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Generalized linear-scaling localized-density-matrix method
WanZhen Liang, Satoshi Yokojima, and GuanHua Chen
Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong
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A generalized linear scaling localized-density-matrix~LDM ! method is developed to adopt the
nonorthonormal basis set and retain full Coulomb differential overlap integrals. To examine its
validity, the method is employed to evaluate the absorption spectra of polyacetylene oligomers
containing up to 500 carbon atoms. The semiempirical Hamiltonian for thep electrons includes
explicitly the overlap integrals among thep orbitals, and is determined from theab initio Hartree–
Fock reduced single-electron density matrix. Implementation of the generalized LDM method at the
ab initio molecular orbital calculation level is discussed. ©1999 American Institute of Physics.
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I. INTRODUCTION

There is a growing interest in numerical evaluation
the electronic structures of complex and large systems
proteins, aggregates and nanostructures.Ab initio and semi-
empirical molecular orbital calculations are usually limit
to small and medium size molecular systems. The obst
lies in rapidly increasing computational costs as the syst
become larger and more complex. The computational t
tCPU is proportional to a certain power of the system si
i.e., tCPU}Nx, whereN is the number of electrons, andx is an
exponent which is usually larger than 1. For instance,
computational time ofab initio Hartree–Fock~HF! molecu-
lar orbital calculation has anO(N3;4) scaling, i.e.,x53
;4. To determine the electronic structures of very large s
tems, it is essential that the computational cost scales line
with N. SeveralO(N) methods have been developed to c
culate the electronic ground state.1–23 The physical basis o
these methods is ‘‘the nearsightedness of equilibri
systems.’’24 The excited states of very large electronic sy
tems are much more difficult to determine. Several lin
scaling calculations based on the noninteracting elec
models have been carried out to determine the excited s
properties of large systems.10,25 Explicit inclusion of elec-
tronic correlation in the linear scaling calculation of the e
cited state properties has proven much more challenging

A reduced single-electron density matrixr contains im-
portant information of an electronic system. Expressed in
orthonormal basis set, the diagonal elementr i i is the electron
density at a local orbitali , and the off-diagonal elementr i j

( iÞ j ) measures the electronic coherence between two
thogonal local orbitalsi and j , where the reduced single
electron density matrixr is then defined as the expectatio
value r i j [^cuaj

†ai uc& with c being the wave function and
ai

†(aj ) the electron creation~annihilation! operator at the lo-
cal orbital i ( j ). An equation of motion~EOM! for the re-
duced density matrix has been solved to calculate linear
nonlinear electronic responses to external fields,26 and thus,
probe the properties of the excited states. This EOM is ba
on the time-dependent Hartree–Fock~TDHF! approxi-
mation,27 and the computational time for solving it in th
1840021-9606/99/110(4)/1844/12/$15.00
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frequency domain scales asO(N6) while in the time domain
it scales asO(N4). Since the calculation of the many-bod
wave functions is avoided, the computational effort is grea
reduced compared to the conventional sum-over-s
methods.28–33 The TDHF approximation includes comple
single electron excitations and some partial double, triple
other multi-electron excitations. It has been applied succe
fully to investigate the optical properties of conjugat
polymers.26 An O(N2) scaling density-matrix-spectral
moment algorithm34 has been developed to calculate the e
velope of the entire linear and nonlinear optical spectra
conjugated polymers containing up to 300 carbon atoms
Ref. 35, it has been shown that the ground state off-diago
elementsr i j are negligible when the distancer i j betweeni
andj is larger than a critical lengthl 0. This is a consequenc
of ‘‘the near-sightedness of equilibrium systems.’’24 When
the system is subjected to an external fieldE(t), the field
induces a changedr in the reduced density matrix. The in
duced density matrixdr has a similar ‘‘near-sightedness,
i.e., the off-diagonal elementdr i j is approximately zero as
the distance betweeni and j is large enough.35 Different or-
ders of responses inE(t) have different critical lengths. Usu
ally the higher the order of responsen, the longer the critical
length l n , i.e., l 0, l 1, l 2, l 3,••• . We may truncate the
nth order induced density matrix responsedr (n) ~note, dr
5dr (1)1dr (2)1dr (3)1•••) by setting its elementsdr i j

(n) to
zero if r i j . l n . This truncation may lead to a drastic redu
tion of the computational time.

