does not properly account for the dielectric screening
of the thin film and surrounding materials, limiting its appli-
cability to layered 2D systems. More recently, Glazov and
Chernikov provided an accurate analytical form of the carrier-
screened Coulomb potential and demonstrated the breakdown
of static carrier screening to estimate the exciton binding
energy [25]. On the other hand, free dipoles/excitons can also
screen the Coulomb potential via the dipole shift and reori-
entation [Fig. 1(d)]. One example is small polar molecules
in solvents, where dipole screening dominates electrostatic
interaction [26–28]. While dipole-induced screening is gen-
erally much weaker than carrier-induced screening and often
neglected due to the charge neutrality of dipoles/excitons, it
can become significant in certain scenarios in the 2D case, par-
ticularly at moderate dipole/exciton densities. [29,30] This is
because, in 2D systems, dipoles are usually confined to the 2D
plane and this orientational constraint leads to the enhanced
screening of the Coulomb interaction in plane. As shown in

Fig. 1(e), different forms of Coulomb potential are compared,
and the screened Coulomb potential from dipoles/excitons
remains quantitatively unexplored.

Recently, the screening effect of excitons has been ex-
perimentally addressed in an exciton system of monolayer
transition metal dichalcogenides (TMDs) [31,32]. However, a
general and specific quantitative description and comparison
of the screened Coulomb potential arising from charge-neutral
dipoles in both the 2D and 3D cases are still lacking. Address-
ing this gap constitutes the primary focus and key findings of
this article.

The outline of the paper is as follows. In Sec. II, we present
a detailed derivation of the modified Coulomb potential un-
der a screening effect from charge-neutral dipoles within the
framework of linear response theory for both 2D and 3D
systems. To validate our approach, we cross verify the results
using perturbation theory, as detailed in the Supplemental
Material [33]. In Sec. III A, we analyze and compare the
screened Coulomb potential from dipole/excitons with the
unscreened Coulomb potential in both 2D and 3D systems,
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FIG. 2. Schematics of screening effect from charge-neutral dipoles in the 2D case. (a) A dielectric sheet (εm) encapsulated in a dielectric
environment (εs), where the screening effect from the dielectric part and free dipoles are decoupled. (b) Illustration of the charge–dipole
interaction in the 2D system. (c) In certain cases, dipoles are sufficiently small and free to rotate in three dimensions, rather than the dipole
orientation being strictly confined to the 2D plane.

confirming the enhanced screening effect of free dipoles in the
2D case. In Sec. III B, we apply the derived screened potential
to estimate the variation of exciton binding energy with exci-
ton density. The calculated results show good agreement with
both theoretical predictions and experimental observations.
Overall, our work provides a valuable framework and a con-
venient tool for analyzing and quantifying the dipole-screened
Coulomb interactions in atomically thin materials.

II. DERIVATION OF MODIFIED COULOMB POTENTIAL
UNDER SCREENING EFFECT FROM FREE

CHARGE-NEUTRAL DIPOLES

A. Preconditions for 2D approximations

Before delving into the detailed derivation of the modified
Coulomb potential due to the screening effects of dipoles
(excitons) in the 2D case, the impact of thickness of 2D
materials on the screening effect should be clarified and the
following conditions should be satisfied so that the system can
be approximated as a 2D system. We begin with a dielectric
sheet (with subscript m) with finite thickness (l) encapsulated
in a dielectric environment (with subscript s) [Fig. 2(a)]. There
are two key criteria as follows:

(1) l � λth, where λth is the thermal de Broglie’s wave-
length of the electron (typically several to a dozen nm based

on different temperature); l � 12π2 h̄2εsε0
e2m (typical several nm,

which is slightly smaller than the thermal de Broglie’s wave-
length), such that the interaction energy remains far below
the energy separation between the ground state and the first
excited state due to the quantum confinement to avoid the
excited state’s population [34]. The two conditions on thick-
ness ensure that electron motion perpendicular to the film is
exclusively confined to the lowest mode.

(2) l2n � 1, where n is the free particle density, imply-
ing that the average relative distance (rd ) between particles
is much bigger than the film thickness (l), which means
(l � rd ) [20].

