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Abstract

Liver cancer, with hepatocellular carcinoma (HCC) as its predominant form,

remains among the deadliest malignancies worldwide. Despite the expanding

array of treatment options, current therapies benefit only a limited subset of

patients. Metabolic reprogramming is a hallmark of cancer, with lipid

metabolism playing a pivotal role in tumor progression, metastasis, and

therapy resistance. HCC is profoundly influenced by alterations in lipid

metabolic pathways, notably those involved in steatotic liver disease, a major

risk factor. Key aspects such as de novo lipogenesis, lipid uptake, fatty acid

oxidation, lipid peroxidation, biosynthesis of bioactive lipids, and cholesterol

biosynthesis are all reprogrammed in liver cancer cells. These metabolic shifts

modify the cancer cell lipidome—altering fatty acid unsaturation levels and

other lipid profiles—to promote survival and resistance during therapy. Recent

technological advances have deepened our understanding of dysregulated

lipid metabolism in HCC. In this review, we examine how various facets of lipid

metabolism contribute to HCC disease progression and resistance to standard

treatments, including tyrosine kinase inhibitors, immune checkpoint inhibitors,

and radiotherapy. We also explore the potential of targeting lipid metabolic

pathways to enhance therapeutic efficacy and overcome resistance, high-

lighting dietary interventions as a promising, low-cost, low-side-effect strategy

to resensitize resistant HCC cells.
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INTRODUCTION

Liver cancer, of which 85%–90% is hepatocellular
carcinoma (HCC), is one of the deadliest cancer types
in the world, ranking third in cancer-related deaths. In
contrast to the overall decrease in mortality rate in most
cancer types in the past 20 years, the mortality rate of
liver cancer continues to rise.[1] Multiple therapeutics
have been approved recently and added to the list of
standard of care (SoC) for HCC, including tyrosine
kinase inhibitors [TKIs; lenvatinib, sorafenib, regorafenib,
cabozantinib, ramucirumab (anti-VEGFR2)] and immune
checkpoint inhibitors [ICIs; atezolizumab (anti-PD-
L1) plus bevacizumab (anti-VEGF), tremelimumab-actl
(anti-CTLA-4) plus durvalumab (anti-PD-L1), camrelizu-
mab (anti-PD-1) plus rivoceranib (anti-VEGFR2),
nivolumab (anti-PD-1) plus ipilimumab (anti-CTLA-4),
durvalumab (anti-PD-L1), pembrolizumab (anti-PD-L1)].
Despite their effect in extending survival and improving
the prognosis of patients, recent analyses of real-world
data have reported a low overall response rate of 26%–

28% for atezolizumab plus bevacizumab and 16%–23%
for lenvatinib, with a median progression-free survival of
less than 12 months.[2–4] Patients who progress after
atezolizumab plus bevacizumab treatment only benefit
slightly from subsequent TKIs or ICIs, with an objective
response rate of 7%.[5,6] Thus, nearly 3 out of 4 patients
will not benefit from the current SoC due to resistance to
therapy. Preclinical and clinical studies have proposed
multiple mechanisms driving primary resistance and
acquired resistance toward various treatments. Yet,
resensitizing cancer cells to therapeutics has not been
successful in the clinic and remains unresolved.

Lipids are crucial for normal function at both the
cellular and systemic levels. They include diverse
classes of molecules, including fatty acids (FAs),
triglycerides (TGs), phospholipids, glycolipids, and
sterols. They serve as a source of energy, building
blocks for cellular structures (eg, cell membrane),
signaling molecules [eg, diacylglycerol (DAG) in PKC
pathway], substrates for metabolites (eg, hormones,
vitamins), and cytokines (eg, prostaglandin), and are an
integral part of the transportation of fat-soluble nutrients
around the body. Dysregulation of lipid metabolism has
been recognized as the cause of metabolic syndrome
leading to the development of various diseases
including cancer.[7,8] Excess accumulation of lipids in
liver parenchymal cells leads to steatotic liver disease,
which is one of the key risk factors for HCC
development.[9,10] Metabolic dysfunction-associated
fatty liver disease (MAFLD), previously known as non-
alcoholic fatty liver disease (NAFLD), is estimated to
affect >25% of adults worldwide (> 1.26 billion people)
in 2021.[11–13] Nearly half of all HCC patients have
MAFLD (49%), and around 12% of HCC patients have
MAFLD as the sole underlying liver disease.[14] Impor-
tantly, the proportion of HCC patients with MAFLD is

expected to rise in the future.[14,15] Recent advance-
ments in technologies—including mass spectrometry,
single-cell transcriptomics, and spatial metabolomics—
have significantly enhanced our understanding of the
biological roles of dysregulated lipid metabolism in
cancer. These innovative approaches not only elucidate
the complex metabolic alterations driving tumor pro-
gression and resistance to therapeutics but also
facilitate the development of targeted therapies aimed
at modulating lipid metabolic pathways.

This review synthesizes the most recent evidence on
how dysregulated lipid metabolism contributes to HCC
progression and resistance to current SoC therapies,
including radiotherapy, TKIs, and ICIs. Given the
complex interactions between tumor cells, the tumor
microenvironment, and distant organs such as adipose
tissue, our focus centers on alterations in lipid metab-
olism within cancer cells that drive disease progression
and therapeutic resistance. Furthermore, we explore
the potential integration of lipid metabolism targeting
into existing HCC treatment strategies and discuss
future perspectives in this area. In addition, the
emerging role of dietary interventions aimed at modu-
lating lipid metabolism as a complementary approach
will be discussed.

DYSREGULATED LIPID
METABOLISM IN HCC AND ITS ROLE
IN RESISTANCE TO THERAPY

Lipid metabolism is tightly regulated by various signal-
ing pathways (eg, PI3K/AKT/mTOR pathway),[16] tran-
scription factors [eg, sterol regulatory element binding
proteins (SREBPs)],[17] and stress from the tumor
microenvironment (TME) (eg, hypoxia and nutrient
deprivation).[18] Mutations in signaling pathways and
overexpression of lipid metabolism-related proteins
contribute to the signatures of dysregulated lipid
metabolism in HCC, including (1) enhanced lipid
uptake, (2) reactivation of de novo lipogenesis (DNL),
(3) increased fatty acid oxidation (FAO), (4) suppressing
lipid peroxidation, (5) bioactive lipids synthesis, and (6)
cholesterol biosynthesis.[19,20] A summary of dysregu-
lated lipid metabolism in HCC is shown in Figure 1.