Recently the linear scaling localized-density-mat
~LDM ! method has been developed to evaluate the prope
of excited states.36,37 It is based on the TDHF
approximation27 and the above-mentioned truncation of t
density matrix. Through the introduction of the critic
lengthsl 0, l 1 and others which are characteristic of the r
duced density matrix, the computational time of the LD
method scales linearly with the system sizeN. The method
has been tested successfully to evaluate the optical prope
of conjugated polymers.36,37 In Refs. 36 and 37, the Pariser
Parr–Pople~PPP! model38 is adopted to describe the dynam
ics of p electrons in polyacetylene~PA! oligomers. The PPP
model is based on orthonormal basis set and the zero di
4 © 1999 American Institute of Physics
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ential overlap~ZDO! approximation for electron–electro
Coulomb interaction.39 The usage of the orthonormal bas
set and the ZDO approximation limit the applicability of th
LDM method. Ab initio calculations usually use nono
thonormal basis sets~for instance, the Slater-type atomic o
bitals! and include Coulomb differential overlap integra
Most semiempirical calculations like the intermediate n
glect of differential overlap~INDO!,40 the modified neglect
of diatomic overlap~MNDO!,41 Austin Model 1 ~AM1!,42

and MNDO-Parametric Method 3~PM3!43 neglect partial
differential overlaps. Moreover, it has been pointed out t
for conjugated polymers the differential overlap integr
should be included explicitly in order to calculate accurat
both the bond orders and the optical gaps.44 Thus, it is desir-
able to generalize the LDM method so that the nonorthon
mal basis set may be adopted and the complete Coul
differential overlap integrals are included in the calculatio
A natural choice for the nonorthonormal basis set is
atomic orbital~AO! basis set. An AO depends only on th
atomic type, and is thus transferable for any atom in differ
molecules.

In this work we employ the AO basis set, and general
the LDM method to calculate the excited state propert
The generalized LDM method is applied to calculate the
tical absorption spectra of PA oligomers containing up
500 carbon atoms. To simplify the calculation, we consi
only thep electrons in the systems, since these electrons
responsible for the optical spectra in the visible range. T
PPP Hamiltonian is based on the orthonormal basis
Thus, a Hamiltonian based on the nonorthonormal AO ba
set is to be determined. In Sec. II an effective Hamilton
model based on the AO basis set is proposed to describe
dynamics ofp electrons in conjugated polymers. In Sec.
the TDHF method employing the nonorthonormal basis se
developed, and its EOM is derived. In Sec. IV the LD
formalism is generalized for implementation in the non
thonormal basis set. In Sec. V a novel algorithm is applied to
PA to determine the effective Hamiltonian for thep elec-
trons in the nonorthonormalp orbital basis set. In Sec. V
the absorption spectra of PA oligomers containing up to 5
carbon atoms are obtained. The linear scaling of the com
tational time and memory is examined in detail. The roles
different critical lengths are investigated. Further develo
ment of the LDM is discussed, and the results of this wo
are summarized in Sec. VII.

II. MODEL

A PA oligomer is a planar unsaturated organic molecu
and its valence molecular orbitals~MOs! may be divided into
p ands MOs.38 The p electrons may be treated separate
from thes electrons, and are responsible for the optical
sponse in the optical frequency regime. The Hamiltonian
the p electrons may be written as follows,

H5He1Hee1Hext, ~1!

He5(
i 51

N S 2
1

2
¹ r i

2 1U~r i ! D , ~2!
Downloaded 13 Nov 2006 to 147.8.21.97. Redistribution subject to AIP
-

t

y

r-
b

.
e

t

e
s.
-

r
re
e
t.
is
n
the

is

-

0
u-
f
-
k

,

-
r

Hee5(
i 51

N

(
j . i

V~r i j !, ~3!

Hext5(
i 51

N

eE~ t !•r i , ~4!

wherei and j are, respectively, the indices of thei th and j th
electrons,U(r i) is the potential energy of thei th electron in
the field produced by the nuclei and the core ands electrons,
V(r i j ) is the effective Coulomb interaction between thei th
and j th electrons withr i j being the distance between the tw
electrons, andE(t) is the external field. Thus,He is the one-
electron part of the Hamiltonian which describes the dyna
ics of a singlep electron in the absence of otherp electrons.
Hee is the two-electron part of the Hamiltonian which repr
sents the effective Coulomb interaction among thep elec-
trons.Hext is the interaction between thep electrons and an
external electric fieldE(t).

The one-electron integralt i j may be expressed as

t i j 5^x i u2
1
2 ¹ r

21U~r !ux j&, ~5!

wherex i is the p AO of the i th carbon atom, andr is the
displacement vector of an electron. Here the indexi repre-
sents thei th carbon atom, and it increases from one end of
oligomer to the other end starting from 1. The two-electr
integral Vi j ,kl may be calculated via the following expre
sion:

Vi j ,kl5E dr1 dr2 x i* ~r1!x j~r1!V~r 12!xk* ~r2!x l~r2!.