The two criteria allow us to approximate the system
as effectively a pure 2D case, ignoring the z dependence
along the out-of-plane direction. In other words, under
these two conditions, we can confine the dielectric screen-
ing of 2D films by introducing 2D polarizability: ηind(r) =
α2Dδ(z)∇2V (ρ, z = 0), where ηind(r) is the induced bound
charge density and α2D = ε0(εm − εs)l is the 2D polarizability
[2]. Hence, thickness (l) is encoded in α2D, which is not
explicitly stated in the Coulomb potential but its effect is
implicitly accounted for. Alternatively, one can always start
from a finite thickness and apply the procedures of Rytova,
Keldysh, and García Flórez et al. to calculate the Coulomb
potential [19,20,34], where the thickness (l) explicitly appears
in the following formula:

V RK (q, z1, z2) = −e cosh
[
q
(

l
2 − z1

) + 1
2 ln

(
εm+εs
εm−εs

)]
cosh

[
q
(

l
2 + z2

) + 1
2 ln

(
εm+εs
εm−εs

)]
qεmε0 sinh

[
ql + ln

(
εm+εs
εm−εs

) ] , (1)
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where |z1|, |z2| � l
2 correspond to the position of the two

charges along the out-of-plane direction. By taking the afore-
mentioned two criteria, the z dependence is eliminated and the
simplified potential has the form V RK (q, z1, z2) ≈ V RK

app (q) =
e

ε0q(2εs+εmlq) . Under this approximation, modeling both the
source and test charges using the ground-state wave function
of the 1D infinite well (u1(z)) yields the same Coulomb po-
tential as treating them as rigid pointlike objects,

V RK
qc (q) =

∫ l
2

− l
2

∫ l
2

− l
2

dz1dz2u2
1(z1)u2

1(z2)V RK (q, z1, z2)

≈ V RK
app (q). (2)

It should be noted that the quantum confinement effect,
which is particularly significant in the 2D case, is already
incorporated through the approximation of strict 2D under the
given preconditions.

Thus, these two approaches, i.e., starting directly with a 2D
film of negligible thickness or approximating after accounting
for finite thickness, are equivalent. For simplicity, we adopt
the first approach in the following derivations, treating the
dielectric sheet as infinitely thin and confining free dipoles
to the 2D plane.

B. Calculation of induced charge density associated
with the dipoles based on linear response theory

Unlike charge carriers, electric dipoles (p = ed) are charge
neutral as a whole, but possess a finite charge-separated vec-
tor. To incorporate the effect of dipole screening in the 2D
case, we start with a system in thermodynamic equilibrium
with a uniform dipole density (ndipole(ρ) = cons.) as the Jel-
lium model [35]. The system is perturbed by introducing a
point charge (eδ(r)) at the origin and at time t0, described by
a time-dependent perturbative term (H1,s(t ) = { 0, t � t0

UI (t ), t > t0
).

Under the interaction picture and within the frame-
work of linear response theory, the change in the ex-
pectation value of an operator is given by 〈Ôind(t )〉 =
−ih̄−1 ∫t

t0 dt ′〈[ÔI (t ),UI (t )]〉. For the dipolar density [P̂(ρ, t )],
which couples to the gradient of the Coulomb potential from
the point charge (∇V ext), the induced dipolar density can be
expressed as〈
P̂

ind
i (ρ, t )

〉
= −ih̄−1

∫ t

t0

dt ′
∫∫

dρ′χP,i j (ρ, ρ′; t, t ′)[∇V ext (ρ′, t ′)] j,

(3)

where χP,i j (ρ, ρ′; t, t ′) = −ih̄−1�(t−t ′)〈[P̂i(ρ, t ), P̂ j

(ρ′, t ′)]〉 is the tensorial dipolar density–dipolar density
response function. Here, P̂i(ρ, t ) represents the dipolar
density’s component along the i-th direction at position ρ

and time t and �(t ) = − limη→0+ 1
2π i ∫∞

−∞ dω e−iωt

ω+iη is the
Heaviside step function. This tensorial response function
is mathematically cumbersome, particularly because the
external electric field E = −∇V ext (ρ′, t ′) is spatially
nonuniform. To simplify the calculation of the potential
energy UI (t ) coupled to dipolar density P̂(ρ, t ), we start from
the classical picture of a dipole consisting of two opposite

charges separated by a vector dθ . We decomposed the dipolar
density into discrete orientation subcomponents Pθ j (ρ, t )
along orientations θ j (θ j = 2π j

