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1 Introduction

A wide range of physics models that extend the Standard Model (SM) predict the existence
of new, massive, charged long-lived particles (LLPs). These particles appear in certain dark
matter models [1, 2] and in proposed solutions to the gauge hierarchy problem, including
supersymmetric (SUSY) models [3–8] that either violate or conserve R-parity.1 Particles
can acquire macroscopic lifetimes in models of new physics via the same mechanisms that
generate long-lived SM particles, with lifetimes depending on the mass hierarchies between
new particles and/or the size of a new coupling.

A search is presented for particles that are massive, long-lived, and charged using 140 fb−1

of proton-proton collision data from the ATLAS experiment at the Large Hadron Collider
(LHC) [9]. This analysis looks for a direct interaction of the LLPs with the ATLAS detector
using the measurement of the ionisation energy loss (dE/dx) in the pixel detector and the

1R-parity is a quantum number defined as (−1)3(B−L)+2S where S is the particle spin and L and B are,
respectively, its lepton and baryon number.
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Figure 1. Representative production diagrams for (a) pair-produced gluinos which form R-hadrons
decaying into neutralinos, (b) pair-produced charginos decaying into neutralinos, and (c) pair-produced
staus decaying into gravitinos. The anti-particle labels are suppressed for simplicity.

time of flight (ToF) measured by the hadronic calorimeter. This search is, to first order,
independent of the LLP decay mode and is therefore sensitive to many different models of
new physics. The analysis is optimised for and interpreted in the context of several different
long-lived, pair-produced, supersymmetric particles. Long-lived gluinos appear in models
including mini-split SUSY [10, 11]; once produced, the gluinos hadronise with Standard
Model quarks to produce R-hadrons [12]. Long-lived charginos are motivated by anomaly
mediated supersymmetry-breaking (AMSB) models [13, 14]. Long-lived staus emerge in both
co-annihilation dark matter models [15–17] and in gauge-mediated supersymmetry-breaking
(GMSB) models [18–20]. Representative production and decay diagrams of the processes
targeted by this search are shown in figure 1.

This search is designed to extend the reach of a previous paper [21], in which the primary
signal selection requirement was an isolated, high-momentum track with large dE/dx. Two
complementary search strategies extend the sensitivity with respect to the previous result
for different signal topologies.

One analysis region (β-search) extends the sensitivity to higher masses for models with
one or more charged, heavy LLPs by requiring that the tracks that pass signal candidate
selections have both a large dE/dx and a ToF measurement consistent with a slow-moving
particle. The additional ToF requirement reduces the contribution of background processes
and therefore improves the sensitivity to models in which a large dE/dx in the pixel detector
arises from a heavy, slow-moving particle, with a lifetime greater than about 10 ns. This
analysis specifically targets heavy LLPs, including long-lived charginos and R-hadrons. By
explicitly requiring β ≲ 0.8, this channel is insensitive to models that predict large dE/dx

from relativistic LLPs with an electric charge greater than one [22]. ATLAS reported on
a search for long-lived multi-charged particles in ref. [23].

The second analysis region (di-track search) requires two signal tracks which both
have significant dE/dx. As the requirement of a second signal track significantly reduces
backgrounds, other selection requirements can be relaxed to enhance the signal significance,
in particular for relatively light LLPs, which have a more modest ionisation signature. As
this region is only sensitive to signatures with two charged LLPs, it does not add sensitivity
for R-hadrons (which hadronise into a mix of charged and neutral states), nor for charginos
produced in association with a neutralino. However, the large reduction in background and
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enhanced acceptance for low-mass LLPs yields significant sensitivity gains for pair-produced
sleptons with lifetimes greater than about 3 ns.

For both signal regions, the main observable used is the mass of the particle associated
with the selected track(s). The candidate LLP mass is calculated directly via the relation
m ≡ p/βγ with two independent determinations of βγ, and p measured using the track
curvature in the central magnetic field of ATLAS. In both regions, βγdE/dx is extracted from
a parameterisation of the Bethe-Bloch relationship between βγ and dE/dx [24]. The di-track
search obtains two independent βγdE/dx measurements per event, one per track, while the
β-search obtains both βγdE/dx and βγToF for the same track. The βγToF is calculated from
the ToF measured by a cluster of cells in the ATLAS calorimeter crossed by the candidate
track and their distance from the proton-proton collision. Compatibility between the two
mass measurements is finally required to maximise sensitivity.

This analysis uses the full Run 2 data sample and is an update of several previous
searches performed by the ATLAS experiment in both Run 1 and Run 2 [21, 24–27]. The
CMS experiment has also used a combination of dE/dx and ToF in previous searches [28–31].
ATLAS observed a 3.3 (3.6) global (local) Z significance excess at 1.4 TeV using only the pixel
dE/dx, in 140 fb−1 of Run 2 collisions [21]. As reported in ref. [21], preliminary, uncalibrated
ToF measurements of the calorimeter and muon systems for the tracks in the excess were
not compatible with the hypothesis of slow massive particles. The search presented in this
paper follows up on this excess by calibrating the ToF measurement in the calorimeter and
by designing a signal region with enhanced sensitivity to heavy, charged, and slow LLPs
with unit charge, while additionally extending the sensitivity to sleptons with moderate
lifetimes with a new di-track region.

2 ATLAS detector

The ATLAS detector [32] is a general-purpose detector with a forward-backward-symmetric
cylindrical layout2 covering nearly 4π in solid angle. It consists of an inner detector (ID)
tracking system which measures the trajectories of charged particles, surrounded by a
2 T solenoid, followed by calorimeters which measure the energy of particles that interact
electromagnetically or hadronically, and a muon spectrometer (MS) inside toroidal magnets
which provide additional tracking for muons. The detector is hermetic within its η acceptance
and can therefore measure the missing transverse momentum (p⃗ miss

T , with magnitude Emiss
T )

associated with each event. A two-level trigger system is used to select events [33]. The
first-level trigger is hardware-based and uses a subset of detector information to accept
events, produced by LHC at 40 MHz bunch crossing, at a rate below 100 kHz, which is the
maximum detector readout rate. This is followed by a software-based high-level trigger, which
runs calibration and prompt reconstruction algorithms, reducing the event recording rate
to about 1 kHz. The events are eventually processed offline and reconstructed by making

2ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the
centre of the detector and the z-axis coinciding with the axis of the beam pipe. The x-axis points from the
interaction point to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, ϕ)
are used in the transverse plane, ϕ being the azimuthal angle around the z-axis. The pseudorapidity is defined
in terms of the polar angle θ as η = −ln tan(θ/2).
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use of a software suite [34], which also provides tools for data simulation, analysis, detector
operations, trigger and data acquisition.

Two detectors, the pixel and calorimeter subsystems, are used to measure the βγ of
charged particles and are therefore described in more detail. The pixel detector [35–37] covers
the innermost region of the ID and provides, on average, four precision measurements for each
track in the region |η| < 2.5 at radial distances of 3.4 cm to 13 cm from the LHC beam line.
These measurements determine both the track parameters and the charge released in each
pixel. The charge is measured by digitising the time interval with the signal above a preset
threshold (time-over-threshold or ToT), which is approximately proportional to the ionisation
charge [38]. Compared with the other layers that can measure a charge corresponding to
10 minimum ionising particles (MIPs), the innermost pixel layer, called Insertable B-Layer
(IBL) [36, 37] provides charge measurements with lower resolution and dynamic range. If
the charge released in a pixel exceeds the IBL dynamic range (which is set at approximately
two MIPs) an overflow bit is set. The charge released by a track crossing a layer of the pixel
detector is rarely contained within just one pixel; neighbouring pixels registering hits are
joined together using a connected component analysis [39] to form clusters. The charge of
a cluster is calculated by summing the charges of all pixels belonging to the cluster. The
dE/dx measurement assigned to each track is then calculated by averaging the ionisation
measurements (charge collected in the cluster per unit track length in the sensor) of its
individual clusters. To reduce the effect of the tails of the individual ionisation measurements
on this distribution, a truncated average (⟨dE/dx⟩trunc) is evaluated after removing the
highest dE/dx cluster, or the two highest dE/dx clusters in the rare case of more than four
pixel clusters on a track. Clusters including pixels at the sensor edges and clusters with
overflow ionisation in the IBL are excluded from the ⟨dE/dx⟩trunc calculation, as full charge
detection is not guaranteed for these clusters. A track is considered for this analysis if the
⟨dE/dx⟩trunc is calculated using at least two clusters after removal of those meeting the
criteria defined above. The average number of clusters used for the ⟨dE/dx⟩trunc calculation
is approximately 2.7 per track. The ⟨dE/dx⟩trunc is then corrected for variations of the pixel
detector conditions during the data-taking period (e.g. charge losses due to radiation damage)
and for the residual η-dependence, as described in section 5.1. The output is the variable
used in the signal selection for the search, and is further referred to simply as dE/dx. Like
the restricted energy loss [40], this variable rejects high ionisation deposits.