ENHANCED LIPID UPTAKE

Lipid uptake is crucial for both cancer cells and normal
cells. Human cells can produce only certain FAs and
cannot introduce a double bond beyond the Δ9
position on FAs. Therefore, polyunsaturated fatty
acids (PUFAs) are essential and must be obtained
from the diet for the biosynthesis of other long-chain
PUFAs.[21] In addition, stearoyl-CoA desaturase
(SCD), which introduces a double bond at the Δ9
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position, requires oxygen for the conversion of
saturated fatty acids (SFAs) to monounsaturated fatty
acids (MUFAs). Thus, under hypoxic conditions,
cancer cells cannot synthesize unsaturated FAs and
must rely on the uptake of exogenous FAs to
survive.[22] Data from human HCC patients and animal
models have demonstrated the importance of lipid
uptake in supporting cancer growth. A high-fat diet
promoted HCC formation with steatosis characteristics
in diethylnitrosamine (DEN)-induced HCC mouse
model.[23] Using a spatial single-cell isotope tracing
technique, 13C-SpaceM, Buglakova et al. observed a
relative uptake of 60%–90% and thus 10%–40% DNL
in mouse HCC cells, which is similar to the level found
in human NAFLD patients (26% DNL).[24,25]

Uptake of FAs requires specific FA transporters,
including CD36,[26] the SLC27 family (fatty acid trans-
port proteins, FATPs),[27] and fatty acid-binding proteins
(FABPs).[28] CD36 is frequently upregulated in HCC and
has been shown to promote cancer progression and
metastasis by activating oncogenic signaling such as
the Src/AKT/mTOR pathway and YAP signaling.[29–31]

Upregulation of CD36 was also observed in irradiation-
resistant HCC cells after irradiation, suggesting a
potential role of lipid accumulation through CD36 in
driving resistance to radiotherapy[32] (Figure 2A).
Recently, Tzeng et al.[33] developed PLT012, a neutral-
izing antibody targeting CD36, that showed superior
effects in suppressing HCC progression in a preclinical
model. Treatment with PLT012 modulated antitumor
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F IGURE 1 Overview of abnormal lipid metabolism in HCC. The reprogramming of lipid metabolism in cancer cells leads to the six signatures
of lipid metabolism in driving cancer progression and resistance to standard of care: (1) enhanced lipid uptake, (2) reactivation of DNL, (3)
increased FAO, (4) suppression of lipid peroxidation, (5) bioactive lipids synthesis, and (6) cholesterol biosynthesis. Overexpression of proteins
involved in these pathways (highlighted in green) is frequently observed in HCC and has been reported to contribute to cancer progression. The
products of these metabolic pathways provide energy, serve as substrates for building cellular structures, inhibit oxidative stress, and act as
signaling molecules and cytokines to support the needs of cancer cells and remodel the tumor microenvironment to be pro-tumorigenic.
Abbreviations: AA, arachidonic acid; DAG, diacylglycerol; DNL, de novo lipogenesis; FA, fatty acid; FAO, fatty acid oxidation; LTB4, leukotriene
B4; MUFA, monounsaturated fatty acid; PGE2, prostaglandin E2; PUFA, polyunsaturated fatty acid; SFA, saturated fatty acid; TG, triglyceride.
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F IGURE 2 Role of dysregulated lipid metabolism on resistance to radiotherapy and tyrosine kinase inhibitors in HCC. (A) Radiotherapy-
induced ROS and promoted the release of cytochrome c from mitochondria to drive ferroptosis and apoptosis. HCC cells enhanced the uptake of
MUFA and SFA via increased expression of FATP4 and CD36 to suppress lipid peroxidation. In addition, increasing the synthesis of cardiolipid
from PA maintained the integrity of mitochondria, thereby impairing the cytochrome c–mediated apoptosis. (B) TKIs, including lenvatinib, sor-
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GPX4, which is a negative regulator of lipid peroxidation. HCC cells enhanced the uptake of MUFA and increased DNL of MUFA and SFA to
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4 | HEPATOLOGY COMMUNICATIONS



immunity by recruiting cytotoxic progenitor exhausted
CD8 T cells and suppressing FOXP3+ CD4 regulatory T
cells (Treg), and sensitized HCC to ICIs.[33]

FATPs facilitate the uptake of long-chain fatty acids;
however, their role in HCC remains controversial.
FATP4 (SLC27A4) was upregulated in HCC and
selectively transported MUFA to protect cancer cells
against lipid peroxidation and ferroptosis, thereby
conferring HCC cells resistance to sorafenib[34]

(Figure 2B). On the contrary, although silencing FATP5
(SLC27A5) protected high-fat diet–induced liver stea-
tosis, FATP5 deficiency has been shown to promote
HCC development via activation of KEAP1/NRF2 path-
way, AKT/mTOR pathway, and epithelial–mesenchymal
transition (EMT).[35–40]

FABPs are proteins that bind and shuttle FAs from the
membrane to intracellular destinations, for example, lipid
droplets. Upregulation of FABPs, including FABP1, FABP4,
and FABP5, has been observed in HCC and correlated
with aggressive cancer phenotype and progression.[41–44]

FABP1 aided HCC cells to compete with T cells in the TME
for uptake of long-chain FAs, especially linoleic acid, to
impair T cell activation.[41] Inhibiting LINC01116, an
upstream regulator of FABP1, together with anti-PD-1
markedly reduced HCC progression and extended
survival.[41] FABP5 protected cancer cells from lipid
peroxidation and ferroptosis by suppressing FAO, leading
to enhanced tumor development.[42] Inhibition of FABP5
using inhibitors SBFI-103 promoted lipid peroxidation via
restoration of FAO, and increased the accumulation of
macrophages expressing co-stimulatory markers (CD80
and CD86) and CD44+CD62L− effector T cells, leading to
suppressed HCC progression.[42]

In addition to the expression levels of fatty acid
transporters, the specific types of fatty acids being
transported also influence tumor development. A high
SFA diet promoted tumor formation compared with an
isocaloric high PUFA diet.[45] On the other hand, the
addition of SFA palmitate has been shown to reduce
tumor progression and metastasis by decreasing
membrane fluidity and suppressing mTOR and STAT3
signaling pathways.[46] The addition of ω3-PUFA eico-
sapentaenoic acid (EPA) to the standard diet reduced
ROS level and MAPK signaling, thereby inhibiting tumor
formation.[47] Given the diversity and divergent effects of
individual fatty acids, more research is needed to clarify
the contribution of different FA species, dietary lipid
composition, and the expression of various FA trans-
porters in regulating tumor progression.