~6!

Since the AOs are localized on individual atoms, w
may keep only the diagonal terms of the one-electron in
grals ~i.e., t i i ) and the off-diagonal terms corresponding
any pairs of two orbitals that form ap bond. In other words,

t i j 50, ~7!

if iÞ j and thei th and j th atoms are not bonded via ap
bond.

Unlike the PPP38 and complete neglect of differentia
overlap ~CNDO!45 methods where the differential overla
integrals are neglected, we keep all Coulomb differen
overlap integrals in Eq.~6!. The effective Coulomb interac
tion V(r i j ) may be approximated by the Ohno formula.46 i.e.,

V~r i j !5
U

A11~r i j /a0!2
, ~8!

whereU is the on-site Coulomb interaction, anda0 is a char-
acteristic length which is approximately the bond length.
stead of evaluating Eq.~6! explicitly, two-electron integrals
may be approximated by the following expression47
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Vmn,kl'vmn,klSmnSkl ,
~9!

vmn,kl5
U

A11S urmn2r klu

a0
D 2

,

where the overlap integralsSi j are defined as follows:

Si j [^x i ux j&, ~10!

and rmn̄ is the mean displacement vector ofrn and rm , i.e.,

rmn̄5
1
2 ~rm1rn!. ~11!

III. TDHF METHOD IN NONORTHONORMAL BASIS
SET

The EOM for the reduced single-electron density mat
r in an orthonormal basis set has been derived within
TDHF approximation.26 Here we derive the EOM forr in a
nonorthonormal basis set. Starting with the definition of
duced single-electron density matrixr(r1u1 ,r18u18 ,t) in the
spin-spatial representation:

r~r1u1 ,r18u18 ,t !

5NE dr2 du2 dr3 du3•••drN duN

3F~r1u1 ,r2u2 , . . . ,rNuN ,t !

3F* ~r18u18 ,r2u2 , . . . ,rNuN ,t !, ~12!

whereF(r1u1 ,r2u2 , . . . ,rNuN ,t) is the Slater determinan
representing many-body wave function, andr i andu i are the
spatial and spin coordinate for thei th electron, respectively
We write down the EOM forr(r1u1 ,r18u18 ,t):

i\ṙ~r1u1 ,r18u18 ,t !

5NE dr2 du2 dr3du3•••drN duN

3F* ~r18u18 ,r2u2 , . . . ,rNuN ,t !

3HF~r1u1 ,r2u2 , . . . ,rNuN ,t !

2NE dr2 du2 dr3 du3•••drN duN

3@F* ~r1u1 ,r2u2 , . . . ,rNuN ,t !

3HF~r18u18 ,r2u2 , . . . ,rNuN ,t !#* . ~13!

r(r1u1 ,r18u18 ,t) may be expanded in the nonorthonormal A
basis set$x i%:

r~r1u1 ,r18u18 ,t !5(
i j

ux i~r1!&r i j ~u1 ,u18 ,t !^x j~r18!u,

~14!

where
Downloaded 13 Nov 2006 to 147.8.21.97. Redistribution subject to AIP
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r i j ~u1 ,u18 ,t ![(
k

N

sk~u1!cik
sk~ t !@cjk

sk~ t !#* sk* ~u18! ~15!

with sk being the spin state of thekth molecular spin-orbital
ck , see the Appendix. Integrating the right-hand-side~rhs!
of Eq. ~13!, we obtain the EOM for the reduced single
electron density matrix:

i\SṙsS5~hs1 f !rsS2Srs~hs1 f !, ~16!

where the reduced density matrixrs for spins is defined as

r i j
s~ t ![^sur i j ~u,u8,t !us&

5 (
l 5occ

cil
s~ t !@cjl

s~ t !#* ~17!

with l summing over the occupied spatial molecular orbita
hs is the Fock matrix whose elements are given as

hnm
s ~ t !5tnm1 (

i j ,s8
r i j

s8~ t !Vnm,i j 2(
i j

r i j
s~ t !Vni, jm , ~18!

and f characterizes the interaction between thep electrons
and the external fieldE(t) with its matrix elements being

f nm~ t !'e
z~n!1z~m!