Neither of these variables show a logarithmic rise at high values of βγ nor sensitivity to
radiative effects, which is expected based on the performance of the restricted energy loss in
thin silicon sensors [40] and confirmed for the specific calculation of dE/dx in the ATLAS
pixel detector with dedicated samples of electrons and muons from Z → ee and Z → µµ

events selected in data. The βγ of a particle can be calculated from the dE/dx of its track
using the Bethe-Bloch formula. A meaningful βγ value can only be estimated in the range
of 0.3 ≲ βγ ≲ 0.9 using the pixel detector. The lower limit is a consequence of the ToT
dynamic range, while the upper limit is due to the proximity of the MIP regime which begins
at βγ ≈ 3 and where dE/dx becomes quasi-independent of βγ.

A silicon microstrip track detector (SCT) [41] surrounds the pixel detector and contributes
to the definition of an accepted track, which must reach a 45 cm radial distance from the
colliding beams.

– 4 –



J
H
E
P
0
7
(
2
0
2
5
)
1
4
0

500 1000 1500 mm0

A3 A4 A5 A6 A7 A8 A9 A10A1 A2

BC1 BC2 BC3 BC5 BC6 BC7 BC8BC4

D0 D1 D2 D3

A13 A14 A15 A16

B9

B12 B14 B15

D5 D6

D4

C10

0,7 1,0 1,1

1,3

1,4

1,5

1,6

B11 B13

A12

E4

E3

E2

E1

beam axis

0,1 0,2 0,3 0,4 0,5 0,6 0,8 0,9 1,2

2280 mm

3865 mm
=0,0η

~~

Figure 2. Schematic showing the TileCal cell layout and |η| acceptance. The red dashed lines
indicate where tracks from the origin with a given pseudorapidity will cross the calorimeter, the
calorimeter cells A, (B, BC) and D belong to layers at increasing radius and all contribute to the ToF
measurement. The special E-cells are not used in the analysis because their time resolution is poor.
The calorimeter response is worse in the region 0.8 < |η| <1.0 (transition region between the barrel
and the extended barrel).

The ATLAS calorimeter system is composed of two parts optimised to measure the
energy of the particles interacting electromagnetically or hadronically. As the target LLPs
are not expected to shower in the electromagnetic calorimeter and the timing resolution of
the electromagnetic calorimeter decreases for small energy deposits, the ToF measurement is
done with the central hadronic calorimeter (TileCal) [42] and uses, as a reference, the beam
crossing time signal provided by the LHC. The TileCal is a barrel-shaped sampling device
(made of steel plates acting as absorber and scintillator tiles as active medium) extending
from a radius of 228 cm to 386.5 cm and covering the range |η| <1.6 as shown in figure 2.

Wavelength-shifting fibres collect the light from scintillators and carry it to the
photomultiplier tubes (PMTs). The analogue signals from the PMTs are amplified, shaped
and digitised by sampling the signal every 25 ns and stored on detector until a trigger decision
is received. The front-end electronics read out the signals produced by approximately 5000
cells organised into three radial layers. The tile calorimeter cells have a good signal time
resolution (better than 1.0 ns (3.7 ns) when more than 5 GeV (500 MeV) are released in one
cell) and can therefore determine βToF through a ToF measurement. Each calorimeter cell
along the particle track contributes to the βToF measurement through a weighted average.
This takes into account both the cell distance from the interaction point and the energy
released in each cell, as the cell time resolution depends on the deposited energy [43].

3 Data and Monte Carlo samples

The analysis is conducted with 140 fb−1 of pp collision data that satisfy the ATLAS data
quality requirements [44]. The data sample was taken during Run 2 of the LHC from 2015
to 2018, at a centre-of-mass energy of 13 TeV. The average number of collisions per bunch-
crossing (pile-up, ⟨µ⟩) is approximately 34. A dedicated sample of 21 pb−1 of low-pile-up data
with ⟨µ⟩ ∼ 0.4 taken in 2017 is used for the dE/dx-to-βγ calibration. In this data sample,
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tracks are reconstructed if they have a transverse momentum pT > 100 MeV (while the
minimum pT requirement in the standard data sample is 500 MeV) allowing the measurement
of low-βγ pions, kaons and protons. Since LLPs are expected to behave similarly to muons
in the calorimeter, data and high-statistic Monte Carlo (MC) samples of Z → µµ are used
to calibrate the ToF response of the calorimeter.

To optimise the analysis selection, MC samples were produced to simulate events
containing long-lived gluinos, charginos, and staus, with lifetimes (τ) from 3 ns to stable,
corresponding to the production diagrams shown in figure 1. These three signal models
are complementary in this study. The gluino samples have large production cross-sections
and are suited to probing the high-mass frontier beyond 2 TeV. The stau samples have
production cross-sections that are several orders of magnitude smaller than for gluinos of the
same mass, and are suited to probing the few-hundred-GeV mass range. The chargino sample
cross-sections have intermediate values and are useful in probing the mass range around 1 TeV.

All signal samples were generated using MadGraph5_aMC@NLO 2.6.2 [45] with
up to two additional partons at leading order, and interfaced to Pythia 8.240 [46]
using the A14 set of tuned parameters (‘tune’) [47]. The R-hadron samples were
generated with the NNPDF2.3lo [48] parton distribution function (PDF) set for parton
showering and hadronisation, while for the chargino samples the CTEQ6.6 [49] and
MSTW2008NLO90CL [50] PDF sets were used, with decays of bottom and charm hadrons
performed by EvtGen 1.6.0 [51]. The CKKW-L merging scheme [52, 53] was applied to
combine the matrix element with the parton shower.

Gluino pair production was simulated for gluino masses ranging from 1.4 TeV to 2.4 TeV
within a simplified model inspired by a split-SUSY scenario [10, 11]. The long-lived gluino,
which carries colour charge, hadronises to form a colourless composite particle called an
R-hadron. The details of the R-hadron simulation are given in ref. [54]. Each gluino decays
into a stable neutralino and two quarks via a virtual squark at a very high mass scale in an
R-parity conserving decay. The gluino acquires a long lifetime as the only decay channel
available is via a massive virtual squark. To probe decays with different kinematics, two sets of
samples were produced: one with a fixed neutralino mass of m(χ̃0

1) = 100 GeV, and the other
one with a fixed mass splitting of ∆m(g̃, χ̃0

1) = 30 GeV. These two series of mass parameters
are complementary and illustrate that the search is open to various models as it does not
require explicit decay properties of the charged LLP, like the visible mass of the decay. The
nominal cross-section values were calculated at next-to-leading-order (NLO) with resummation
of next-to-leading logarithms (NLL). Their uncertainties were taken from an envelope of
predictions using different PDF sets and factorisation and renormalisation scales [55].

Samples with a combination of chargino-neutralino (χ̃±
1 χ̃0

1) and chargino-chargino (χ̃+
1 χ̃−

1 )
events were generated with nearly degenerate chargino and neutralino masses, motivated
by the ‘pure wino’ AMSB scenario [13, 14]. Each long-lived chargino decays into a stable
neutralino and a pion, where the mass-splitting between the chargino and neutralino is set to
160 MeV. Although the AMSB model has a specific preference for the chargino’s lifetime
(O(0.2) ns) and mass relation via the loop dynamics [56], this theoretical constraint was
artificially loosened for experimental benchmarking, and charginos with higher lifetimes
and masses ranging from 0.7 TeV to 1.4 TeV were examined. A 100% branching ratio for
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χ̃±
1 → π±χ̃0

1 is assumed. The production cross-sections are computed at NLO plus NLL
precision in the limit of mass-degenerate χ̃+

1 , χ̃−
1 , and χ̃0

1, and with all the other sparticles
assumed to be heavy and decoupled [57, 58].

Events with pair-produced staus, each of which decays into a τ -lepton and a stable
gravitino, were produced in a simplified model motivated by the GMSB scenario [59–61]. The
stau masses range from 200 GeV to 1 TeV and the small mass of the gravitino is neglected;
the long stau lifetime is due to the small coupling to the gravitino. Signal cross-sections
were calculated assuming direct τ̃ production at NLO in αs, with soft-gluon emission effects
added at NLL accuracy, assuming mass-degenerate left- and right-handed staus (τ̃L,R) with
no mixing [57, 58, 62–64].

Inelastic pp interactions were generated using Pythia 8.186 [65] and EvtGen 1.6.0 with
the NNPDF2.3lo PDF set and the A3 tune [66]. The inelastic collisions were overlaid onto
the hard-scattering process to simulate the effect of multiple pp interactions. MC samples
were reweighed to match the distribution of the mean number of interactions per bunch
crossing observed in data.

The MC events were passed through a full detector simulation [67] based on Geant4 [68].
The propagation and decays of charginos and staus were simulated within Geant4, taking
into account ionisation loss and interactions with the detector. The propagation of R-hadrons
and their interactions were handled by Geant4 until their decay, at which point the decay
chains and subsequent hadronisation were simulated by Pythia 8; the information about
the outgoing particles was then transferred back to Geant4.

4 Calibration

This section describes the calibration of the βγ measurements provided by the pixel detector
and the tile calorimeter.