REACTIVATION OF DE NOVO
LIPOGENESIS

De novo lipogenesis (DNL) is a pathway that converts
carbohydrates or amino acids into FAs using acetyl-
CoA generated from the tricarboxylic acid (TCA) cycle

by enzymes such as fatty acid synthase (FASN) and
SCD.[48,49] The newly synthesized FAs can be used for
energy production via FAO during stress and production
of complex lipids (eg, phospholipids) as membrane
structure or signaling molecules. For example, glycerol-
3-phosphate acyltransferases and lysophosphatidic
acid acyltransferases synthesize lysophosphatidic acid
(LPA) and phosphatidic acid (PA) respectively, which
serve as building blocks for synthesis of structural lipids,
such as triglyceride by diacylglycerol O-acyltransferase
(DGAT), and signaling molecules, such as
phosphatidylcholine.[50] In the liver, DNL is restricted
to hepatocytes in the pericentral region and is tightly
regulated at the transcriptional level by transcription
factors, including SREBPs and peroxisome proliferator-
activated receptors (PPARs).[17,51] However, HCC cells
acquire the ability to hijack this system and reactivate
DNL to support their growth and needs.

SREBP1 was regulated transcriptionally by the proto-
oncogene MYC, which is frequently amplified in
HCC.[20,52,53] SREBP1 translocates to the nucleus to
promote transcription of genes related to DNL, for
example, FASN, SCD, and ACACA. Nuclear trans-
location of SREBP1 was promoted by the PI3K/AKT/
mTOR pathway, which is activated in HCC.[16,54,55]

PPARα and PPARγ signaling drove DNL in liver and
HCC, and were activated by metabolites, such as acetyl-
CoA and FAs, and the AKT/mTOR pathway.[56,57]

Reactivation of DNL was also controlled at the post-
transcriptional level, such as deacetylation of SREBP1
by SIRT3, acetylation of FASN by KAT8, and increased
translation of ACSL family, which catalyzes the first step
of incorporation of PUFA into phospholipids, by m6A
modified 18S rRNA.[58–61] These demonstrate the multi-
ple mechanisms utilized by HCC cells to reactivate DNL.

The role of DNL in HCC

Reactivation of DNL and the subsequent accumulation
of lipids have been shown to be crucial for HCC
development.[62–65] Reduction of DNL through inhibiting
maturation of SREBP1 or loss of FASN, one of the rate-
limiting steps in DNL, suppressed inflammation,
reduced liver steatosis, and impaired HCC
formation.[66–68] Increased levels of lysophosphatidyl-
cholines, LPA, and triglyceride by DNL activated
hepatic stellate cells to promote fibrosis and subse-
quent HCC development.[69] High levels of LPA, PA,
and glucosylceramide also activated YAP, AKT/mTOR,
and Wnt signaling, respectively, to promote HCC
development and metastasis.[70–73] Since TKIs kill
HCC cells through suppression of receptor tyrosine
kinases (RTKs), activation of oncogenic signaling
downstream of RTKs by PA led to resistance to
lenvatinib[73] (Figure 2B). DNL also supports the
synthesis of lipids for cellular structure. Cardiolipin is a
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class of phospholipids found only in mitochondria. A
high level of cardiolipin was observed in HCC to
maintain mitochondrial integrity, thereby enhancing
oxidative phosphorylation to fulfill the high energy
demand for the growth of cancer cells.[62] It also
inhibited the release of cytochrome c from mitochondria
to promote resistance to radiotherapy[74] (Figure 2A).
Although lipids are important for the growth of cancer
cells, a high lipid content is also toxic to cells. Cancer
cells prevent cellular damage due to the lipotoxicity via
storing excess lipids as lipid droplets (LDs) and
desaturation of SFAs.[75–79] Enhanced DNL and LD
formation were observed in sorafenib-resistant cells,
suggesting that DNL and reducing lipotoxicity are
important in driving resistance to TKIs[76,80] (Figure 2B).

Interestingly, suppression of DNL has also been
shown to promote tumor development. Nelson et al.[81]

reported that liver-specific knockout of ACC1 sup-
pressed DNL but promoted tumor development in a
DEN-induced HCC model. Inhibition of DNL led to
enhanced lipid uptake via upregulation of CD36 and
FATP5, potentially increasing the PUFA:SFA ratio to
impair lipotoxicity, thereby promoting tumor
development.[81] However, due to the limitations of the
study, definitive conclusions regarding the contribution
of altered lipid profiles to tumor development remain
elusive. The interplay between lipid uptake and DNL in
cancer progression warrants further investigation, as
understanding this relationship is crucial for the devel-
opment of effective strategies to target lipid metabolism
in HCC.

The role of DNL in HCC cells in TME

The high DNL rate in HCC created a high lipid level in
the TME, which is associated with immuno-
suppression.[82–84] Indeed, patients with nonviral-related
HCC, such as MAFLD-related HCC, were observed to
have accumulation of immunosuppressive SiglecF+
tumor-associated neutrophils and increased infiltration
of exhausted immune cells, such as unconventional
tissue damaging PD-1+ CD8 T cells caused by liver
steatosis.[82,85,86] Accumulation of lipids in HCC cells
activated JNK/STAT signaling, thereby inducing expres-
sion of proteins that promoted polarization of immuno-
suppressive M2 macrophage, for example, C-X-C Motif
Chemokine Ligand 8 (CXCL8), and immune checkpoint
proteins, for example, programmed death-ligand 1 (PD-
L1), to suppress T cell activity[82] (Figure 3). Interest-
ingly, overexpression of PD-L1 in HCC cells was found
to induce lipid accumulation through binding of PD-L1
with EGFR and ITGB4 to activate the AKT/mTOR
pathway.[87] These studies suggest a potential positive
feedback loop between DNL and PD-L1 to escape
immune surveillance. In addition, HCC cells secreted
long-chain unsaturated FAs to the TME, which activated

macrophages in the TME via FABP5.[83] This lipid-
loaded, FABP5+ macrophage expressed PD-L1 and
galectin-1 to inhibit T cell functions[83] (Figure 3).
However, DNL also suppressed PD-L1 expression.[84]

ATP citrate synthase (ACLY), which synthesizes acetyl-
CoA from citrate, promoted DNL to lower PUFA:SFA
ratio and prevent mitochondria damage due to lipid
peroxidation.[84] This suppressed cGAS–STING path-
way to decrease PD-L1 expression and promote
resistance to anti-PD-L1 treatment[84] (Figure 3). This
contradiction may possibly arise from the gene being
targeted and the model used, as suppression of DNL by
inhibition of FASN did not result in downregulation of
PD-L1.[88] Clinically, recent reanalysis of clinical trials
data showed that MAFLD-related HCC was not
responsive to ICIs.[89,90] However, a small retrospective
cohort reported that HCC with intratumor steatosis was
more responsive to ICIs.[82] Additional mechanistic
studies and analysis of real-world data are needed to
clarify the exact contribution of liver steatosis to
response to ICIs.