2
SnmE~ t !. ~19!

Here we assume that the external electric fieldE(t) is polar-
ized along the chain axisz. The detailed derivation of Eq
~16! is given in the Appendix. Since the systems that we
interested in are symmetric with respect to spin up and s
down, we neglect the spin index thereafter. We partition
density matrixr(t) into two parts:

r~ t !5r~0!1dr~ t !, ~20!

where r (0) is the HF ground state reduced single-electr
density matrix in the absence of external fields, anddr(t) is
the difference betweenr(t) and r (0), i.e., the induced den
sity matrix by the external fieldE(t). Similarly, the Fock
matrix h(t) is decomposed into the form,

h~ t !5h~0!1dh~ t !, ~21!

whereh(0) is the Fock matrix whenE(t)50:

hnm
~0!5tnm1(

i j
r i j

~0!~2Vnm,i j 2Vni, jm!, ~22!

and the induced Fock matrixdh is

dhnm~ t !5(
i j

dr i j ~ t !~2Vnm,i j 2Vni, jm!. ~23!

With Eqs. ~20! and ~21!, we can rewrite Eq.~16! as
follows:
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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i\dṙ5@S21h~0!dr2drh~0!S21#

1@S21dhr~0!2r~0!dhS21#

1@S21f r~0!2r~0! f S21#

1@S21f dr2dr f S21#

1@S21dhdr2drdhS21#. ~24!

For the first-order induced density matrixdr (1), its dynamics
may be described by

i\dṙ~1!5@S21h~0!dr~1!2dr~1!h~0!S21#

1@S21dh~1!r~0!2r~0!dh~1!S21#

1@S21f r~0!2r~0! f S21#. ~25!

More specifically,

i\dṙ i j
~1!5(

k
(

l
~Sik

21hkl
~0!dr l j

~1!2dr ik
~1!hkl

~0!Sl j
21!

12(
k

(
l

(
m

(
n

~Sik
21drmn

~1!Vkl,mnr l j
~0!

2r ik
~0!drmn

~1!Vkl,mnSl j
21!2(

k
(

l
(
m

(
n

~Sik
21

3drmn
~1!Vkm,nlr l j

~0!2r ik
~0!drmn

~1!Vkm,nlSl j
21!

1(
k

(
l

~Sik
21f klr l j

~0!2r ik
~0! f klSl j

21!. ~26!

We integrate numerically Eq.~25! in the time domain, and
solve it for the time evolution of the polarization vectorP(t).
Within the dipole approximation,P(t) may be expressed a

P~ t !5(
i j

2e^x i u r̂ ux j&r i j ~ t !. ~27!

Since we assume that the external electric field is polari
along the chain axisz, the first-order responsePz

(1) is given
by

Pz
~1!~ t !'(

i j
2e

z~ i !1z~ j !

2
Si j dr i j

~1!~ t !. ~28!

To obtain the optical absorption spectrum, we then perfor
Fourier transformation ofPz

(1)(t),

Pz
~1!~v!5E

2`

`

dt Pz
~1!~ t !e2 ivt. ~29!

The imaginary parta(v) of the complex linear polarizability
is then determined readily via

a~v!5Im@Pz
~1!~v!/E~v!#, ~30!

whereE(v) is the Fourier transform ofE(t).

IV. GENERALIZED LDM METHOD

The key of the generalized LDM method is to reduce
dimension of the reduced single-electron density mat
since the density matrix has a localized character or a ‘‘ne
sightedness’’ not only for the ground state but also for low
Downloaded 13 Nov 2006 to 147.8.21.97. Redistribution subject to AIP
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excited states. This is achieved via the introduction of fi
critical lengths and related approximations.36,37

First, we setdr i j
(1)(t) to zero whenr i j . l 1. This approxi-

mation is based on the ‘‘near-sightedness’’ ofdr (1)(t), and
leads to the reduction of the number of unknowndr i j

(1) or the
dimension of Eq.~26! from N2 to D[(2a111)N2a1(a1

11), wherea1 is the number of bonds within the distanc
l 1. NoteD scales linearly withN.

Second,Si j and Si j
21 are set to zero whenr i j . l s1 and

r i j . l s2, respectively. The overlap of two AOs decays ra
idly with the increasing distance between them. Herel s1 is
the critical length that characterizes the exponential deca
Si j with increasingr i j . As it has been pointed out in Ref. 48
the off-diagonal element ofSi j

21 diminishes exponentially for
large r i j as well, and its decay is characterized by a sligh
larger critical lengthl s2.

Third, r i j
(0) is set to zero whenr i j . l 0. l 0 is usually much

longer thanl s1 and l s2, i.e., l 0@ l s1 and l s2 becauseSi j and
Si j

21 decay rather rapidly with the increasingr i j . According
to Eq. ~22!, h(0) thus has approximately the same critic
length l 0, i.e., hi j

(0)50 for r i j . l 0.
For a fixed pair ofi and j , the second and third approx

mations result in the finite ranges of summations in Eq.~26!
for k, l , m and n except the second term on the rhs of t
equation. These finite ranges are determined byl 0, l 1, l s1 or
l s2, and are approximately 2a1, 2a0, 2as1 or 2as2, respec-
tively, where a0, as1 and as2 are the numbers of bond
within l 0, l s1 and l s2, respectively. However, the total num
ber of summations in the second term on the rhs of Eq.~26!