4.1 βγ from ionisation energy loss

The most probable value (MPV) of the track ⟨dE/dx⟩trunc measured by the pixel detector
varies as a function of the delivered luminosity and detector region. The radiation dose
received, and the consequent charge trapping varies the track ⟨dE/dx⟩trunc by up to 40% in
the data sample. These effects in combination with changing detector operating conditions
require a data-derived set of run-by-run and |η|-dependent corrections such as to equalise
the most-probable value of ⟨dE/dx⟩trunc as a function of time and η and finally provide the
dE/dx value. These corrections are the same as those used in ref. [21] where their detailed
description is given. After these corrections are applied, samples of electrons and muons from
selected Z → ee and Z → µµ events in data show that the corrected dE/dx distribution has
negligible dependence on the number of concurrent proton-proton collisions in the event.

The method used to associate a βγ to a dE/dx value is based on the measurement of
low-momentum SM particles. The correlation between βγ and dE/dx is extracted from
data by fitting a parameterisation of the Bethe-Bloch relation, with the assumptions that
βγ <1. Reconstructing tracks with momenta ranging from 100 MeV to a few GeV allows to
resolve and identify electrons, pions, kaons, protons, and deuterons. The dE/dx spectrum is
a superposition of Landau distributions of those particles. Fitting this spectrum extracts
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the MPV of each particle for each momentum slice. The mapping of (βγ, MPVdE/dx) is
redundantly obtained for pion, kaon, proton (and deuteron when statistics are sufficient).
While the proton data sample tends to cover the lower βγ range down to βγ ≳ 0.35, the
pion data sample can cover up to a MIP (βγ ≈3). The kaon data sample overlaps between
the two data samples. The mapping used is the one from ref. [21], where more details of
the βγ calibration process can be found.

The simulation of the dE/dx response of the pixel detector is based on a realistic
charge-deposition model [69], but due to the sensitivity of the dE/dx measurement to
detector conditions, including radiation damage, the simulated track dE/dx and especially
the probability that a track has a hit in the IBL overflow do not describe the data accurately
enough for this analysis. Hence, the dE/dx response for simulated events was modelled by
replacing the simulated value with values from a data-driven template [21], derived from
low-momentum events as a function of βγ.

4.2 β from time of flight

Each TileCal cell provides an independent measurement of β. The βi measurement of the
i-th calorimeter cell is obtained from the time measurement in the cell ti (such that a particle
travelling from the interaction point with the speed of light produces a signal at time t = 0,
in each calorimeter cell), the distance of the cell’s centre from the interaction point li and
the speed of light c: βi = 1/(1 + cti

li
). Only cells with an energy deposition above 500 MeV

are considered in order to minimise the effect of the noise contribution.
The final βToF exploits the average over 1/βi values whose uncertainties are similar to a

Gaussian distribution. Thus, 1/βToF is obtained as the average over 1/βi weighted by 1/σ2
i ,

where σi is the time resolution in the i-th cell.
The βToF calibration is obtained in consecutive steps: the time offset correction in each

cell, the correction based on the track pseudorapidity with respect to the cell’s centre, and
the determination of the cell time resolution σi. Isolated muons from Z → µµ decays are
used for this purpose.

The cell time calibration is performed separately for each data-taking year. The core of
the time spectrum in each TileCal cell is approximately Gaussian. The mean value of the
Gaussian fit in the ±2σ region around the peak is taken as the calibration constant to be
subtracted from the time measurement. A run-by-run correction did not show any effect
on the measured βToF, hence it is not applied. No effect of the energy deposited in a cell
on the mean value of the reconstructed time was visible. The reconstructed time in the
cells shows a dependence on the distance ∆η of the track’s impact point in the cell ηtrack
to the cell centre ηcell (∆η ≡ ηtrack − ηcell). This effect is greater in cells spanning a larger
pseudorapidity region. A correction is provided by a linear fit to the mean reconstructed
time as a function of ∆η for each cell type.3

The cell time resolution σi improves with increasing deposited energy E as

σi =

√
p2

0 + p2
1

E
+

(
p2
E

)2
(4.1)

3The cell type is defined by the calorimeter layer and pseudorapidity (A1, BC2, etc), see figure 2.
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Figure 3. (a) Distribution of βToF obtained with isolated muons from Z → µµ decays (2018 data)
with the default calibration (Default) and with the calibration illustrated in section 4 (Calibrated).
(b) Dependence of the resolution of βToF on the pseudorapidity, using isolated muons from Z → µµ

decays (2018 data) with all the calibrations applied.

The parameters p0, p1 and p2 are determined separately in each radial layer (cells A,
(B,BC) and D in figure 2) by a fit of eq. (4.1) to the muons from Z → µµ decays collected in
the Run 2 dataset. For each radial layer, the energy spectrum is divided in 17 slices, and in
each slice the time spectrum is fitted with a Gaussian distribution in the ±2σ region around
the peak. The standard deviation of the fit is taken as the time resolution σi for the slice
with deposited energy E. Good agreement between data and the fitting curve is obtained for
cells in the two outermost radial layers (BC and D), while worse agreement is obtained for
cells in the innermost layer (A cells) due to shorter particle path length and lower energy
deposits. For the same reason A cells also show worse time resolution.

The impact of the calibration described above on the βToF performance is checked with
isolated muons originating from Z → µµ decays. The performance before and after calibration
are compared in figure 3(a) showing a 7% improvement on σ(βToF). The |η|-dependence of
the βToF resolution is shown in figure 3(b). The βToF resolution improves at larger |η| because
of the longer track path. This trend is counterbalanced in the barrel-endcap transition region
and in the very high |η| region as fewer calorimeter cells contribute to the ToF measurement.

To account for the difference between the reconstructed time between data and MC, a
smearing of the cell time distribution is applied to Monte Carlo samples in such a way as to
get the best matching with the Z → µµ data taken in 2018. Figure 4 shows the agreement in
the calorimeter β spectra between Z → µµ data and Monte Carlo after the time smearing is
applied. The residual difference between data and Monte Carlo is below 5% for βToF < 1.
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Figure 4. Calorimeter βToF distribution for Z → µµ events in 2018 data and in Monte Carlo after
the time smearing procedure. The ratio of the MC to data is shown in the bottom of the plot where a
solid black line is drawn at unity for reference.

5 Analysis

5.1 Overview

This analysis searches for heavy (m >200 GeV) charged particles with a proper lifetime
τ >3 ns.

Events are selected online using the lowest-threshold un-prescaled calorimetric Emiss
T

trigger, which is based on the vectorial energy sum measured in the calorimeters [70]. Further
selections are applied to triggered events and candidate tracks as detailed in section 5.2. For
the β-search, a sample of high-momentum isolated tracks with large dE/dx is identified and
used to perform two independent measurements, mdE/dx and mToF. For the di-track search,
events with two high-momentum, isolated tracks with large dE/dx are selected. For both
regions, the search then consists in comparing the data and predicted background yields in
trapezoidal mass windows in the [mdE/dx, mToF] or in the [mdE/dx,1, mdE/dx,2] planes. This
enforces that the two measurements in the event — either two measurements of the same
track or of two tracks — are consistent with the same mass hypothesis. A trapezoidal shape
is chosen to take into account the degradation of the mass resolution with increasing mass as
well as decreased backgrounds at higher mass. As described in section 5.4, the trapezoidal
mass windows are optimised separately for the β-search and the di-track search; the windows
are common to LLPs of the same target mass.

Backgrounds can arise from instrumental effects and tails in the measurements of SM
processes, which in the case of the dE/dx include the unavoidable Landau tails of the
deposited ionisation energy. The background yield and its distribution in the reconstructed
mass spectrum is estimated in a fully data-driven approach, as described in section 5.3. Data
control samples are used to parameterise the momentum, dE/dx and, when necessary, βToF
distributions and their interdependence, and then to generate pseudo-data that predict the
background distribution in the [mdE/dx,1, mdE/dx,2] and the [mdE/dx, mToF] planes. Potential
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signal contamination is minimised in these background samples by inverting some of the
selection criteria, and the background estimate method is validated in separate data samples
called validation regions.

5.2 Event selection

Events are selected with a trigger based on Emiss
T , which is calculated online using energy

measurements in the calorimeter with corrections for multiple pp interactions in each event [70].
The high-level Emiss

T trigger threshold varies from 70 GeV to 120 GeV during the data-taking
period depending on the pile-up conditions. The efficiency of signal events to satisfy the
trigger ranges from 20% to over 95% and depends on the lifetime, mass, and decay mode
of the target LLP.

The Emiss
T computation is refined in the offline reconstruction after events are required to

satisfy basic data quality selection to ensure all parts of the detector are working correctly [44].
The offline Emiss

T is built from calibrated muons [71, 72] and electrons [73, 74] that satisfy
baseline selections, from calibrated jets [75] reconstructed at the electromagnetic scale with
the anti-kt jet clustering algorithm [76, 77] with radius parameter R = 0.4, and from a term
that includes selected soft tracks not associated with any other objects in the event [78] but
consistent with the primary vertex (PV). To remove beam-induced backgrounds and spurious
calorimeter signals that could spoil the calculation of Emiss

T , events are rejected if they contain
at least one jet tagged as bad [79] as determined from shower shape information.