N , j = 1, 2, . . . , N): P(ρ, t ) =∑N
j=1 Pθ j (ρ, t ) = ∑N

j=1 nθ j (ρ, t )edθ j , where nθ j (ρ, t ) is the
dipole density for the dipoles aligned along θ j . The interaction
energy is then UI (t ) = ∑N

j=1 P̂θ j (ρ, t ) · [∇V ext (ρ, t )] =∑N
j=1 n̂θ j (ρ, t )e[V ext (ρ + dθ j

2 , t ) − V ext (ρ − dθ j

2 , t )]. This
leads to the induced dipolar density,

〈P̂ind
(ρ, t )〉 = −ih̄−1e

∫ t

t0

dt ′
∫∫

dρ′
N∑

j=1

N∑
f =1

dθ f

× 〈[
n̂θ f (ρ, t ), n̂θ j (ρ

′, t ′)
]〉

e

×
[
V ext

(
ρ′ + dθ j

2
, t ′

)
− V ext

(
ρ′ − dθ j

2
, t ′

)]
.

(4)

Note that n̂θ f (ρ, t ) = g(θ j )n̂dipole(ρ, t )�θ , where g(θ j ) is
the angular distribution function and �θ = 2π

N . In a 2D
exciton/dipole system, one typically considers an isotropic
and highly randomized in-plane dipole distribution, such
that the angular distribution function g(θ ) ≈ cons.. Moreover,
〈[n̂θ f (ρ, t ), n̂θ j (ρ

′, t ′)]〉 ∝ δ f j since the dipoles with differ-
ent orientation are uncorrelated. This implies that the dipole
density along θ f couples only to its own potential energy
contribution P̂θ f (ρ, t ) · [∇V ext (ρ, t )]. Thus, Eq. (4) reduces to

〈P̂ind
(ρ, t )〉 = −ih̄−1e2

N∑
j=1

dθ j

∫ t

t0

dt ′
∫∫

dρ′g(θ j )�θ

× 〈[n̂dipole(ρ, t ), n̂dipole(ρ′, t ′)]〉

×
[
V ext

(
ρ′ + dθ j

2
, t ′

)
− V ext

(
ρ′ − dθ j

2
, t ′

)]
.

(5)

Compared with the definition of dipolar density,

〈P̂ind
(ρ, t )〉 = ∑N

j=1 dθ j e〈n̂θ j (ρ, t )〉, we obtain

〈n̂θ j (ρ, t )〉 = g(θ j )�θ

∫ +∞

−∞
dt ′

∫∫
dρ′χdipole

× (ρ, ρ′; t, t ′)eV (ρ′, dθ j , t ′), (6)

where χdipole(ρ, ρ′; t, t ′) = − i
h̄�(t−t ′)〈[n̂dipole(ρ, t ),

n̂dipole(ρ′, t ′)]〉 is the density-density correlation function and

eV (ρ′, dθ j , t ′) = [eV ext (ρ′ + dθ j

2 , t ′) − eV ext (ρ′ − dθ j

2 , t ′)] is
the effective potential energy. Thus, although we started
from a vectorial quantity, in the specific case of an isotropic
and uncorrelated dipole distribution subject to an isotropic
perturbation from a point charge, which also does not have
any direction preference, the full tensorial response simplifies
in terms of solving the scalar response function.

For a translationally invariant system and time-
independent perturbation, the dipole density-density response
function depends only on relative coordinates and time
differences: χdipole(ρ, ρ′; t, t ′) = χdipole(ρ − ρ′; t−t ′).
In the static limit (ω → 0), the Fourier transfor-
mation (FT) of the induced dipole density can be
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expressed as 〈n̂θ j (q)〉 = g(θ j )�θχdipole(q)eV (q) =
g(θ j )�θχdipole(q)e(2iV ext (q) sin(q · dθ j

2 )), where χdipole(q) =
1
S

∑
k

f (εk+q )− f (εk )
εk+q−εk

[21,36]; f (εk) represents the Bose-Einstein
statistic due to dipoles being bosonic entities and S is the real
space area of the 2D system.