FATTY ACID OXIDATION

FAO serves as a vital energy source, yielding more ATP
per carbon molecule than glucose. In addition to its role
in energy production, FAO also produces citrate, which
acts as a substrate for redox reactions and supports the
biosynthesis of other molecules, such as nucleotides,
through the folate cycle.[91] However, the role of FAO in
HCC remains controversial. Transcriptomics and prote-
omics analysis of HCC patients have observed
increased FAO in tumor tissues.[92,93] Wnt/β-catenin
signaling–driven HCC model (loss of APC or β-catenin
mutation) was addicted to FAO via activation of PPARα
and increased expression of CPT1, the rate-limiting
step of FAO.[94,95] The increase in FAO was observed
before the tumor developed and was important for the
transition from premalignant liver to tumor tissue.[94,96,97]

Conversely, inhibition of FAO by etomoxir, a CPT1
inhibitor, impaired tumor development.[94,96] Mechanis-
tically, activation of FAO by NRas overexpression
increased the metabolic rate of premalignant cells,
leading to the generation of ROS and causing DNA
damage.[96] High FAO also supported the maintenance
of tumor-initiating cells, which are linked to resistance to
sorafenib.[98] On the other hand, suppression of FAO
was important for p53 mutation-driven HCC and DEN
plus high-fat diet–induced HCC model.[99,100] The
discrepancy between these studies may be due to
differences in etiology and genetic mutations. The
differences in dysregulated lipid metabolism in HCC
driven by different etiologies warrant further exploration
and are discussed below. Despite the discrepancy,
FAO has been shown to be critical for the survival of
cancer cells during nutrient deprivation.[101,102] CPT1
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was released from ACC1 and translocated into
mitochondria to enhance FAO and promote survival
during nutrient deprivation.[102] In addition, using a
signature of fatty acid degradation gene to stratify
human HCC patients into 3 clusters, Liu et al.[103]

discovered that HCC patients in the cluster enriched
with high expression of FAO genes are less responsive
to anti-PD-1, suggesting a connection between FAO
and response to ICIs (Figure 3).

SUPPRESSING LIPID
PEROXIDATION

Lipids are one of the key components in a type of
programmed cell death known as ferroptosis.

Ferroptosis is driven by iron-dependent phospholipid
peroxidation, especially the peroxidation of phospholi-
pids containing PUFAs but not SFAs and MUFAs.[104]

This reaction is dependent on iron and is negatively
regulated by GPX4, FSP1, and SLC7A11. As discussed
in the previous section, HCC has high lipid uptake and
DNL, leading to the accumulation of PUFAs. For
example, the ACSL4 family preferentially ligated long-
chain PUFA, arachidonic acid, to coenzyme A for
incorporation into phospholipids and served as an
important driver of ferroptosis.[104] However, high
expression of ACSL4 also promoted HCC development
through increasing lipid accumulation via synthesis of
phospholipids to support growth of cancer cells and
enhance inflammation to promote fibrosis.[61,105–107]

Thus, HCC cells need to overcome the increase in
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checkpoint inhibitor PD-L1 and galectin-1 in macrophages. Accumulation of lipids in HCC cells activated the JAK–STAT pathway to drive
transcription of CXCL8. CXCL8 was secreted to the TME and promoted macrophage M2 polarization, which is immunosuppressive. The
acquisition of M2 phenotype by macrophages was also promoted by PGE2 and oxysterol 27-hydroxycholesterol secreted by HCC cells. In
addition, cholesterol secreted by HCC cells downregulated cytotoxic markers GZMB and IFNγ in T cells and increased differentiation of myeloid
cells to MDSCs. These overall create an immunosuppressive TME in HCC. Abbreviations: 27HC, 27-hydroxycholesterol; AA, arachidonic acid;
DNL, de novo lipogenesis; FAO, fatty acid oxidation; GZMB, granzyme B; ICIs, immune checkpoint inhibitors; IFNγ, interferon-gamma; LCUFA,
long-chain unsaturated fatty acid; LPA, lysophosphatidic acid; MDSCs, myeloid-derived suppressor cells; MUFA, monounsaturated fatty acid; PA,
phosphatidic acid; PGE2, prostaglandin E2; PUFA, polyunsaturated fatty acid; RTK, receptor tyrosine kinase; SFA, saturated fatty acid; TME,
tumor microenvironment.
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PUFA-driven lipid peroxidation due to lipid uptake and
DNL. Moreover, ferroptosis can be induced by radio-
therapy and TKIs, such as sorafenib and regorafenib.
Suppressing lipid peroxidation will confer HCC cells
resistance to radiotherapy and TKIs. Indeed, high
expression of ACSL4 was found to negatively correlate
with resistance to sorafenib and ACSL4 expression can
be used as prognostic marker for predicting response to
sorafenib.[108] Remodeling lipid profile to reduce the
level of PUFA also helped HCC cells to overcome lipid
peroxidation stress.[109–111] This includes rewiring
metabolism to change the ratio of PUFA:SFA,[109]

impairing the incorporation of PUFA into the cell
membrane,[111] and promoting the degradation of
ACC1 to reduce the overall level of PUFAs.[110] As a
key enzyme for the production of MUFA, SCD is
instrumental in driving resistance to sorafenib and
regorafenib treatment by lowering the PUFA:MUFA
ratio[112–114] and inhibiting ER stress-induced unfolded
protein response and apoptosis caused by sorafenib
treatment by altering the saturation level of FAs in
cancer cells[79,115] (Figure 2B). Moreover, HCC cells
with high DNL stabilized HIF1α via FASN to increase
the transcription of SLC7A11, which imports cysteine to
synthesize ROS scavenger glutathione, thereby inhibit-
ing lipid peroxidation to promote HCC development,[116]

and resistance to radiotherapy[117] and sorafenib[118]

(Figure 2). On the other hand, HCC cells promote lipid
peroxidation in T cells, leading to dysfunctional,
exhausted CD8 T cells.[119,120] Uptake of iron via TFRC
and oxidized low-density lipoprotein (LDL) via CD36 by
CD8 T cells within the TME resulted in lipid peroxida-
tion, activation of p38 kinase, and increased expression
of exhaustion markers, such as PD-1 and TIM-3.[119,120]