In events where the signal LLPs are detector stable (i.e. they decay outside the ATLAS
detector), the LLPs leave only modest energy depositions in the calorimeters, even in the
R-hadron case [80], and only a fraction of them are reconstructed as a muon owing to their
late arrival time in the muon spectrometer. Therefore, most of the momentum of each LLP is
not accounted for in the calorimeter or muon system. Any reconstructed jets from initial-state
radiation (ISR) or additional partons in the hard scatter provide a visible contribution that
results in a measured imbalance of transverse momentum. In events with metastable LLPs
(i.e. LLPs that decay inside the ATLAS detector), stable neutralinos or gravitinos will carry
away unmeasured momentum that contributes to the measured Emiss

T and increases the trigger
efficiency in the assumption that R-parity is conserved and the lightest stable sparticle is
electrically neutral, as is in the models under consideration, if there is also significant energy
deposited in the detector from SM decay products. The Emiss

T trigger and offline selection
efficiency increases for metastable LLPs relative to detector-stable LLPs for signals with
decay products with significant energy deposition. This includes R-hadrons with a light
neutralino, but not R-hadrons with the fixed and small mass-splitting of ∆m(g̃, χ̃0

1) = 30 GeV,
nor the charginos considered here.

For the β-search, events are required to have Emiss
T > 170 GeV to enhance the signal

sensitivity by removing background events from many SM processes. As the di-track search
suppresses background with the requirement of two candidate tracks, the offline selection
on Emiss

T is relaxed to Emiss
T > 20 GeV, increasing the acceptance for low-mass LLPs that

may produce online Emiss
T due to the presence of an ISR jet in the event but can have low

reconstructed offline Emiss
T if both LLP tracks are included in the soft-track term or muon

term. The background estimate is fully data-driven and insensitive to the difference between
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the online and offline Emiss
T thresholds, while the effect on signal efficiency is covered by a

dedicated systematic uncertainty, as described in section 5.5.
After satisfying the trigger and the offline Emiss

T selections, events are required to have a
hard-scatter PV with at least two associated reconstructed tracks and to contain at least
one (β-search) or two (di-track search) candidate tracks that satisfy the track-level selections
detailed below. In the unlikely case that there are more candidate tracks than required in an
event after all selections, the candidate(s) with the highest track pT is (are) selected. The
β-search and the di-track search are independent and their results are not combined; and
an event can then, in principle, be selected by both analyses.

To enrich the selected sample in potential signal events and to minimise background,
candidate tracks are required to have pT > 120 GeV. For masses above 200 GeV, the LLP
production is central and therefore accepting only central-η tracks is implemented to maximise
significance. For the β-search, candidate tracks must have |η| < 1.6 to match the η-acceptance
of the central calorimeter, and for the di-track search, candidate tracks must have |η| < 1.8.

Reconstructed tracks must have at least eight clusters across the pixel and SCT detectors.
To be considered a candidate, the track must be associated within tolerances with the primary
vertex and have an associated cluster in the innermost pixel layer if it passes through an
active detector module. Following the optimisation done in ref. [21] a momentum uncertainty
requirement, linearly dependent on pT and with an upper limit at 200%, is applied to ensure
good mass resolution at low masses and to increase the signal acceptance at high masses,
while discarding poorly reconstructed tracks. Similarly, an explicit requirement of at least
five associated clusters in the SCT detector is imposed to reject further poorly reconstructed
tracks. Additional requirements are applied to candidate tracks to ensure the robustness
of the track ionisation computation: no clusters on the track should be consistent with any
other track [39, 81] and at least two pixel clusters, after discarding the cluster with the
highest ionisation, must be included in the dE/dx calculation. Moreover, as the signal is
expected to generate isolated tracks, and background processes could acquire significant dE/dx

from energy deposits from particles with overlapping trajectories, a track-based isolation
requirement is applied. The scalar sum of the pT of additional primary tracks, in a cone of
size ∆R=0.3 around the candidate track, must be less than 5 GeV. Although R-hadrons are
hadrons, the very massive gluino parton produces an expected fragmentation that is very
hard [82], and the isolation requirement is above 80% efficient for the signal models considered.

Additional criteria are applied to reject SM backgrounds from specific processes. To veto
tracks from leptonic W decays, the transverse mass of the candidate track must be greater
than 130 GeV. The transverse mass between the track momentum p⃗trk and p⃗ miss

T is defined as

mT(p⃗trk, p⃗ miss
T ) ≡

√
2ptrk

T Emiss
T

(
1 − cos ∆ϕ(p⃗ miss

T , p⃗trk)
)

.

For the di-track search, only one of the candidate tracks must satisfy the transverse mass
selection.

Tracks from electrons are removed as in ref. [21] by rejecting a track if any jet with
pT > 20 GeV is found within a cone of ∆R = 0.05, and has at least 95% of its energy deposited
in the electromagnetic calorimeter. Similarly, SM hadrons are removed by excluding tracks

– 12 –



J
H
E
P
0
7
(
2
0
2
5
)
1
4
0

for which any associated jet within a cone of ∆R = 0.05 with pT > 20 GeV has a calibrated
energy larger than the track momentum.

Additional selections specific to the β- and di-track searches are detailed below.

5.2.1 β-search selections

The β-search requires at least one candidate track that satisfies the selections described in
section 5.2. The specific ionisation of the candidate track measured by the pixel detector must
be larger than 1.8 MeV g−1cm2, while the most probable value for a MIP is 1.0 MeV g−1cm2

with a resolution of 0.13 MeV g−1cm2. The surviving background, in particular that arising
from the fluctuations in the ionisation tails, is further suppressed by requiring that βToF
is not compatible with one. This is implemented as βToF < βcut, where βcut = 1 − 2σβToF

varies per event and σβToF is defined in 0.1-wide slices of |η|, as shown in figure 3(b). The
selection has an efficiency for signal events that satisfy the dE/dx requirement ranging from
about 80% at low masses to 95% at high masses. The efficiency is high because the dE/dx

requirement selects signal particles with low β that are then likely to satisfy the βcut. The
analysis sensitivity is limited to LLPs with lifetimes τ ≳ 3ns by the requirement that the
track reaches the calorimeter. Conversely, the additional discrimination provided by the
calorimeter reduces the background by a factor of about 20 relative to ref. [21], which results
in an improvement of sensitivity for LLPs with τ ≳ 10ns.

The efficiency for signal events to satisfy all selections, including the trigger, ranges
from 1.0% to 7.5% for the simulated LLP events described in section 3 and with lifetime
exceeding 10 ns, and increases with the lifetime of the LLP and its mass. The signal region
for the β-search (β-SR) is defined in table 1.

None of the seven tracks associated with the excess reported in ref. [21] satisfy the
β-search selections. In particular, none of them have βToF < βcut. This indicates that the
excess identified in ref. [21] is not due to heavy, highly-ionising and slow particles reaching
the hadronic calorimeter.

5.2.2 Di-track search selections

The di-track search requires at least two candidate tracks that satisfy the selections described
in section 5.2. Additional selections are imposed on properties of the di-track system: the
two tracks must have opposite electric charge, and their invariant mass, minv, calculated with
the assumption that the track is a pion, must be larger than 200 GeV. The latter selection
significantly reduces the contribution from Z boson decays, along with other SM sources.

Two signal regions in the di-track search are then defined, differing in the ionisation
selections applied to both candidate tracks. In the Discovery Region (Discovery-SR),
the potential signal significance is maximised by requiring both tracks to have dE/dx >

1.7 MeV g−1cm2, which strongly rejects background. In the Exclusion Region (Exclusion-SR),
the exclusion sensitivity is maximised by loosening the ionisation selections to increase the
signal acceptance. In this region, one track is required to have dE/dx > 1.6 MeV g−1cm2,
while the ionisation requirement on the other track is relaxed to dE/dx > 1.3 MeV g−1cm2.
The efficiency for a signal model with 400 GeV staus with a lifetime of 10 ns to satisfy
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all selections except the ionisation requirements is about 20%; in the Discovery-SR and
Exclusion-SR, the total efficiency is about 2% and 5%, respectively.

5.3 Background estimation

The mass distribution of tracks from background processes in the signal regions is estimated
by using a data-driven technique in which tracks are sampled from several control regions
(CR). The mass of a track is defined by its momentum and βγ; therefore, the background mass
distributions, mdE/dx and mToF, are constructed by sampling templates of these variables
extracted from control regions. Validation regions (VR) are defined to verify the closure
of the analysis method.

For a narrow ∆η slice, dE/dx and pT, as well as βToF and pT, are assumed to be
uncorrelated for background tracks. In addition to the VRs, cross-checks on both assumptions
are performed and described in section 5.5. The independence of dE/dx and pT for minimum
ionising particles is explicitly confirmed using muon tracks from an independent sample
of selected Z → µµ events.

The pT distribution of background tracks, for each |η| slice, is sampled from kinematic
CRs and used as a template for the background track momentum in the signal and validation
regions. The kinematic CRs are defined by inverting the dE/dx selection for candidate
signal tracks. The dE/dx and the βToF distributions are sampled from additional CRs, as
described in the sections below.

To generate a ‘pseudo-data’ background track, a pair of pT and |η| values is sampled from
the kinematic CR template. A dE/dx (or a βToF ) value is sampled from the corresponding
|η| bin of the dE/dx (or βToF) template. From these sampled values, the track mass,
mdE/dx or mToF, is calculated using the dE/dx–βγ calibration (or the βToF). Enough tracks
are generated that the number of pseudo-data samples does not limit the accuracy of the
predictions. The normalisation and validation of each background estimate is described
in the following sections.