The corresponding induced charge density associated with
the dipoles is

〈
ηind

dipole(ρ, z = 0)
〉 = e

N∑
j=1

[
nind

θ j

(
ρ − dθ j

2
, z = 0

)

−nind
θ j

(
ρ + dθ j

2
, z = 0

)]
. (7)

FT yields

ηind
dipole(q, z = 0)

= e2χdipole(q)V (q)
N∑

j=1

4g(θ j )�θsin2

(
q · dθ j

2

)
. (8)

Alternatively, one can also start from the
〈ηind

dipole(ρ)〉 = −∇ · 〈Pind(ρ)〉 to calculate the charge
density associated with the dipoles based on Eq. (5).
We obtain 〈ηind

dipole(q)〉 = i
∑N

j=1(q · dθ j )e〈nind
θ j

(q)〉 ≈

e2χdipole(q)V (q)
∑N

j=1 4g(θ j )�θsin2(q · dθ j

2 ), which is
identical to Eq. (8).

Since the isotropic and a highly randomized
dipole system (g(θ ) ≈ 1

2π
) are considered and the

dipole orientation is confined in the 2D plane in

a semiclassical way,
∑N

j=1 4g(θ j )�θsin2(q · dθ j

2 ) ≈
1
π

∫2π
0 dθ{1− cos[qd cos(θ )]} = 2[1 − J0(qd )], where J0

is the zeroth-order Bessel function. The induced charge
density can be further simplified as

ηind
dipole(q, z = 0) = 2e2χdipole(q)V ext (q)[1 − J0(qd )]. (9)

We cross checked the induced charge density associated
with dipoles by perturbation theory to calculate the charge
density associated with dipoles, which yields the same re-
sults as Eq. (8). (More details are given in the Supplemental
Material [33].)

C. Screened Coulomb potential from free dipoles

1. 2D dipoles in 2D plane

After the calculation of the induced charge density, we
return to the Poisson’s equation, and the screened Coulomb
potential [V (r)] arising from the external point charge at the
origin can be expressed as

∇2V (r) = − e

ε0
δ(r)︸ ︷︷ ︸

point charge

− 1

ε0
αs∇2V (r)︸ ︷︷ ︸

3D dielectric

− 1

ε0

(
α2D

m − α2D
s

)∇2
ρV (ρ, z = 0)δ(z)︸ ︷︷ ︸

2D dielectric

− 1

ε0
ηind

dipole(ρ, z = 0)δ(z)︸ ︷︷ ︸
free dipole screening

. (10)

As illustrated in Fig. 2(a), ε0 denotes vacuum permittivity,
the first term corresponds to the point charge, the next two
terms describe the contribution from dielectric surroundings,
including the 3D surrounding part ( 1

ε0
αs∇2V (r)) and bound

charges in the 2D plane ( 1
ε0

(α2D
m − α2D

s )∇2
ρV (ρ, z = 0)δ(z)),

αs is the 3D polarizability, and α2D
s and α2D

m represent
the 2D polarizabilities of the surroundings and dielectric
sheet, which are linked to the macroscopic polarization
by Ps = −αs∇V (r), P2D

s = −α2D
s ∇ρV (ρ, z = 0), and P2D

m =
−α2D

m ∇ρV (ρ, z = 0), respectively. The last term encodes the
screening effect from free dipoles. As discussed in Sec. II A,
we treat the 2D film as having negligible thickness and
confine the induced dipolar charge density to the XOY
plane by introducing 3D induced charge density ηind

dipole(r) =
ηind

dipole(ρ, z = 0)δ(z).
Then, performing an FT on both sides in the static limit

(ω → 0), we obtain

(
q2 + k2

z

)
V (q, kz ) = − 1

εsε0

[
e + q2 α2D

2π

∫ ∞

−∞
V

(
q, kz

)
dkz

]

− e2

πεsε0
χdipole(q)[1 − J0(qd )]

×
∫ ∞

−∞
V (q, kz )dkz, (11)

where εsε0 = ε0 + αs, α2D = α2D
m − α2D

s .