In addition, lipid uptake through CD36 elevated palmi-
tate levels, promoting palmitoylation of STAT3.[121] This
leads to overactivation of STAT3 signaling in CD8 T
cells, and subsequent terminal exhuastion, which
contributes to HCC progression.[121]

SIGNALING BY BIOACTIVE LIPIDS

Lipids can be further processed to form bioactive lipids,
especially eicosanoids and ceramides. Eicosanoids
include a range of molecules such as prostaglandins,
leukotrienes, thromboxanes, and docosahexaenoic
acids, which have autocrine and paracrine effects and
help to shape the TME to support tumor growth.[122,123]

However, contradictory roles of eicosanoids have been
reported. High levels of prostaglandin E2 (PGE2)
promoted HCC development through acting on both
cancer cells[124] and immune cells.[125,126] PGE2 bound
to prostaglandin E2 receptor 4 (EP4 receptor) on HCC
cells to activate oncogenic PI3K/MAPK signaling and
stabilize HIF2α to survive hypoxia.[124,127] PGE2
secreted by HCC cells bound to EP4 receptors on

macrophages, activating the AKT/mTOR signaling
pathway and promoting their polarization to the M2
phenotype, which in turn elicited an inflammatory
response that drove steatosis, CD8 T cell exhaustion,
and tumor progression[125,126] (Figure 3). Inhibition of
COX2, a key enzyme for PGE2 biosynthesis, with
nonsteroidal anti-inflammatory drug (NSAIDs), for
example, aspirin, celecoxib, or meloxicam, sensitized
cancer cells to sorafenib and interferon-α treatment in
in vitro and preclinical model.[128,129] On the contrary,
LTB4 was found to suppress HCC development by
activating immune cells in the TME.[130] Mechanistically,
LTB4 binds to the receptor BLT1 on cancer cells to
reduce the secretion of TGF-β via JNK signaling. The
low level of TGF-β in the TME decreased polarization to
M2 macrophage and increased T cell infiltration,
sensitizing cancer cells to anti-PD-1 treatment.[130]

These studies suggest that the inhibition of COX2 or
the addition of LTB4 can potentially sensitize cancer
cells to ICIs, but more research on the multifunctional
role of eicosanoids is needed, given the limited studies
available in HCC.

CHOLESTEROL BIOSYNTHESIS

Cholesterol is an important component of the cell
membrane, controlling its fluidity and functioning as a
precursor for the synthesis of hormones. Cholesterol
biosynthesis is tightly regulated by transcription factors,
for example, SREBP2 and PPARs, as well as interme-
diate metabolites, which act as negative regulators.
Several cholesterol biosynthesis-related genes are over-
expressed in cancer and are correlated with a poor
prognosis, for example, SQLE,HMGCR, andMVK.[17,131]

Epidemiological studies have shown that the use of
statins, which lower cholesterol levels in the blood,
reduces cancer-related mortality, suggesting an impor-
tant role of cholesterol in cancer cells.[132] However, the
role of cholesterol in cancer remains controversial as
several studies also have noted the tumor suppressive
role of cholesterol.[133]

Pro-tumorigenic role of cholesterol

The pro-tumorigenic role of cholesterol in HCC is well-
documented. Addition of high level of cholesterol to a
high-fat diet promoted HCC development by inducing
severe inflammation.[134–137] The accumulation of cho-
lesterol in HCC cells has been shown to be critical for
HCC progression and metastasis.[138–146] The high
cholesterol level in HCC cells activated oncogenic
signaling, such as AKT/mTOR, EGFR, and EMT, via
remodeling of lipid rafts in the cell membrane to promote
HCC progression and metastasis.[145,147] In addition,
cancer cells resistant to lenvatinib or sorafenib had high
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cholesterol level[139,145,147–149] (Figure 2B). Besides
activating oncogenic signal, remodeled lipid rafts also
upregulated drug efflux protein ABCB1, potentially
exporting TKIs.[147] Cholesterol derivatives such as
oxysterol are also important for HCC progression and
resistance to therapy. Mok et al.[148] reported that a high
level of 25-hydroxycholesterol activated sonic hedge-
hog signaling to confer HCC cells resistance to
lenvatinib. Similarly, 27-hydroxycholesterol upregulated
GPX4 to protect cancer cells against lipid peroxidation
to support their growth,[150] which potentially explains
the mechanism by which high cholesterol level contrib-
utes to resistance to sorafenib. Besides the role of
cholesterol on cancer cells, the cholesterol synthesized
by cancer cells also modified the TME extensively to
promote HCC progression, metastasis, and resistance
to anti-PD-1 treatment by suppressing cytotoxicity of
CD4 and CD8 T cells,[140,143,146] promoting dysfunction
of natural killer T (NKT) cells,[151] inducing immuno-
suppressive Arg1+ myeloid-derived suppressor cells
(MDSCs)[143] and promoting polarization of M2
macrophages[150] (Figure 3).

Anti-tumorigenic role of cholesterol

Despite the contribution of cholesterol in modeling
steatosis and HCC animal models,[134,137,152] high
cholesterol diet has also been shown to reduce tumor
development in DEN-induced HCC model.[153] In
addition, high serum cholesterol level has been reported
to correlate with more cytotoxic natural killer (NK) cells
in healthy individuals,[153] and predict good prognosis
and lower recurrence rate following surgery in HCC
patients.[154] These suggest a potential tumor suppres-
sive role of cholesterol in HCC. Mechanistically,
cholesterol stimulated the localization of CD44 to lipid
rafts in cancer cells and suppressed the interaction of
CD44 with ezrin to inhibit metastasis.[154] Accumulation
of cholesterol in NK cells remodeled the lipid raft and
activated NK cells to express cytotoxic perforin and
granzyme B to inhibit HCC development.[153] The
differing findings regarding cholesterol’s role in HCC
development may be attributed to the specific types of
cholesterol involved. Cholesterol is transported with
other lipids in lipoproteins, such as LDL and high-
density lipoprotein (HDL), in the body. HDL-cholesterol
(HDL-C) has been linked to a lower risk of cardiovas-
cular disease, and the opposite for LDL-cholesterol
(LDL-C).[155] An increased level of non-HDL-C was also
frequently observed in NASH patients.[156] In fact,
lecithin cholesterol acyltransferase (LCAT), an enzyme
for esterification of cholesterol for incorporation into
HDL, was downregulated in HCC and was shown to
suppress HCC development by promoting hepatic
uptake of HDL-C and suppressing FAO.[157,158] Clini-
cally, the expression of LCAT predicted response to

lenvatinib.[158] Treatment with HDL inhibited HCC
development and sensitized HCC toward
lenvatinib.[157] Thus, the type of cholesterol being
administered is important for determining its effect on
HCC development. However, most studies lack infor-
mation on HDL-C and LDL-C levels following the
establishment of the model or after the intervention. A
better understanding of the role of different types of
cholesterol in HCC will help to translate the basic
findings into the clinic. This is particularly important as
inhibition of cholesterol biosynthesis with atorvastatin
has been shown to enhance tumorigenesis by promot-
ing the synthesis of bioactive lipids like PGE2.[159]