5.3.1 β-search background estimation and validation

Two control regions, kin-CR and βγ-CR, are defined adjacent in phase space to the signal
region (SR) (see table 1). The kin-CR is defined by inverting the dE/dx requirement and
relaxing the βToF requirement used in the SR, and the βγ-CR is defined by inverting the Emiss

T
requirement used in the SR and removing the dE/dx and relaxing the βToF requirements.
Data events in the βγ-CR are reweighed with an Emiss

T trigger threshold weight to prevent
the Emiss

T trigger differences causing a bias on the background estimate. The dE/dx and
the βToF distributions in the βγ-CR serve as the template distributions for the background
mass prediction of mdE/dx and mToF, respectively. Only tracks with βToF < 1 are considered
as this is the condition to calculate βγToF and then mToF.

Pseudo-data background tracks are simulated using a pair of 1/pT and |η| values sampled
from the kinematic control region template and a dE/dx (or a βToF ) value sampled from the
corresponding |η| bin of the dE/dx (or βToF) template. From these sampled values, the track
mass mdE/dx and mToF are calculated. Finally, the pseudo-data samples are normalised to
data in a sub-region of kin-CR that is expected to be fully depleted in signal, with βToF > βcut
and both mdE/dx and mToF lower than 160 GeV.
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β-search region Emiss
T [GeV] dE/dx [MeV g−1cm2] βToF

β-SR > 170 > 1.8 < βcut

kin-CR > 170 < 1.6 < 1.0
βγ-CR < 150 — < 1.0

High-βToF-VR > 170 > 1.8 [βcut, 1.0]
High-βToF-VR kin-CR > 170 < 1.6 [βcut, 1.0]
High-βToF-VR βγ-CR < 150 — [βcut, 1.0]

Low-dE/dx-VR > 170 [1.05,1.6] < βcut

Low-dE/dx-VR kin-CR > 170 < 1.05 < 1.0
Low-dE/dx-VR βγ-CR < 150 < 1.6 < 1.0

Table 1. Definitions of the signal, control and validation regions for the β-search. The βcut varies
per event and is defined as βcut = 1 − 2σβToF . The estimation of the background for each signal and
validation region requires two dedicated control regions.

The procedure for estimating both the normalisation and shape of the expected
background is validated in two regions. One validation region is characterised by high-
βToF (High-βToF-VR), i.e. it contains tracks that do not satisfy the βToF cut used for
the signal selection (i.e. βToF > βcut) but extends to high dE/dx. The other validation
region is characterised by low-dE/dx (Low-dE/dx-VR), i.e. it contains tracks that do not
satisfy the dE/dx requirement used for the signal selection (track ionisation in the range
of [1.05, 1.6] MeV g−1cm2) but tests low values of βToF. The definition of these regions
and the corresponding control regions used for the background estimation are shown in
table 1. The validation regions are mutually exclusive and exclusive with the signal region by
construction. The availability of the βToF measurement allows to define validation regions
without a pT upper limit and therefore allows the background estimate to be validated at
high masses, which is an improvement with respect to the validation strategy used in the
previous dE/dx analysis [21].

The contribution of possible signal contamination in each validation region was studied
by comparing the number of signal events from various signal samples to the number of
background tracks predicted by the background estimation procedure. It was found that the
possible signal contamination was smaller than about 5% (Nsignal/

√
Nbackground<0.9) in the

Low-dE/dx-VR and smaller than about 12% (Nsignal/
√

Nbackground < 1.2) in the High-βToF-
VR for all samples and masses not excluded by previous searches. The signal contamination
is found to be negligible within all control regions and regions used for normalisation.

The predicted mToF (mdE/dx) background distribution compared with the mToF (mdE/dx)
distribution in the data are shown in figure 5 and 6. There is good agreement between
prediction and data both in the shape of the distributions and in the total yield. The predicted
yield, including statistical and systematic uncertainties, is 316±27 (91±6) while the observed
yield is 290 (93) for the Low-dE/dx-VR (High-βToF-VR).
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Figure 5. Comparison of predicted (a) mToF and (b) mdE/dx background to data in the low-dE/dx

validation region. The statistical and systematic uncertainty in the predicted background is calculated
as indicated in section 5.5 and shown as a coloured band. The histogram overflow is added into the
rightmost bin.
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Figure 6. Comparison of predicted (a) mToF and (b) mdE/dx background to data in the high-βToF
validation region. The statistical and systematic uncertainty in the predicted background is calculated
as indicated in section 5.5 and shown as a coloured band. The histogram overflow is added into the
rightmost bin.

5.3.2 Di-track background estimation and validation

The number of events from background processes with two tracks that satisfy all selections
and the mdE/dx distribution of each track is predicted from pseudo-data events sampled
from templates constructed from control regions. The kinematics of pairs of background
tracks are extracted from a sample of events (kin-CR) that have two tracks that satisfy an
inverted dE/dx selection. Sampling two tracks from the same event ensures that all kinematic
correlations are retained. Inverting the dE/dx selection on both tracks ensures that there
is no significant signal presence in the control region.

The dE/dx template is formed from events that have two tracks, at least one of which has
a low pT value to exclude possible signal (dE/dx-CR). As there is a small residual correlation
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Di-track region minv

[GeV]
mT

[GeV]
Track 1 pT

[GeV]
Track 2 pT

[GeV]
Track 1 dE/dx

[MeV g−1cm2]
Track 2 dE/dx

[MeV g−1cm2]
Exclusion-SR

> 200 > 130

> 120 > 120 > 1.6 > 1.3
Discovery-SR > 120 > 120 > 1.7 > 1.7

kin-CR > 120 > 120 < 1.3 < 1.3
dE/dx-CR > 50 [50, 120] — —
LowpT-VR

> 200 > 130
[70, 100] [70, 100] > 1.6 > 1.3

LowpT-VR kin-CR [70, 100] [70, 100] < 1.3 < 1.3
LowpT-VR dE/dx-CR > 10 [10, 70] — —

W-VR
< 200 —

[70, 100] [70, 100] > 1.6 > 1.3
W-VR kin-CR [70, 100] [70, 100] < 1.3 < 1.3

W-VR dEdx-CR > 10 [10, 70] — —
InvMass-VR

< 200 > 130
> 120 > 120 > 1.6 > 1.3

InvMass-VR kin-CR > 120 > 120 < 1.3 < 1.3
InvMass-VR dE/dx-CR > 50 [50, 120] — —

Z-VR
[80, 100] —

> 120 > 120 > 1.6 > 1.3
Z-VR kin-CR > 120 > 120 < 1.3 < 1.3

Z-VR dE/dx-CR > 50 [50, 120] — —

Table 2. Definitions of the signal, control and validation regions for the di-track search. Events must
satisfy all event-level requirements and have at least two candidate tracks that satisfy all other selection
requirements, as defined in the text. Tracks are ranked first by pT and then by dE/dx; Track 1 is the
candidate track with the larger pT or dE/dx, depending on the stage of the selection. The estimation
of the background for each signal and validation region requires two dedicated control regions.

between dE/dx and |η|, the dE/dx template is binned in |η|. The definitions of the signal
and control regions, as well as the validation regions defined below, are shown in table 2.

To form a pseudo-data event, an event from the kin-CR is assigned two independent
dE/dx values sampled from the corresponding |η| bins of the dE/dx template, and the
track masses mdE/dx,1 and mdE/dx,2 are calculated. Events from the kin-CR can be reused
with different sampled dE/dx values.

Enough pseudo-data events are generated so that the statistical uncertainty due to
sampling is negligible. Treatment of the statistical correlation due to the kin-CR event
reuse is discussed in section 5.5. Each pseudo-data event is normalised to data by the
relation: Nkin

Npseudo
× 1

(1−f1)(1−f2) , where Nkin is the number of events in the kinematic template,
Npseudo is the number of pseudo-data events, and f1 and f2 are the fraction of tracks in
the dE/dx template with high dE/dx in the η-bin corresponding to the first and second
track of the pseudo-data event, respectively. The (1 − f1) and (1 − f2) factors correct for the
exclusion of high dE/dx events from the kin-CR. Applying the signal dE/dx selection on
the pseudo-data events produces a normalised distribution of mdE/dx for two-track events
expected in the signal region.

The background estimation procedure is validated in several regions, in which the full
pseudo-data method is repeated using dedicated control regions for each validation region, as
defined in table 2. The inclusive LowpT-VR keeps all selections the same as the signal region,
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Region Predicted yield Observed yield
LowpT-VR 13.0±2.6 14
InvMass-VR 36±1.9 35

W-VR 126±4.0 138
Z-VR 71±4.7 66

Table 3. The expected and observed yields in the di-track validation regions. Only the statistical
uncertainty is included in the prediction. Not all regions are orthogonal.

except for the track pT requirements, which are loosened so that each signal track is required
to have pT between 70 and 100 GeV. The dE/dx control region for LowpT-VR similarly
loosens the lower track pT to 10 GeV, in order to ensure sufficient template statistics. To
ensure that the method closes at nominal values of track pT, an independent InvMass-VR is
constructed, in which the track pT requirements are the same as the signal region, but the
invariant mass requirement of the two tracks is inverted. Additionally, two higher statistics
validation regions are formed that target background processes with W and Z bosons; both
regions omit the one-track transverse mass selection, which dramatically enhances the number
of W bosons relative to the InvMass-VR for the W-VR, and the Z-VR additionally omits the
offline Emiss

T selection and requires that the two tracks each be matched to a reconstructed
muon and have an invariant mass consistent with the Z boson. Good agreement between
the pseudo-data prediction and the observed data is seen in all validation regions, as shown
in table 3 and figure 7.