Taking the derivative of both sides with respect to kz yields

(
q2 + k2

z

)dV (q, kz )

dkz
+ 2kzV (q, kz ) = 0, (12)

whose general solution is V (q, kz ) = ( C
q2+k2

z
) and V (q, z = 0)

= 1
2π

∫V (q, kz )dkz = C
2q . Substituting V (q, z = 0) in Eq. (11)

allows us to determine the coefficient C, giving the screened
Coulomb potential due to free dipoles in reciprocal space,

V 2D dipole
2D (q, z = 0)

= e

q(2εsε0 + qα2D) − 2e2χdipole(q)[1 − J0(qd )]
. (13)

We note that one can, in principle, iteratively calculate
the modified Coulomb potential through Poisson’s equation
[Eq. (11)], and induced charge density through linear response
theory until the modified Coulomb potential converges, as
shown in Fig. S1(a) in the Supplemental Material [33]. Alter-
natively, many earlier works [2,22,25] adopt the more direct
approach of solving the self-consistent Poisson’s equation,
as depicted schematically in Fig. S1(b) in the Supplemental
Material [33], thereby avoiding complex iterative calculations.
Here, we follow the latter approach to directly solve the
self-consistent Poisson’s equation and obtain a closed-form
analytical expression for the screened Coulomb potential.
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TABLE I. Coulomb potential in 2D and 3D systems without screening, and with carrier screening and dipole screening, respectively.

2D 3D

Dielectric screening only e
q(2εsε0+α2Dq)

a e
(εmε0q2 )

Carrier screening e
q(2εsε0+qα2D )−e2χcarrier (q)

b e
εmε0q2−e2χcarrier (q)

c

Dipole screening 2D dipole: e
q(2εsε0+qα2D )−2e2χdipole (q)[1−J0 (qd )]

e
εmε0q2−2e2χdipole (q)(1− j0 (qd ))

d

3D dipole: e
q(2εsε0+qα2D )−2e2χdipole (q)(1− j0(qd ))

aReference [2].
bReferences [20,25].
cLindhard function.
dThe long wavelength approximation (q → 0) result was discussed in Ref. [37].

2. 3D dipoles in 2D plane

Beyond the case of dipoles restricted to in-plane
motion and orientation, we extend our analysis to a
more general scenario where dipoles are free to rotate in
3D space but remain confined spatially to the 2D plane,
referred to as a 3D dipole in a 2D plane [Fig. 2(c)].
This extension is motivated by practical situations, such
as electrolyte molecules in three-dimensional space near
a two-dimensional film, as discussed in Refs. [26–28].
For such 3D dipoles, the orientation θ j corresponds to
solid angle (θ j1 , φ j), with θ j1 = π j1

N1
and φ j2 = 2π j2

N2
, and

the induced dipole density runs over all orientations,
ηind

dipole(q, z) = ∑N1
j1=1

∑N2
j2=2 sin θ j1�θ�φηind

(θ j1 ,φ j2 )≈ 1
4π

∫2π
0 dφ

∫π
0 sin θdθηind

(θ j1 ,φ j2 ). Following Rytova and Keldysh’s
treatment for a 2D film of finite thickness to solve Poisson’s
equation, the induced charge density associated with
dipoles is calculated and can be effectively expressed as
ηind

dipole(q) = 2e2χdipole(q)[1 − j0(qd )]V (q), where j0 is the
zeroth-order spherical Bessel function and the corresponding
approximated 2D screened Coulomb potential by 3D dipoles
is given by

V 3D dipole
2D (q)

= e

q(2εsε0 + α2Dq) − 2e2χdipole(q)[1 − j0(qd )]
. (14)

The derivation follows a similar procedure outlined in pre-
vious sections, with full details provided in the Supplemental
Material [33]. The resulting expression is structurally similar
to Eq. (13). The key difference is the function j0(qd ), which
accounts for dipole orientation in 3D space, replacing J0(qd ),
which describes dipole orientation confined to the 2D plane.