2(
k

(
l

(
m

(
n

~Sik
21drmn

~1!Vkl,mnr l j
~0!2r ik

~0!drmn
~1!Vkl,mnSl j

21!

~31!

is proportional toN, since the number of summations overm
andn is of O(N). To achieve the linear scaling of the com
putational time, the number of summations overm and n
must be limited to a fixed value which does not vary withN.
There are two types of cancellation in Eq.~31!. ~i! The sum
of Sik

21Vkl,mnr l j
(0) and2r ik

(0)Vkl,mnSl j
21 cancels much of their

values;~ii ! since(mndrnm
(1)50, i.e., the charge conservation

the summation overm and n leads to further cancellation
Therefore, we may limitm (n) betweenm0 (n0) and m1

(n1), where m05n05max@1,min(i2ac2as22
1
2 as1,j2ac

2as22
1
2 as1)# and m15n15min@N,max(i1ac1as21

1
2 as1,j

1ac1as21 1
2 as1)]. ac is the number of bonds within a

distancel c , andl c is the critical length that limits the suma
tion ranges ofm and n beyond which cancellations~i! and
~ii ! render further summation negligible. This is our four
approximation.

The first, third and fourth approximations are exactly t
same as those in Refs. 36 and 37. The second approxim
is due to the use of the nonorthonormal basis set and
consequent introduction of the overlap matrixS. With these
approximations, Eq.~26! becomes
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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i S \
d

dt
1g D dr i j

~1!5 (
k

u i 2ku<as2 ,

(
l

uk2 l u<a0 ,u l 2 j u<a1

Sik
21hkl

~0!dr l j
~1!2 (

k

u i 2ku<a1 ,

(
l

uk2 l u<a0 ,u l 2 j u<as2

dr ik
~1!hkl

~0!Sl j
21

12 (
k

u i 2ku<as2 ,

(
l

uk2 l u<as1 ,u l 2 j u<a0 ,

(
m

m0<m<m1 ,

(
n

um2nu<as1 ,a1 ,n0<n<n1

Sik
21Vkl,mndrmn

~1!r l j
~0!

22 (
k

u i 2ku<a0 ,

(
l

uk2 l u<as1 ,u l 2 j u<as2 ,

(
m

m0<m<m1 ,

(
n

um2nu<as1 ,a1 ,n0<n<n1

r ik
~0!Vkl,mndrmn

~1!Sl j
21

2 (
k

u i 2ku<as2 ,

(
m

uk2mu<as1 ,

(
n

um2nu<a1 ,

(
l

un2 l u<as1 ,u l 2 j u<a0

Sik
21Vkm,nldrmn

~1!r l j
~0!

1 (
k

u i 2ku<a0 ,

(
m

uk2mu<as1 ,

(
n

um2nu<a1 ,

(
l

un2 l u<as1 ,u l 2 j u<as2

r ik
~0!Vkm,nldrmn

~1!Sl j
21

1 (
k

u i 2ku<as2 ,

(
l

uk2 l u<as1 ,u l 2 j u<a0

Sik
21f klr l j

~0!2 (
k

u i 2ku<a0 ,

(
l

uk2 l u<as1 ,u l 2 j u<as2

r ik
~0! f klSl j

21 . ~32!
i
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e
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el
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l
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A

se
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In Eq. ~32! the summation overk, l , m, andn are restricted
to the finite ranges which do not depend on the value ofN.
Since the number ofdr i j

(1) is proportional toN, the total
number of steps required to integrate Eq.~32! scales linearly
with N. Therefore, we expect that the computational time
proportional toN.

We include explicitly the phenomenological dephasi
g in Eq. ~32!. In the calculation, we use the fourth-ord
Runge–Kutta method49 for solving Eq.~32!. We have used
the external field,

E~ t !5
1

Ap t̄
e2~ t/ t̄ !2

, ~33!

wheret̄ 50.1 fs and perform the time integration for the tim
duration between20.5 and 220 fs with the time step 0.025
to calculate the absorption spectra. The phenomenolog
dephasingg is set to 25 meV.