THE RELATIONSHIP BETWEEN HCC
ETIOLOGY, GENETIC MUTATIONS,
AND DYSREGULATED LIPID
METABOLISM

The development of HCC is complex, involving multiple
interconnected factors that contribute to its onset.
Moreover, the mixed genetic mutation landscape of
HCC with very few dominant drivers (eg, TERT, TP53,
and CTNNB1) further magnifies the heterogeneity of
HCC between patients.[52,53] Lipid accumulation is a
signature of steatotic liver disease, suggesting that DNL
and enhanced lipid uptake may be critical. However,
MAFLD-HCC patients showed a simultaneous activa-
tion of DNL and FAO.[93] This is potentially due to the
need for a fine balance: DNL promotes steatosis, and
FAO provides energy for the proliferation of cancer
cells. In a high-fat diet–induced MAFLD-HCC model,
overexpression of RAS accelerated tumor
development via suppressing DNL and activating
FAO, suggesting the balance between DNL and FAO
is critical for progression from MAFLD to HCC.[96]

Hepatitis B virus (HBV) infection is one of the leading
causes of HCC. Transcriptomics and lipidomics anal-
ysis of HBV-positive HCC patients showed increased
DNL.[93,160] HBx activated LXR signaling to increase
transcription of SREBP1, SREBP2, and PPAR signaling
activity, thereby driving DNL and tumor
development.[161,162] Mutations have been shown to
important for the progression from injured liver to
cancer.[163] Administration of DEN induces DNA dam-
age in hepatocytes and has been used, in combination
with other factors, to model the development of HCC
from different etiologies—such as high-fat diet for NASH
and carbon tetrachloride for liver fibrosis—within a
context of high mutation burden.[164] Interestingly,
DEN-induced HCC exhibits reliance on different lipid
metabolism signatures compared with other models, as
discussed above. This variation partly depends on the
diet used; for example, a high-cholesterol diet sup-
pressed HCC formation, whereas a combination of
high-cholesterol and high-fat diet promoted
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tumorigenesis.[135,153] In addition, DEN induces recur-
rent mutation in HRas and Braf, leading to activation of
MAPK signaling pathways.[165] These findings suggest
a potential interplay between diet and genetic mutations
in driving tumor development. Further research is
warranted to better understand how mutations influence
response to diet, especially in premalignant lesions. As
discussed in the previous section, the AKT/mTOR
pathway and MYC play a pivotal role in regulating
DNL. Therefore, HCC driven by mutations activating the
AKT/mTOR pathway and amplification of MYC showed
reliance on DNL, which can be suppressed by inhibition
of FASN.[62,67,72,166,167] On the other hand, HCC driven
by activation of Wnt/β-catenin signaling has been
shown to rely on FAO.[94,95] The activation of β-catenin
signaling induced PPARα expression and activity to
promote FAO, which provided energy for the prolifera-
tion of cancer cells.[94] These cells were reprogrammed
to synthesize more phospholipids and inhibition of FAO
by etomoxir suppressed tumor development.[94] How-
ever, loss-of-function mutation of RNF43, a negative
regulator of Wnt/β-catenin signaling, activated DNL to
drive HCC development.[168] Thus, genetic alteration
plays an important role in the reprogramming of lipid
metabolism in HCC. Indeed, although HCC driven by
loss of Pten in combination with overexpression of cMet
activated DNL via activating AKT/mTOR pathway,
genetic ablation of Fasn only delayed tumor develop-
ment, and all mice with loss of Fasn eventually
developed tumors.[167] HCC cells without FASN were
found to activate cholesterol biosynthesis and enhance
lipid uptake to support tumor growth, while genetic loss
of both Fasn and Srebp2 completely abolished tumor
development.[167] Collectively, these show that the
reprogramming of lipid metabolism is regulated by both
genetics and etiology, and metabolic plasticity plays a
role in overcoming the effect of targeting lipid
metabolism.

CROSSTALK BETWEEN LIPID
METABOLISM, GLUCOSE
METABOLISM, AND AMINO ACID
METABOLISM

The metabolism of different metabolites is interlinked.
Enhanced lipid uptake activated AKT/mTOR pathway
and increased palmitate level to drive glycolysis.[23,30]

Lipid metabolism, glucose metabolism, and amino
acid metabolism intersect at the TCA cycle, where
acetyl-CoA can be generated from the catabolism of
fatty acids, glucose, and amino acids. Thus, changes
in the TCA cycle lead to extensive metabolic rewiring.
OGDHL converted α-ketoglutarate to succinyl-CoA in
the TCA cycle and was frequently downregulated in
HCC.[169] This rewired the metabolism of glucose and
glutamine to support DNL using glutamine via the

reductive carboxylation instead of glucose, driving
tumor progression.[169] Metabolic plasticity allows
cells to overcome a stressful environment. During
nutrient starvation, HCC cells activated both DNL and
FAO to survive.[102,170] These cells substituted
glutamine with extracellular citrate as a source for
DNL, preserving glutamine for other metabolic
pathways.[170] Sorafenib-resistant HCC cells shifted
from FAO to glycolysis to provide energy, leading to
the accumulation of lipid droplets to escape mito-
chondrial lipotoxicity induced by sorafenib.[76] With
the shift of first-line therapy from sorafenib to
lenvatinib and ICIs in recent years, understanding
the consequences of these treatments in causing
metabolic rewiring in cancer cells that enable resist-
ance to therapy is important.

POTENTIAL OF TARGETING LIPID
METABOLISM TO EXPLOIT
VULNERABILITY AND REVERSE
THERAPY RESISTANCE IN HCC

Given the importance of lipids in resistance to cancer
therapy, efforts have been made to target lipid
metabolism to enhance the efficacy of currently
approved therapeutics with multiple clinical trials under-
way (Table 1). Drugs that have been approved for use
in other conditions, such as orlistat for obesity man-
agement and statins for cholesterol management, are
being investigated for their use as cancer therapies. In
addition, multiple drugs have been developed to target
key rate-limiting enzymes involved in DNL and FAO.
Here, we summarize the use of lipid metabolism
inhibitors in combination with other therapeutics to
overcome resistance to therapy in HCC.