3. Dipoles in 3D case

Finally, for dipoles in a fully 3D system, we use the same
strategy as for free carriers in 3D, where the screened potential
is obtained using conventional Lindhard theory (see the Sup-
plemental Material [33] and Refs. [21,36]). By analogy, the
screened potential in the 3D system arising from free dipoles
is

V dipole
3D (q) = e

εmε0q2 − 2e2χdipole(q)[1 − j0(qd )]
. (15)

For comparison, Table I summarizes the Coulomb poten-
tial under different screening conditions: dielectric screening

only, carrier screening, and dipole screening in both 2D and
3D. Among these screened Coulomb potentials, the dielec-
tric screening in both 2D and 3D is well established: In
the 3D case, the Coulomb potential in momentum space is
V 3D(q) = e

εmε0q2 and in real space is V 3D(r) = e
4πεmε0r . In the

2D case, the corresponding Coulomb potentials in momentum
space and real space are V 2D(q) = e

q(2εsεm+α2Dq) and V 2D(ρ) =
e

8ε0r0
[H0( εsρ

r0
) − Y0( εsρ

r0
)], respectively. We compared these di-

electric screened Coulomb potentials in real space in Fig. 1(e).
As for the carrier screening effect, in the 3D case, the

screened Coulomb potential from free carriers is V 3D
carrier (q) =

e
εmε0q2−e2χcarrier (q) in momentum space, reducing to Yukawa

potential V 3D(r) = e
4πεmε0r e−κr in real space in the long-

wavelength limit (q → 0), where κ =
√

e2

εmε0

∂ncarrier
∂μ

and μ

is the chemical potential, with the analogous 2D ex-
pression obtained from the Lindhard function, V 2D(q) =

e
q(2εsεm+α2Dq)−e2χcarrier (q) [25].

As shown in the previous section, we provide analyti-
cal expressions for the screened Coulomb potential arising
from free dipoles in both 3D and 2D cases, although eariler
work [37] has discussed dipole screening only under the
long-wavelength approximation in the 3D case. It should be
noted that in the free-particle screened Coulomb potential, the
forms of χcarrier (q) and χdipole(q) indicate that the Coulomb
potential remains radially symmetric because homogeneous
particles, whether charge carriers or charge-neutral dipoles,
do not break the in-plane rotational symmetry.

III. DISCUSSION OF THE SCREENED
COULOMB POTENTIAL

A. Enhanced free dipole screening effect in 2D case

To investigate the screening effect induced by free dipoles,
we calculate and plot the screened Coulomb potential us-
ing our derived formalism (Table I), as shown in Fig. 3.
The dipole-screened Coulomb potential depends on both the
doping density (ndipole) and dipole size (d). For illustrative
purposes and as a practical example to evaluate the modified
Coulomb potential, we set d = 1.3 nm, which is the typical
exciton Bohr radius in monolayer TMDs [38] and ndipole =
1011 cm−2 in a 2D system. For comparison, the dipole den-

sity in a 3D system is chosen as ndipole = (1011)
3
2 cm−3,

ensuring a consistent reference between 2D and 3D systems.
Figure 3(a) shows the momentum-space Coulomb potential
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FIG. 3. Screened Coulomb potential from free dipoles in momentum and real space. (a), (b) Comparison of the bare 2D Coulomb potential
(V2D ) (black solid line), 2D screened Coulomb potential in the presence of 3D dipoles (V 3D dipole

2D ) (red solid line), and 2D dipoles (V 2D dipole
2D )

(blue solid line) in (a) momentum space and (b) real space. The corresponding relative screening effect,
|V screening

2D −V2D |
V2D

, is indicated by dashed

lines and shaded areas. The dipole size and dipole density are set to d = 1.3 nm and ndipole = 1011 cm−2, respectively. The inset in (a) shows
a zoom-in view of the dashed region in (a), highlighting a noticeable screening effect from dipoles in the 2D case. (c), (d) Comparison of the
bare 3D Coulomb potential (V3D ) (black solid line) and the dipole-screened 3D potential, V dipole

3D (red solid line), in (c) momentum space and

(d) real space. The dipole size remains as d = 1.3 nm, and the volumetric dipole density is chosen as n3D
dipole = (1011)

3/2
cm−3 for comparison

with the 2D case. The dashed line and filled area represent the relative screening,
|V screening

3D −V3D |
V3D

, indicating a much weaker screening effect from
dipoles in the 3D case. The inset in (c) shows a zoom-in view of the dashed region, where the dipole screening is found to be negligible.

for the bare 2D Coulomb potential, V2D(q) = e
q(2εsε0+α2Dq)

(black solid line), as well as the screened 2D Coulomb poten-
tial in the presence of 3D dipoles in a 2D plane, V 3D dipole