V. EFFECTIVE HAMILTONIAN FOR p ELECTRONS

The PPP model is widely used to describe thep electron
system of planar conjugated molecules.26 The orthogonalized
AOs are employed in the PPP model. Chen and Mulam50

have developed the constrained density matrix varia
~CDMV!51 approach to determine the effective Hamiltonia
of reduced electronic systems, and applied it to PA to ob
the PPP-like Hamiltonian for thep electrons. The natura
atomic orbitals~NAOs! were used as the basis set. In th
work the nonorthonormalp AOs are used as the basis set.
new effective Hamiltonian with the nonorthonormal basis
is thus required. We describe here briefly the CDMV a
proach that we use to determine the effective Hamilton
with the nonorthonormalp AO basis set.

When there is no external field, i.e.,E(t)50, Eq. ~16!
becomes

h~0!r~0!S2Sr~0!h~0!50. ~34!
Downloaded 13 Nov 2006 to 147.8.21.97. Redistribution subject to AIP
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n
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This equation can be recast in the form

dmn5(
i

tmiPL~ i ,n!2(
i

PR~m,i !t in1Rmn50, ~35!

where

Rmn52(
ikl

Vmi,klrkl
~0!PL~ i ,n!22(

ikl
PR~m,i !Vin,klrkl

~0!

2(
ikl

rkl
~0!Vmk,l i PL~ i ,n!1(

ikl
PR~m,i !rkl

~0!Vik,ln ,

~36!

PL~ i , j !5(
k

r ik
~0!Sk j , ~37!

PR~ i , j !5(
k

Sikrk j
~0! . ~38!

As in Ref. 50, a functionG is constructed:

G5(
mn

dmn
2 1F, ~39!

whereF represents the variational constraints.50 tmn is deter-
mined by minimizing the value ofG. Upon minimizingG
with respect tot i j , we have

]G
]t i j

52(
mn

dmn

]dmn

]t i j
1

]F
]t i j

50. ~40!

The effective Hamiltonian is determined by solving Eq.~40!
for t i j . With F50, Eq. ~40! becomes
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Downloaded 13 N
TABLE I. t i j of the effective Hamiltonian forp electrons with 40 carbon atoms~in eV!. ~The system is

symmetric. Thust i j 5t ī , j̄ for j̄ 5N112 j and ī 5N112 i ).

i 2 3 4 5 6 7 8 9 10

t i ,i 21 21.986 21.371 22.198 21.496 22.295 21.567 22.363 21.619 22.419
t i ,i 0.030 0.069 0.085 0.107 0.116 0.131 0.137 0.148 0.152

i 11 12 13 14 15 16 17 18 19 20

t i ,i 21 21.660 22.466 21.694 22.508 21.722 22.539 21.740 22.560 21.753 22.573
t i ,i 0.160 0.163 0.170 0.172 0.176 0.177 0.181 0.181 0.183 0.1
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t ikPL~k,m!PL~ j ,m!1(
mk

tk jPR~m,k!PR~m,i !

2(
mk

tkmPR~ i ,k!PL~ j ,m!2(
mk

tmkPL~k, j !PR~m,i !

1(
m

RimPL~ j ,m!2(
m

Rm jPR~m,i !50. ~41!

We keep only thoset i j that represent the localp atomic
energies and one-electron integrals across the nearest n
bors. Thus, we set

t i j 50

for j Þ i 61 or j Þ i , and solve Eq.~41! for t i i andt i ,i 61. r (0)

is the input, and may be obtained from theab initio calcula-
tions. The effective Coulomb interaction among thep elec-
trons may be approximated by Eq.~9!. a0 is set to 1.29 Å.U
is to be chosen so that the calculated optical gap fits
experimental value. In the calculationt11 is set to zero since
only the relative energies are of physical interest.

We determine first the effective Hamiltonian with thep
AOs as the basis set. A PA oligomer with 40 carbon atom
chosen. It is found thatU51.81 eV results in an optical ga
of 2.23 eV for N540 and leads to;2.0 eV for PA (N
→`). Resulting values oft i j are listed in Table I.t i i* is the
bare AO energy ofi 50 which may be written as follows:

t i ,i* 5t i ,i1(
k

~Vii ,kk2V11,kk!. ~42!

The resulting Hamiltonian is used to calculate the HF grou
state reduced single-electron density matrix which is th
compared with theab initio HF ground state reduced single
electron density matrix~see Table II!. Since the oligomer is
centro-symmetric, we list only data fori 51 to 20. We cal-
culate the effective Hamiltonian with even numberN, N
52n58→48, and find thatt i j converged atN;32. The
effective Hamiltonians for a larger system (N.40) may thus
be determined from that of theN540. To construct the ef-
fective Hamiltonians for longer oligomers, we follow th
strategy below:

~i! the values of the first 20t i ,i 61 and t i i* from each end
of the oligomer are given in Table I;

~ii ! the rest of the bare orbital energy, one-electron in
ov 2006 to 147.8.21.97. Redistribution subject to AIP
igh-

e

is

d
n

-

grals for the double and single bonds are taken
0.183,22.573 and21.753 eV, respectively.