An additional validation of the expected yield in the signal and validation regions was
performed using an ABCD method [83] that requires the leading track to satisfy all signal
selections and uses the pT and dE/dx of the second track as the independent variables. Yields
were found to be in agreement with both the pseudo-data model prediction and the observed
data in the validation regions. To validate the background behaviour at higher dE/dx values
needed for the Discovery-SR, the ABCD estimate was tested in a modified InvMass-VR and
Z-VR with symmetric dE/dx selections of 1.3, 1.4, 1.5, and 1.6 MeV g−1cm2, and agreement
was found within statistical uncertainty in every test. To obtain enough statistics to test
the behaviour at dE/dx > 1.7 MeV g−1cm2, a low-pT single-track validation region was
developed, with a prediction of 1204 ± 38 events with 1246 observed in data.
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Figure 7. Comparison of the predicted mdE/dx background to data in the di-track validation regions.
The statistical and systematic uncertainty in the predicted background is calculated as indicated in
section 5.5.

5.4 Mass window definition

The sensitivity to signal LLPs is measured comparing data, expected background, and
potential signal in two-dimensional mass windows.

Two masses, mdE/dx and mToF, can be calculated for each track surviving the β-driven
signal selection using βγdE/dx, βγToF and the momentum, and similarly two mdE/dx are
calculated in each signal di-track event, one per track. The measurement of two masses allows
to define surfaces in the [mdE/dx, mToF] or [mdE/dx,1, mdE/dx,2] plane that are optimised for
each signal mass. A trapezoidal shaped window is found to maximise sensitivity, reflecting
the worsening mass resolution at higher mass, caused primarily by the worsening momentum
resolution at higher momenta. The opening angle limiting the trapezoids is assumed to be
symmetric around the line mdE/dx = mToF or mdE/dx,1 = mdE/dx,2 and is sketched in figure 8.

5.4.1 β-search mass windows

The mass windows are constructed to contain about 70% of the expected signal. The
selected surfaces are different for different signal masses. The trapezoidal mass windows are
determined within an angle in the [mdE/dx, mToF] plane that is determined by the spread in
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Figure 8. The trapezoidal mass windows are determined within an angle θ in the [mToF, mdE/dx]
or [mdE/dx,1,mdE/dx,2] plane. The mass points at the centre of the upper and lower edges of the
trapezoids are shown as red dots and parameterise the mass window for each target mass. The target
mass of the trapezoid is shown as a black dot.

βγdE/dx relative to βγToF. The spread in the difference between the two βγ measurements
translates into an expected spread in mdE/dx relative to mToF. As mdE/dx and mToF are
both determined using the same momentum measurement, their difference for each track
reflects only the difference in βγ. The trapezoid opening angle is set to 22 degrees around
the bisector of the [mdE/dx, mToF] plane, approximately optimal for all mass points studied.

The trapezoids do not depend nor on the LLP lifetime nor on their identity, but only
on their mass. The trapezoid lower and upper edges (see table 4) are defined through a
procedure designed to optimise the signal sensitivity. First, the lower edge is scanned to find
the optimal sensitivity with the upper edge fixed at 7 TeV. Then, the upper edge is defined by
lowering it until the sensitivity is maximal while still keeping at least 70% of the signal events.
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β-search Trapezoid parameters, opening angle θ=22 degrees
Target signal mass [GeV] Lower edge mass [GeV] Upper edge mass [GeV]

150 120 210
200 160 290
250 210 380
300 250 490
350 270 640
400 320 680
450 370 700
500 400 810
550 470 930
600 480 1360
650 530 1360
700 530 1390
800 570 2380
900 620 5340
1000 720 6170
1100 780 6170
1200 860 6170
1300 860 6170
1400 950 7000
1600 950 7000
1800 950 7000
2000 1100 7000
2200 1200 7000
2400 1200 7000
2600 1660 7000

Table 4. The 2D mass window parameters for the β-driven signal region derived using the trapezoidal
method, given an opening angle of 22 degrees. The lower edge mass identifies the mass point (mdE/dx,
mToF) at the centre of the trapezoidal lower edge. The upper edge mass locates the centre at point
(mdE/dx, mToF) of the trapezoid upper edge in the 2D mass plane.

5.4.2 Di-track search mass windows

Two masses, mdE/dx,1 and mdE/dx,2, can be calculated for the pair of tracks surviving the
two-track signal selection using βγdE/dx and the momentum of each track. Pair-produced
sleptons should have the same mass, and are therefore more likely than the background to
populate a trapezoid in the [mdE/dx,1, mdE/dx,2] plane. The trapezoid window definition is
optimised for the slepton mass region. Two cases are considered separately: the Discovery SR,
with only two mass windows created to maximise the signal significance (see table 5) and the
Exclusion SR, with mass windows optimised for the strongest signal exclusion (see table 6).
There is no upper mass limit to the trapezoid in either the Discovery or Exclusion SR, as
adding one was not found to improve sensitivity in the two-track analysis. The optimal angle
of the trapezoid is found to increase slowly with target mass, as the momentum measurement
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Di-track search
Target signal mass [GeV ] Opening angle [Degrees] Lower edge mass [GeV ]

< 350 45 160
≥ 350 45 300

Table 5. The 2D mass window parameters for the two-track Discovery SR derived using the trapezoidal
method. The angle identifies the region of compatibility between the mass measurements, and the lower
edge mass identifies the mass point (mdE/dx,1, mdE/dx,2) at the centre of the trapezoidal lower edge.

Di-track search
Target signal mass [GeV ] Opening angle [Degrees] Lower edge mass [GeV ]

200 20 160
300 20 260
400 26 340
500 28 430
600 28 520
700 28 600

Table 6. The 2D mass window parameters for the two-track Exclusion SR derived using the trapezoidal
method. The angle identifies the region of compatibility between the mass measurements, and the lower
edge mass identifies the mass point (mdE/dx,1, mdE/dx,2) at the centre of the trapezoidal lower edge.

dominates the reconstructed mass at moderate mass and above, and the reconstructed
momentum of the tracks are independent (unlike in the β-SR.)

5.5 Uncertainties

Systematic uncertainties come from several sources: the data-driven background
determination, corrections for the detector effects, and the experimental and theoretical
signal modelling uncertainties.

The data-driven background estimate is based on a pseudo-data method, where the pT , η,
dE/dx and βToF variables are generated for each pseudo-data event. This generation method
comes with the assumption that the dE/dx and pT are uncorrelated while the η correlation
is taken into account through the η-slicing of the samples. To evaluate the validity of this
assumption, a closure test is implemented for the β-search where all kinematic, dE/dx, and
βToF templates are extracted from the βγ-CR of the SR to generate a background distribution
and compared with data in a subset of this same region after applying the same dE/dx and
βToF cuts used for the SR. Any observed non-closure might signify that there are correlations
that are not taken into account, and a template correlation uncertainty must be assigned
according to the size of this non-closure in each mass trapezoid. As an additional check the
same closure test is repeated also in the βγ-CR of each VR. This uncertainty ranges from 5%
at 200 GeV to 23% at 700 GeV and is the largest single uncertainty in most mass windows.

For the di-track search, the dominant systematic uncertainty in the background estimate
is also obtained from a closure test. The validation regions test the assumptions of the
background estimation method, but the comparison between prediction and data is limited
by the data statistics in the validation regions. The mass distributions from each of the
validation regions is compared between the pseudo-data prediction and the observed data
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and used to construct a ratio; a 0.68 confidence internal band is fit across all regions from
the deviation from unity in this ratio. This uncertainty is calculated and applied per mass
bin; it increases with the target mass from about 10% in the lowest mass windows to about
40% in the highest mass window.

The choice of the η binning has a direct effect on the background template shape, and
a different η slicing choice could impact the final results. For this reason, an alternative
η slicing4 is used to generate an alternative data-driven background and then calculate an
alternative η-slice uncertainty, which is below 5% in all mass windows. Another concern
with the dE/dx template is the lack of data at large dE/dx values, which can result in the
large dE/dx values to be over or under represented in the data-driven background estimate.
To circumvent this issue, alternative dE/dx templates are generated by fitting the original
dE/dx templates with a Crystal Ball function [21] that models the dE/dx template with high
accuracy for small dE/dx values and does not suffer from statistical uncertainty issues at
large dE/dx values. The difference between these templates for large dE/dx values allows to
calculate a dE/dx tail uncertainty, which is everywhere below 1%. For the di-track analysis,
these two uncertainties are found to be negligible.