2D (q) =
e

q(2εsε0+qα2D )−2e2χdipole (q)[1− j0(qd )] (red solid line) and 2D dipoles

in a 2D plane, V 2D dipole
2D (q) = e

q(2εsε0+qα2D )−2e2χdipole (q)[1−J0(qd )]

(blue solid line), respectively. The inset in Fig. 3(a) high-
lights a zoom-in view near q = 0.2 nm−1, where noticeable
reductions in both screened Coulomb potentials are observed
due to the dipole screening, whether the dipole orientation is
confined in the 2D plane or free to rotate in 3D space. The

relative screening effect, quantified by |V screening
2D −V2D|

V2D
, is found

to be most prominent in the range q = 0−0.4 nm−1, which
corresponds to the selected dipole size (d = 1.3 nm).

Another important observation is that 2D dipoles induce
stronger screening than 3D dipoles. This is because, in the 2D

case, both the spatial location and orientation of the dipoles
are restricted to the plane, thereby confining the screening
field within the same geometry as the 2D Coulomb interac-
tion. In contrast, 3D dipoles, which located in the 2D plane but
are free to orient in three dimensions, lead to a more isotropic
field distribution, reducing the effective in-plane screening.
The corresponding 3D results are shown in Fig. 3(c), where
a direct comparison reveals a much weaker screening effect
from free dipoles in the 3D case. The inset confirms that
the screened potential closely follows the unscreened one,
making the screening nearly negligible in the 3D case at the

corresponding dipole density ndipole = (1011)
3
2 cm−3.

Since the analytical form of the screened Coulomb po-
tential in real space is not readily obtainable, we evaluate
it numerically, as shown in Figs. 3(b) and 3(d). In real
space, the bare 2D Coulomb potential is given by V2D(ρ) =
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FIG. 4. Calculation of binding energy variation as a function of
exciton density. Binding energy shifts of 1s state (black balls) and
2s state (red balls) excitons in monolayer TMD due to the mutual
exciton screening effect as a function of exciton density.

e
8ε0r0

[H0( εsρ

r0
) − Y0( εsρ

r0
)]; screened potentials in the presence

of 2D (V 2D dipole
2D (ρ)) and 3D (V 3D dipole

2D (ρ)) dipoles show neg-
ligible deviation from the bare potential at short distances
(ρ < 0.1 nm), but a clear suppression emerges around the ρ ∼
0.5−5 nm region, close to the order of magnitude of the dipole
size (d = 1.3 nm). As ρ increases to ∼10 nm, the screening
effect gradually decreases, as indicated by the dashed line and
filled area in Fig. 3(c). In stark contrast, negligible screening is
exhibited at all distances in the 3D system [Fig. 3(d)], further
confirming the weak influence of free dipoles.

B. Estimation of exciton binding energy

Unlike regular dipoles, ground-state excitons do not pos-
sess permanent dipole moments owing to the s-type exciton
envelope function. Nevertheless, excitons can be approx-
imated as the composition of instantaneous dipoles with
complete orientations or, in other words, the statistical aver-
age of homogeneous dipoles with different orientations, as
depicted in the inset of Fig. 4. Under this simple approxi-
mation, we do not distinguish the screening effect between
randomly distributed dipoles and excitons in the following
text. Owing to the large binding energies of 2D materials,
excitons are stable even at room temperature. Such an exciton
system provides an unprecedented platform for investigating
the dipole/exciton-screened Coulomb potential as a function
of exciton density in the 2D case.

Recently, a report demonstrated the mutual exciton screen-
ing effect in an exciton system in monolayer MoSe2. This
effect was confirmed experimentally and quantified as a
function of exciton density. Interestingly, the mutual exciton
screening effect was found to be five times stronger than the
exchange-driven exciton-exciton interaction [32]. Here, we
used the derived screened Coulomb potential to account for
a mutual exciton screening effect in such an exciton system.
As shown in Fig. 3(a), the potential modification from dipoles

mainly occurs in the range of ∼0−0.4 nm−1. Given that the
effective Bohr radius of ground-state excitons in monolayer
TMDs is approximately 1.3 nm [38], the screening effect of
the exciton population can be significant. Using the dipole
screening formula derived in Table I, we evaluate the change
in the Coulomb potential via a perturbative term to the initial
Coulomb potential under low or medium exciton densities.
Specifically, the modification in the Coulomb potential be-
tween exciton-populated and zero-exciton systems, �V (q),
can be approximated as �V (q) ≈ 2e3χ (q)[1−J0(qd )]

q2(2ε+qα2D )2 . This allows
us to calculate the exciton binding energy variation of the Ry-
dberg series of excitons (1s, 2s, …) using perturbation theory,
which can be expressed as