The resulting Hamiltonians are used to calculate the opt
spectra of longer oligomers. The details of the calculat
that determines the effective Hamiltonian will appear in
separate publication.52

VI. RESULTS

The GAUSSIAN 94 software package is employed to ca
culate the overlap matrixSand theab initio HF ground state
reduced single-electron density matrixr (0). Geometry opti-
mization is performed at the HF level. All the double
single bond lengths are kept the same, and the bond an
between the double and single bonds are 124.02°. FoN
540, we find that the double and single bond lengths
1.324 and 1.478 Å, respectively.Si j or Si j

21 decreases
quickly to zero with the increasingr i j . For instance,

~i! S10,1150.184 andS10,11
21 520.203. ~ii ! S11,1250.245

and S11,12
21 520.270. ~iii ! S10,1250.023 andS10,12

21 50.025.
Thus, relatively shortl s1 and l s2 (;10 Å! may be used to
truncate theS andS21, respectively. In Table II, we list the
diagonal and nearest-neighbor off-diagonal density ma
elementsr i i

(0) and r i ,i 11
(0) for N540. Note that the diagona

elementsr i i
(0) are equal to 0.5, and are approximately 0.3

when i is not at or near either end of the oligomer. Th
electron densityni at the i th orbital may be calculated
through the following formula:

ni5(
j

r i j
~0!Sji . ~43!

The resulting values ofni ’s are 0.5 except thati 51, and are
listed in Table II.

The HF method is a self-consistent-field~SCF! method
whose solution requires an initial guess of the density mat
To construct the initial ground state density matrix forN
.40, the following procedure is employed. First, we calc
late the reduced single electron density matrix of a PA o
gomer with 40 carbon atoms using theGAUSSIAN 94program.
It is shown via a two-dimensional contour plot in Fig 1. No
that the density matrix is band diagonal, and outside the
agonal band the matrix elements are almost zero. This is
so-called ‘‘near-sightedness’’ ofr (0), and the width of the
band is;2a0. We note further that the middle part of th
diagonal band is quite homogeneous with a period of 4,
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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TABLE II. The diagonal and the nearest neighbor off-diagonal elements of the ground state reduced single-electron density matrixr i j
(0) ,a and the charge

densityni .b

i 1 2 3 4 5 6 7 8 9 10

r i i
(0) 0.416 0.389 0.399 0.397 0.398 0.397 0.398 0.398 0.398 0.39

~20.005! ~0.003! ~20.003! ~0.004! ~20.001! ~0.003! ~20.001! ~0.002! ~20.000! ~0.002!
r i i 11

(0) 0.385 0.072 0.368 0.078 0.366 0.080 0.366 0.079 0.366 0.08
~0.004! ~20.011! ~0.008! ~20.015! ~0.010! ~20.017! ~0.011! ~20.019! ~0.012! ~20.020!

ni 0.505 0.496 0.500 0.499 0.500 0.500 0.500 0.500 0.500 0.50
~20.004! ~0.002! ~20.003! ~0.003! ~20.002! ~0.002! ~20.001! ~0.002! ~20.001! ~0.001!

i 11 12 13 14 15 16 17 18 19 20

r i i
(0) 0.398 0.398 0.398 0.398 0.398 0.398 0.398 0.398 0.398 0.39

~0.000! ~0.002! ~0.000! ~0.001! ~0.001! ~0.001! ~0.001! ~0.001! ~0.001! ~0.001!
r i i 11

(0) 0.365 0.080 0.366 0.080 0.366 0.080 0.366 0.080 0.366 0.08
~0.012! ~20.020! ~0.013! ~20.021! ~0.013! ~20.021! ~0.013! ~20.021! ~0.013! ~20.021!

ni 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.50
~20.001! ~0.001! ~20.000! ~0.001! ~20.000! ~0.000! ~20.000! ~0.000! ~0.000! ~0.000!

ar i j
(0) is the reduced density matrix elements given byab initio calculation usingGAUSSIAN 94.

bni is the charge on each site:ni5( jr i j
(0)Si j . Data in the parentheses below each value is the difference between theab initio result and its counterpar

calculated from the effective Hamiltonian.
th
ga
th

th

a

f

re

ica
s

re
,
te
ce

r

ctra

e
ies
e
rth

en-

r
with
nd
the

he
m-
the

sity
;

Fig. 2. The period of 4 reflects the fact that PA has
repeating double and single bond structure. We thus elon
the diagonal band by repeatedly inserting the period until
density matrix reaches the desired size, see Fig. 2. The
sulting density matrix is used as the initial guess for
ground state density matrix of the large system (N.40).