Targeting DNL

FASN has long been considered a candidate therapeu-
tic target for cancer treatment. Several inhibitors have
been developed and tested in HCC, including orlistat,
TVB-2640, and TVB-366. Orlistat[62,63,88,102] and TVB-
2640[88] have effectively suppressed HCC progression
in multiple preclinical models. Besides their role as
monotherapy, they have been reported to work syner-
gistically with various cancer therapies. Orlistat, TVB-
2640, and TVB-3664 have also been reported to
improve the efficacy of sorafenib,[102] anti-PD-L1,[88,171]

and cabozantinib[166,172] in HCC. A phase IIa and IIb
clinical trial showed that TVB-2640 reduced steatosis in
non-alcoholic steatohepatitis patients, showing its
potential in targeting DNL in HCC.[173,174]

Besides FASN, ACC1 is also a top target for
inhibiting DNL. ACC1 inhibitor, ND-654, worked syner-
gistically with sorafenib to suppress the growth of
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HCC.[175] In a phase IIa clinical trial, ACC1/2 inhibitor
(PF-05221304) plus DGAT2 inhibitor (PF-05221304)
showed promising results in suppressing DNL in the
liver and reducing liver steatosis.[176] This shows the
potential of applying these inhibitors to HCC as well.
Recently, there has been growing interest in developing
inhibitors targeting SCD, which plays a role in promoting
resistance to multiple types of cancer therapy. Several
inhibitors, including aramchol, A939572, MF-438, and
SSI-4 (MTI-301), have been shown to sensitize HCC
cells to chemotherapy and TKIs (sorafenib and
donafenib).[67,112,115] SSI-4 (MTI-301) is set to enter a
phase I clinical trial for assessing the safety and
pharmacokinetics in cancer patients (NCT06911008),
with other inhibitors remaining in the preclinical phase.

Despite the promising results in preclinical HCC
models and patients with steatosis, there are currently
no clinical trials investigating the effect of DNL inhibitors
—except SSI-4—either alone or in combination with
other therapeutics for HCC. This may be due to the
potential adverse effects of DNL suppression in
patients, which are not fully recapitulated or measured
in cell lines or animal models. For example, orlistat
induces weight loss in obese/overweight patients but

not in animal model.[62] However, weight loss in cancer
patients, known as cachexia, is associated with worse
survival in HCC patients and is an important parameter
for disease management.[177] Several studies have
reported unfavorable effects of targeting SCD, FASN,
or ACC1/2, including the development of resistance,[178]

promotion of metastasis[179] and increased plasma TG
and VLDL levels.[174,176] These findings highlighted the
need for careful evaluation of potential adverse side
effects associated with DNL inhibition systematically,
using appropriate preclinical models and during clinical
trials.

Targeting fatty acid oxidation

CPT1 regulates the transport of fatty acids into
mitochondria for FAO and is the rate-limiting step of
FAO. CPT1 inhibitors, such as perhexiline and eto-
moxir, have been shown to inhibit HCC
progression.[94,96,180] Etomoxir has also been reported
to sensitize HCC cells to sorafenib.[181,182] However,
none of the FAO inhibitors have been evaluated in a
clinical trial as a combination with other therapies. This

TABLE 1 Summary of ongoing clinical trials combining drugs targeting lipid metabolism and cancer therapies

Lipid metabolism
drug Therapy combination Cancer type Phase NCT number

TVB-2640 Enzalutamide Pancreatic cancer Phase I NCT05743621

TVB-2640 Paclitaxel, trastuzumab, and
endocrine therapy

HER2-positive breast cancer Phase II NCT03179904

TVB-2640 Bevacizumab Glioblastoma Phase III NCT05118776

MTI-301 Progression from the standard of care Unresectable and refractory solid
cancers

Phase I NCT06911008

Statins Anti-PD-1/anti-PD-L1 NSCLC Observational NCT05636592

Statins Post-surgery or chemoradiotherapy Pancreatic cancer Observational NCT04245644

Simvastatin Metformin and digoxin Advanced solid cancer Phase I NCT03889795

Pitavastatin Venetoclax CML/AML Phase I NCT04512105

Simvastatin Letrozole HR-positive and HER2-negative
breast cancer

Phase I NCT05464810

Simvastatin Carboplatin and doxorubicin Ovarian cancer Phase I NCT04457089

Atorvastatin Ezetimibe, evolocumab, and
FOLFIRINOX

Pancreatic cancer Phase I NCT04862260

Rosuvastatin Apatinib Solid tumor (except GI cancer
and HCC)

Phase I NCT04428086

Atorvastatin Temozolomide Glioblastoma Phase II NCT06327451

Simvastatin Dual anti-HER2 therapy HER2-positive breast cancer Phase II NCT03324425

Lovastatin Pembrolizumab HNSCC Phase II NCT06636734

Statins Chemotherapy or maintenance
therapy

Ovarian cancer Phase II NCT06468254

Simvastatin Valproic acid and AG/PAXG Pancreatic cancer Phase II NCT05821556

Abbreviations: AG, Nab-paclitaxel, gemcitabine; AML, acute myeloid leukemia; CML, chronic myeloid leukemia; FOLFIRINOX, folinic acid, fluorouracil, irinotecan,
oxaliplatin; GI cancer, gastrointestinal cancer; HNSCC, head and neck squamous cell carcinoma; NSCLC, non-small cell lung cancer; PAXG, Nab-paclitaxel,
gemcitabine, cisplatin, capecitabine.
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is partly because of the side effects of targeting FAO.
Etomoxir was found to induce liver toxicity in a phase II
clinical trial, limiting its use in the clinical setting.[183]

Teglicar (ST1326), a reversible CPT1 inhibitor, is
relatively safe with low liver toxicity and is a promising
drug for targeting FAO in combination with other
therapies.[184] Although there are multiple hurdles to
overcome for targeting FAO, the reliance on FAO in
HCC driven by Wnt/β-catenin signaling, which encom-
passes more than 25% of HCC patients, and the
enrichment of FAO genes in HCC patients
unresponsive to ICIs show the clinical impact of
successfully targeting FAO in HCC.