The data-driven background mass distributions in the signal regions are simulated using
pseudo-data events extracted from dE/dx, βToF and kinematics templates. The statistical
precision of the pseudo-data experiments is limited by the statistical uncertainty of the input
templates. To compute a correct statistical uncertainty of the background templates, the
statistical uncertainties of dE/dx, βToF and kinematic templates need to be propagated to
the final background distributions that are generated by pseudo-data events. To calculate the
statistical uncertainty due to the background templates for the β-search, the input kinematic
templates are first smoothed to remove empty bins, then these templates are randomly
fluctuated assuming Poisson distributions. The newly generated templates are then used to
throw new pseudo-data generating alternative background mass distributions. The root mean
square difference between the alternative mass distributions is then used as the statistical
uncertainty, with a maximum value of 5%. For the β-search, an additional percent-level
normalisation uncertainty is computed by propagating the statistical uncertainties of the
generated background and data (which dominates this uncertainty) through the normalisation
method and combining them quadratically. For the di-track search, the dE/dx template
uncertainties are handled similarly, but the kinematic CR statistical uncertainty is different
because the template consists of unbinned events. For the statistical uncertainty related to the
finite number of events in the kinematic CR, each event is Poisson fluctuated from a nominal
expectation value of one event in the sample; i.e. some events do not appear in a fluctuated
sample while others appear multiple times. This is known as a Bootstrap procedure.

An Emiss
T trigger uncertainty in the background estimate is evaluated by re-generating

the background without reweighing the events in the βγ-CR and comparing with the same
events reweighed with an Emiss

T trigger threshold weight. The Emiss
T trigger uncertainty is

below 2%. There is no Emiss
T reweighing of the data for the di-track search, and as Emiss

T does
not play a role in the di-track background estimate, there is no associated uncertainty.

4The edges of the baseline η-binning are [0, 0.1, 0.2, 0.3, . . . , 1.3, 1.4, 1.5, 1.6] while the edges of the
alternative η-binning are [0, 0.15, 0.25, 0.35, . . . , 1.35, 1.45, 1.6].
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For the β-search, two systematic uncertainties are considered that evaluate the effect on
the background estimate of choices made in treating the βToF variable. The βToF η slicing
uncertainty evaluates the effect of the choice of η-binning of the βToF templates, and is
calculated similarly to the dE/dx η slicing uncertainty described above. The βToF η slicing
uncertainty amounts to roughly 10% in all mass windows. The other βToF uncertainty is
similar to the dE/dx tail uncertainty. Also in this case it is necessary to evaluate how well
the background estimate models the low tail of the βToF distribution. This tail is not well-
populated in the η-sliced βToF templates, and so not all η-dependent effects might be captured
in the background estimate. To account for this, a new background estimate is created where
βToF is drawn from a Crystal Ball function that is fitted to the data rather than from the low
tails of the βToF templates. The difference between this new background estimate and the
nominal background estimate defines the βToF tail uncertainty, which ranges from 3% to 10%.

The signal cross-section uncertainties are displayed in the final limit plots as theoretical
uncertainties in the excluded cross-section. Signals with long lifetimes that are detector stable
and signal models with a small mass splitting between the invisible decay product and the
LLP parent mass mostly rely on the presence of an ISR jet to satisfy the online Emiss

T trigger.
For these signal models, the ISR modelling is expected to be the largest signal systematic
uncertainty. To estimate this uncertainty, alternative generator-level signal MC samples were
generated with factorisation, renormalisation, and merging scales varied from the nominal
values separately by 0.5 and 2.0, as well as with five variations concerning parton shower tuning
and radiation uncertainty [47]. The pT of the sparticle and signal-mass dependent weights
are then extracted from these samples to parameterise the differences between the samples
with scale variations. The newly acquired weights are then applied to fully reconstructed
signal MC samples. The differences between the reweighed MC samples and the nominal
samples is used as a systematic uncertainty. The majority of these uncertainties are small;
the leading ISR jet uncertainty is around 10%.

Additional uncertainties in the signal selection acceptance and efficiency associated with
the simulation modelling related to the modelling of the pile-up distribution, the calculation of
Emiss

T , and track-level quantities are assessed; no individual uncertainty due to the modelling
of these quantities has an impact larger than a few percent on the signal yield. The modelling
of the Emiss

T trigger efficiency in simulation is validated and an uncertainty derived by
comparing the trigger efficiency, as a function of Emiss

T , between data and simulation for a
sample of Z → µµ events with similar track-level requirements as the tracks in the search.
The difference between the observed and simulated trigger efficiency measured in Z → µµ

events is used to correct the signal trigger efficiency based on the reconstructed offline Emiss
T ,

neglecting both muons and the soft track term. The difference between this shifted value
and the nominal yield in simulation is used as an additional uncertainty in the signal yield,
which is about 15% or lower for all stau signals.

The uncertainty in the combined 2015–2018 integrated luminosity is 0.83% [84], obtained
using the LUCID-2 detector [85] for the primary luminosity measurements, complemented
by measurements using the inner detector and calorimeters.
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Figure 9. The distribution of data and predicted background in the β-search signal region. The
observed data events are indicated as magenta circles if they are inside the mass-compatibility angle
(shown as grey lines) and as orange diamonds if they are outside, while the blue area is the mass
distribution of the background. The overflow is included in the 900 < mdE/dx < 1000 GeV and in the
900 < mToF < 1000 GeV regions.

6 Results

Results are presented separately for the β-search and the two-track search. The statistical
analysis and likelihood construction were implemented in the pyhf software framework [86].
For each trapezoidal mass window, the likelihood of the background-only hypothesis given the
observed data was constructed from the background prediction and the associated systematic
uncertainties. The effect of the systematic uncertainties is incorporated through nuisance
parameters that are constrained to be Gaussian-distributed. Using a profile-likelihood-based
test statistic [87], independent p0-values quantifying the level of agreement between the
observed data and the background prediction were calculated for each of these windows.

6.1 β-search results

Without any mass-compatibility requirement, nine events are observed in the signal region
while the background expectation is of 5.1±0.5 events. The mass values of those events are
shown as circles in the [mdE/dx, mToF] plane in figure 9.

Restricting the observation to be in the 22 degree mass-compatibility angle, the observed
events are reduced to six and the background expectation to 3.7±0.4. The observed data
and the expected background in each mass window are shown in table 7. The distribution
of the average of mdE/dx and mToF is shown in figure 10 for the events inside the mass-
compatibility angle.

The lowest p-value of 3.3 × 10−2 is measured in the 200 GeV mass window.
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Target signal mass [GeV ] Expected background Observed data
150 1.73 ± 0.17 2
200 1.89 ± 0.20 5
250 1.40 ± 0.17 4
300 1.24 ± 0.17 1
350 1.23 ± 0.18 0
400 0.88 ± 0.14 0

> 400 0.80 ± 0.12 0

Table 7. Data and background yields in the trapezoids defined for different masses in the β-driven
analysis. The table extends up to 400 GeV covering the mass region where there are data entries and
beyond, including an overflow bin. The regions are not orthogonal.
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Figure 10. The distribution of the average of mToF and mdE/dx compared with the expected
background in the β-search signal region. The systematic uncertainty in the predicted background is
calculated as indicated in section 5.5. Only events inside the 22 degrees mass-compatibility angle are
considered.

6.2 Di-track search results

There are 15 events observed in the inclusive Exclusion-SR region, with a background
expectation of 20.7 ±4.5 events. The distribution of mdE/dx,1 and mdE/dx,2 for each event
in the inclusive Exclusion-SR is shown in figure 11. There are five observed events that fall
into the union of all mass windows; the distribution of the average mdE/dx of both tracks in
these 5 events is shown in figure 12. The observed data and expected background in each
mass window in the Exclusion-SR are shown in table 8.

There are zero events observed in the Discovery-SR, with an inclusive background
expectation of 0.79 ± 0.19 events. The expected background in both Discovery-SR mass
windows is shown in table 9, along with observed and expected model-independent 95%
confidence level (CL) upper limits on the number of signal events and the observed 95%
CL upper limit on the visible cross-section. Also shown is the discovery p-value, which
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Figure 11. The distribution of data and predicted background in the di-track Exclusion-SR. The
observed data events are indicated as magenta circles if they are inside the mass-compatibility angle
(shown as grey lines) and as orange diamonds if they are outside, while the blue area is the mass
distribution of the expected background. The last bins include overflow events.
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Figure 12. The distribution of the average mdE/dx of both tracks in each event in the union of
all the mass windows in the di-track Exclusion-SR, compared with the expected background. The
systematic uncertainty in the predicted background is calculated as indicated in section 5.5. The yield
for a 500 GeV stau signal with a lifetime of 10 ns is also shown.
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Target signal mass [GeV ] Expected background Observed data
200 7.93 ± 1.56 4
300 3.49 ± 0.89 1
400 2.09 ± 0.74 1
500 1.07 ± 0.49 0
600 0.59 ± 0.32 0
700 0.35 ± 0.20 0

Table 8. The observed data and expected background in each mass window of the di-track Exclusion-
SR. Both systematic and statistical uncertainties in the expected background are included. The
regions are not orthogonal.