〈ϕns(r)|V (r)|ϕns(r)〉

= 1

(2π )4

∫∫
ϕ∗

ns(k1)ϕns(k2)�V (k1 − k2)dk1dk2. (16)

To perform this calculation, we chose the Rydberg exciton
wave function from the 2D hydrogen atom model, ψ1s(k) =
2
√

2π
aB,1s

[1+a2
B,1sk

2]3/2 and ψ2s(k) = 2
√

6π
aB,2s

[1+a2
B,2sk

2]3/2

a2
B,2sk

2−1

a2
B,2sk

2+1
,

where aB,1s and aB,2s are the Bohr radius of the ground state
(1s) and the first excited state (2s). It should be noted that both
1s and 2s exciton wave functions of monolayer TMDs are
mainly located in the range of ∼0−2 nm−1, which implies
that the modified Coulomb potential due to exciton screening
can effectively tune the exciton binding energy.

We performed numerical calculations using the Monte
Carlo method. After a careful convergence analysis test with
the sample size as shown in the Supplemental Material [33],
we set the sample size to be 108.5 and the calculated results are
summarized in Fig. 4. The binding energies of 1s and 2s ex-
citons increase almost linearly in the low and medium exciton
density regimes (1010 cm−2 to 5 × 1011 cm−2). However, the
2s excitons are less affected by the dipole screening, as the 2s
exciton wave function is more spread out with a larger Bohr
radius (aB,2s ∼ 3 nm), while the 1s exciton is more localized
with a smaller Bohr radius (aB,1s ∼ 1.3 nm), making it more
susceptible to the mutual screening effect. This result is con-
sistent with previous experimental reports [32]. The calculated
binding energy shift is somewhat overestimated compared to
the experimental results, which may result from the difference
between the actual wave functions in 2D materials and the
idealized wave functions of the 2D hydrogen atom model used
in our numerical calculations.

IV. CONCLUSIONS

Although estimating the exciton binding energy with ele-
vated exciton density using the modified Coulomb potential
has proven successful, the derived formula fails to accu-
rately align the estimation of exciton binding energy as a
function of carrier density. Some researchers attribute this
discrepancy to the limitation of static screening [25]; we
contend that its ineffectiveness stems from two more key
factors. First, the exciton resonance peak comprises various
contributing factors including the exciton resonance energy,
electronic band gap, exciton binding energy, exciton-carrier
interaction, and exciton-exciton interaction. Particularly in the
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context of carrier doping, the exciton-carrier interaction is
more aptly described by the Fermi-polaron picture, which
arises from the collective interaction between excitons and
the Fermi sea [39,40]. This complexity undermines the sim-
plistic view of excitons solely as a two-particle (exciton) or
three-particle (trion) system, thereby rendering the application
of static screening approximation ineffective in this scenario.
Second, it is essential to recognize that both static and dy-
namic screening approaches are grounded in linear response
theory or perturbation theory. The validity of the screened
Coulomb potential depends on whether the conditions fit
in the perturbation terms and whether static or dynamic
screening methodologies are employed. Consequently, the
screened Coulomb potential was not applicable at high carrier
densities. Nevertheless, for exciton doping at approximately
5 × 1011 cm−2, the screened term can still be considered a
perturbative term, as depicted in Fig. S4 in the Supplemental
Material [33].

In summary, we have developed an effective model of
the Coulomb potential in 2D systems that incorporates the
screening effect from charge-neutral excitons and dipoles. Our
methodology is based on the framework of linear response
theory, which is inherently a perturbative approach. The re-
sults reveal that excitons and dipoles can significantly modify
the Coulomb interaction in 2D systems due to the confinement

of the excitons and dipoles in the 2D plane. The derived
screened Coulomb potential provides a simple yet powerful
tool to quantitatively evaluate the interaction strength in 2D
materials, with implications for the design of electronic and
optoelectronic devices.
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