Targeting lipid uptake

Unlike targeting DNL and FAO, limited drugs targeting
lipid uptake are available. Sulfosuccinimidyl oleate
(SSO) irreversibly binds to CD36 and inhibits lipid
uptake. SSO enhanced the response to anti-PD-1
treatment in HCC driven by activation of β-catenin and
loss of Tp53.[185] Recently, a humanized anti-CD36
antibody PLT012 was developed and showed a
superior effect in reducing HCC progression in high-fat
diet–induced HCC model and sensitized HCC cells to
the standard of care of HCC.[33] It has been granted
Orphan Drug Designation for liver and intrahepatic bile
duct cancer by the FDA, showing the potential of
PLT012 as a treatment for HCC in the future. The
difficulty in targeting lipid uptake is the potential side
effect, as the expression of proteins for lipid uptake, for
example, FABP4 and CD36, is not restricted to cancer
cells. Normal cells, such as adipocytes and endothelial
cells, also express these proteins, albeit at a lower level,
and more research is needed to understand the long-
term effect of targeting lipid uptake at the whole-
body level.

Targeting cholesterol biosynthesis

Statins inhibit HMGCR, the key enzyme for
cholesterol biosynthesis, and have been used for the
treatment of dyslipidemia. Several studies have found
that the use of statins can prevent the formation of
HCC and improve the overall survival and disease-free
survival of cancer patients.[186–188] Lovastatin and
simvastatin have also been reported to sensitize
HCC cells to sorafenib and lenvatinib.[145,148,189]

Although results from preclinical studies strongly
support the use of statins to circumvent therapy
resistance, disappointing results were observed in
several phase 2 and 3 clinical trials in HCC.[190–192] A
key factor contributing to the discrepancy between
preclinical and clinical outcomes appears to be the
type of statin used: lipophilic statin in preclinical

studies versus hydrophilic statin in clinical trials.
Epidemiological studies demonstrated a more pro-
nounced reduction in HCC risk with lipophilic statins
(eg, simvastatin, lovastatin, atorvastatin) compared
with hydrophilic statins (eg, pravastatin and
rosuvastatin).[187,193] Furthermore, at doses that simi-
larly reduce LDL-C levels, lipophilic and hydrophilic
statins have been shown to modulate different set of
genes in HCC cell lines.[194] A deeper understanding of
how these two classes of statins influence cellular
signaling and phenotypes is essential for evaluating
their therapeutic efficacy. Another potential factor is
the effect of statins on modulating the levels of
cholesterol in patients. Although LDL-C levels were
reduced in patients treated with statins, the direction of
change in HDL-C levels depended on the baseline
HDL-C and TG levels.[195] The development of a
suitable preclinical model to recapture the inter-patient
difference observed in patients is crucial.

Dietary interventions

Metabolism is tightly regulated by multiple pathways,
and inhibition of a single protein may lead to
compensatory effects from another pathway. This
may contribute to some of the contradictory results
seen between in vitro and in vivo, and between
preclinical and clinical trials with inhibitors targeting a
single protein. Therefore, dietary intervention has also
been investigated to modulate cancer lipid metabolism
systematically. Calorie restriction diet, ketogenic diet
and Mediterranean diet have been reported to effec-
tively inhibit DNL and reduce steatosis in MAFLD
patients and animal model.[196–198] Thus, these diets
hold the promise to reverse immunosuppressive TME
and resensitize MAFLD-related HCC to ICIs as well as
other SoC. Besides the diet, the composition of fatty
acids in the diet is also important. A preclinical study
showed that a high level of ω3-PUFAs increased the
synthesis of 18-HEPE, an anti-inflammatory bioactive
lipid, to suppress secretion of TNFα from macrophage
thereby impairing HCC development.[199] Since
PUFAs are prone to ferroptosis, a diet high in ω3-
PUFA, such as docosahexaenoic (DHA), enhanced
the effect of ferroptosis inducers, for example, sor-
afenib, in delaying cancer progression.[200,201] Multiple
clinical trials have shown promising effect of incorpo-
rating ω3-PUFAs supplement to enhance cancer
therapy.[202,203] These studies show the potential of
dietary intervention in improving response to treat-
ment, and multiple clinical trials are underway
(Table 2). However, the interaction between diet,
stage of disease, genetic background of cancer, and
type of therapeutics used influences the outcome of
dietary intervention. Compliance with the intervention,
confounding by the patients’ diet, and the low sample
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sizes in the current clinical trial hinder the translation to
use in the clinic. Despite concerns, dietary intervention
is a promising approach due to its affordability,
minimal side effects, and potential to address can-
cer-induced cachexia.[204] Research involving large
sample sizes (exceeding 100 participants per group)
and meticulous control of confounding variables will be
instrumental in clarifying the impact of dietary inter-
ventions on enhancing cancer therapy outcomes.

CONCLUSIONS AND FUTURE
PERSPECTIVES

Multiple studies have highlighted the role of dysregu-
lated lipid metabolism in driving cancer progression
and resistance to therapy. Promising results from
preclinical trials using animal models indicate the
potential of targeting lipid metabolism to circumvent
resistance to therapy. Dietary intervention is of
particular interest as it is generally safe, low-cost,
and may provide benefits beyond suppression of
tumor progression, for example, reducing the risk of
cardiovascular disease. However, the detailed mech-
anism by which dysregulated lipid metabolism contrib-
utes to therapeutic resistance is mostly unknown. For
example, how does an increase in PUFAs incorpora-
tion into phospholipids promote drug resistance? In
addition, the interplay between different dysregulated
lipid metabolism signatures is relatively unknown. The
shift between signatures may impact the success of
targeting a single signature. Also, the interaction
between the etiology of HCC and the genetic mutation
of cancer cells in dictating the dysregulated lipid

metabolism signatures is not well-documented. For
example, MAFLD-HCC favors DNL while β-catenin
mutation-driven HCC relies on FAO. Does targeting
lipid metabolism result in different responses in
MAFLD-HCC patients with or without β-catenin muta-
tion? Moreover, the systemic effect of the intervention
is poorly understood. How does the body respond to
inhibition in the long term? Will there be a compensa-
tory mechanism to increase circulating lipids when
FAO is suppressed? Finally, there is a lack of clinical
trials in testing the effect of combining targeting lipid
metabolism with other therapies. This is partly due to
the lack of inhibitors or interventions that are safe and
effective for clinical trials. Further research to identify
the other key enzymes as candidates and the
development of novel techniques for the inhibition of
lipid metabolism are warranted. While our under-
standing of lipid metabolism in HCC is still in its early
stages, targeting lipid metabolic pathways to enhance
the effectiveness of SoC holds significant promise as a
transformative breakthrough.
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