Lower mass edge [GeV ] Expected background Observed data S95
obs S95

exp σvis [fb] P (s = 0)
160 0.67 ±0.17 0 3.0 3.1 0.02 0.5
300 0.29 ±0.10 0 3.0 3.0 0.02 0.5

Table 9. The observed data and expected background in both mass windows of the di-track Discovery-
SR. Both systematic and statistical uncertainties in the expected background are included. The
regions are not orthogonal. Also shown are model-independent observed and expected 95% CL upper
limits on the number of signal events, S95

obs and S95
exp, the observed 95% CL upper limit on the visible

cross-section, σvis, and the discovery p-value, P (s = 0). The p-value is capped at 0.5.

measures the compatibility of the observed data with the background-only hypothesis relative
to fluctuations of the background.

6.3 Lifetime-dependent mass limits

The results of this study are interpreted for the benchmark signal models considered, and
the 95% CL upper limit on the cross-section is extracted using pseudo-experiments and the
CLs prescription [88] for each signal mass and lifetime hypothesis. Cross-section limits as a
function of lifetime, for varying signal masses, and cross-sections limits as a function of signal
mass, for varying lifetimes, are provided for all benchmark signal models in ref. [89].

To more accurately probe the sensitivity of the analysis to LLP lifetimes other than
those used in the generation of the signal samples, the same samples are reinterpreted for
intermediate lifetime values by reweighing the LLP particle decay spectra. Intermediate
lifetimes are modelled by reweighing the closest longer-lifetime sample to shorter lifetimes,
except for τ > 30 ns. The choice of target lifetimes for τ > 30 ns is limited by the reduced
size of the reweighed sample.

The di-track search is optimised for the stau scenario. It has higher sensitivity than
the β-search in this domain, but lower sensitivity for charginos and R-hadrons. The mass
limits reported below are therefore obtained with the di-track analysis for staus and with
the β-driven analysis for charginos and R-hadrons.

The limits in the stau scenario are shown in figure 13(a). While the interpretation is
done only for staus, the analysis has similar sensitivity for selectrons and smuons. Differences
between signal selection efficiency arise only from second-order effects on Emiss

T and isolation
criteria from the different interactions of the slepton decay products with the detector. The

– 28 –



J
H
E
P
0
7
(
2
0
2
5
)
1
4
0

sensitivity for staus peaks at around 30 ns for two reasons: at lower lifetimes, the LLPs
do not travel far enough to be reconstructed as tracks, while at higher lifetimes, the Emiss

T
trigger efficiency drops, as discussed in section 5.2.

The mass range 200–560 GeV is excluded for mass-degenerate τ̃L and τ̃R with lifetimes
τ = 10 ns, while the corresponding expected exclusion is 200–550 GeV. This search is not
sensitive to masses below 200 GeV as lighter LLPs have lower pT and lower dE/dx which
do not allow for reasonable background discrimination. These results are the most sensitive
to date for detector-unstable τ̃L,R with lifetimes above 3 ns. At lower lifetimes, the ATLAS
search for displaced leptons provides exclusions for τ̃L,R with τ = 0.3 ns up to 380 GeV [90].
Searches for detector-stable LLPs, exploiting the muon system as a trigger, have previously
been performed, including an ATLAS search for detector-stable LLPs with dE/dx and ToF
using 36 fb−1 of data that excluded stable nearly pure τ̃R with masses up to 430 GeV [28],
and a CMS result using 101 fb−1 of data that excluded detector-stable τ̃R up to 520 GeV
and τ̃L,R with masses up to 730 GeV [31].

Figure 13(b) shows the mass limits for sum of the χ̃±
1 χ̃0

1 and χ̃+
1 χ̃−

1 production. The
chargino mass limit is ≈ 1.3 TeV for lifetimes τ > 100 ns. These results provide the most
stringent limits to date for detector-unstable charginos in the lifetime range above 10 ns.
The previous ATLAS search that selected a single track with significant dE/dx had greater
sensitivity for charginos with lifetimes from 3 ns to 10 ns [21], as the requirement for the
LLPs to travel to the hadronic calorimeter is less efficient for signals with shorter lifetimes.

Figure 14 shows the mass limits for gluino R-hadron pair production for both the m(χ̃0
1) =

100 GeV and ∆m(g̃, χ̃0
1) = 30 GeV cases. The sensitivity for R-hadrons with m(χ̃0

1) = 100 GeV
falls for lifetimes above 30 ns due to a loss of efficiency for the Emiss

T trigger, as discussed
in section 5.2. The charginos and R-hadrons with ∆m(g̃, χ̃0

1) = 30 GeV do not have decay
products that interact significantly with the detector, so their Emiss

T trigger efficiency is flat
as a function of lifetime. The highest observed lower limit on the mass is 2.27 TeV (2.20 TeV)
and is obtained at τ = 30 ns (τ > 200 ns) for m(χ̃0

1) = 100 GeV
(
∆m(g̃, χ̃0

1) = 30 GeV
)
,

while the corresponding expected limit matches the observed limit. These results provide the
most stringent limits to date for detector-unstable LLPs in the lifetime range above 10 ns. At
lifetimes lower than 10 ns, other strategies including searches for disappearing tracks [91, 92]
and searches for displaced vertices [93, 94] provide better sensitivity.
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Figure 13. (a) The contour for the excluded mas5-2ifetime region for stau pair production obtained
with the di-track search. All masses and lifetimes shown that are below the curve and above 200 GeV
are excluded by the observed data (while the expected exclusion is between the upper curve down
to 210 GeV for lifetimes above 3000 ns). The sensitivity extends indefinitely to longer lifetimes. (b)
Upper limits on the chargino mass, assuming the χ̃±

1 χ̃0
1 and χ̃+

1 χ̃−
1 contributions, versus lifetime

obtained with the β-search. Lifetimes below 3 ns and masses below 200 GeV are not probed by these
analyses. Observed limits are indicated as solid blue lines and expected limits are indicated by dotted
black lines. The shaded band around the expected limit indicate the 1σexp (and 2σexp) uncertainty
range, derived as explained in section 5.5.

1 10 210
3

10

) [ns]g~(τ

1400

1600

1800

2000

2200

2400

2600

2800

3000

) 
[G

e
V

]
g~

m
(

ATLAS  
-1=13 TeV, 140 fbs

All limits at 95% CL

Gluino R-hadron

 = 100 GeV
1

0
χ
∼, m

1

0
χ
∼

qq→g
~

)SUSY
theory

σ  1±Observed (

)expσ  1±Expected (

)expσ  2±Expected (

(a)

1 10 210
3

10

) [ns]g~(τ

1400

1600

1800

2000

2200

2400

2600

2800

3000

) 
[G

e
V

]
g~

m
(

ATLAS  
-1=13 TeV, 140 fbs

All limits at 95% CL

Gluino R-hadron

m = 30 GeV∆ ,
1

0
χ
∼

qq→g
~

)SUSY
theory

σ  1±Observed (

)expσ  1±Expected (

)expσ  2±Expected (

(b)

Figure 14. Upper limits on the gluino mass, from gluino R-hadron pair production, as a function of
the gluino lifetime for two neutralino mass assumptions of (a) m(χ̃0

1) = 100 GeV and (b) ∆m(g̃, χ̃0
1) =

30 GeV obtained with the β-search. Observed limits are indicated as solid blue lines and expected
limits are indicated by dotted black lines. The shaded band around the expected limit indicate the
1σexp (and 2σexp) uncertainty range, derived as explained in section 5.5. The upper 1σexp expected
bound is very close to the expected limit for some lifetime values due to the expected background
approaching zero events. For a given lifetime, the mass values below the curve are excluded.
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7 Conclusion

A search is performed for heavy charged LLPs of lifetime exceeding 3 ns produced at the
LHC in 140 fb−1 of pp collisions at

√
s = 13 TeV. This search is based on two independent

and compatible measurements of the LLP mass compared to a data-driven background
estimate. The two mass measurements are obtained either for two heavily-ionising opposite-
sign particles or for one heavily ionising particle that is also measured to be slow-moving.
The mass values are determined by the βγ measurements obtained either through the specific
ionisation in the pixel detector or through the ToF measured by the hadronic calorimeter.
Two independent determinations of βγ minimise the effect of the fluctuations that happen
in the far tails of those distributions.

Observed yields and distributions agree with the SM background expectations and limits
are placed on several simplified SUSY models. The highest sensitivity is reached for LLPs with
lifetimes exceeding 10 ns. Masses smaller than 2.27 TeV are excluded at the 95% confidence
level for gluino R-hadrons with a lifetime of 30 ns and m(χ̃0

1) = 100 GeV. The mass limit
for compressed-scenario R-hadrons, with ∆m(g̃, χ̃0

1) = 30 GeV and a lifetime > 200 ns, is
2.20 TeV. Charginos with masses smaller than 1.3 TeV and lifetime > 100 ns are excluded.
Masses in the range of 200–560 GeV for staus are excluded for lifetimes of 10 ns.

The limits for detector unstable LLPs in the mas5-2ifetime plane are the most stringent to
date in the lifetime domain exceeding 10 ns and provide further constraints on the R-hadron,
chargino and stau production models considered.

The seven events in the 3.3 Z significance excess observed in the signal region defined
by ref. [21] are excluded by the βToF selection. This indicates that this excess is not due to
heavy, highly-ionising and slow particles reaching the hadronic calorimeter.
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