The inset of Fig. 3 shows the time evolution of polariz
tion Pz

(1)(t) for N5120 for a1540, a05ac524, as154,
and as258. Pz

(1)(t) oscillates with time and its oscillation
amplitude decays ase2gt. From the Fourier transform o
Pz

(1)(t), we obtain the absorption spectrum@see Eqs.~29!
and ~30!#. Figure 3 shows the absorption spectrum forN
5120 with two sets ofa0, a1, ac ,as1, and as2. a05ac

524, as154 andas258 are employed. The diamonds a
for a1530, and the triangles are fora1540. Clearly, the two
sets of data agree well with each other. Thus, the crit
length l 1 of dr (1) covers about 30 double or single bond
i.e., a1530 results in an accurate absorption spectrum up
a frequency of 2.3 eV. The absorption peak in Fig. 3 cor
sponds to the excited state 1Bu . For higher frequency range
we find that largera1 is required to produce an accura
absorption spectrum. This implies that the density matri
of the higher excited states have longerl 1.

To investigate the roles ofa0 andac on the accuracy of
the calculation, we compare the absorption spectra for th

FIG. 1. The reduced ground state density matrix forN540.
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different sets ofa0 andac with a1, as1 andas2 being fixed
at 40, 4, and 8, respectively. The resulting absorption spe
are shown in Fig. 4. The solid line is fora0530 andac

524, the diamonds fora05ac524, and the crosses fora0

524 andac530. Obviously, the three sets of data for th
absorption spectrum are virtually the same. This impl
strongly thata05ac524 is sufficient to yield an accurat
absorption spectrum. Moreover, it verifies that our fou
approximation in Sec. IV is very reliable.

To demonstrate that the computational time of the g
eralized LDM method scales linearly with the system sizeN,
we calculate the linear response to the external fieldE„t… for
N540, 80, 120, 160, 200, 300, 380 and 500.a05ac5a1

520, as152 andas254 are employed. The CPU time fo
each calculation is measured, and the results are plotted
a dashed line in Fig. 5. The CPU time spent in the HF grou
state has been subtracted from the total CPU time. So
resulting CPU time in Fig. 5 is for the excited states or t
optical response only. Clearly, the linear scaling of the co
putational time versus the system size is achieved for

FIG. 2. Constructing density matrix for a larger system from the den
matrix for N540. During the construction~a! and ~b! are kept unchanged
~c! is repeated until the density matrix reaches the desirable size.
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excited state properties. For the comparison the CPU t
for the full TDHF is shown by the dotted line which has a
O(N4) scaling. We can clearly see the drastic reduction
the CPU time for the LDM method as compared to the f
TDHF method. Note that the LDM method is also fas
even for the small systems. This is always true for o
dimensional systems where the indices of atomic orbi
may be assigned in a simple increasing order along the
tem axis. However, for two- or three- dimensional system
this does not usually hold which may lead to additional co
putational cost for the LDM method, and a CPU time cro
over between the LDM method and the full TDHF may o
cur.

The computational time dependence on the values ofa0,
a1 andac is studied as well. In Figs. 6, 7, and 8 we plot t
CPU time versusa1, ac anda0, respectively. The diamond

FIG. 3. Absorption spectra forN5120 with different a1. a05ac524,
as1

54 andas2
58. The diamonds are fora1530 and the triangles are fo

a1540. The inset shows the time evolution of polarizationPz
(1) for a1

540. The phenomenological dephasing constantg525 meV.

FIG. 4. Absorption spectra forN5120 with differenta0 and ac .a1540,
as1

54 andas2
58. The diamonds are fora05ac524. The crosses are fo

a0524, ac530. The solid line is fora0530, ac524. The phenomenologi-
cal dephasing constantg525 meV.
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are the resulting CPU times. The dashed lines are the l
fits to the data assuming that the CPU time depends line
on a1, ac and a0. The computational time scales linear
with a1 andac with the ranges of values studied. Fora0, the
O(a0) scaling of the CPU time holds approximately.

VII. DISCUSSION

The fourth approximation in Sec. IV may not seem to
straightforward or intuitive. In fact, it is an excellent approx
mation. The justification of the approximation comes main
from the cancellation~ii ! which is caused by the charge co
servation~i.e.,(ndrnn

(1)50). The different values ofac result
in virtually the same absorption spectra forN5120, see Fig.
4. For the frequency from 1.5 to 10 eV, the results forac

524 and 30 differ from each other by less than 0.1%. T
fact illustrates convincingly the validity of our fourth ap

FIG. 5. CPU time of LDM on an SGI Indigo2 R10000 workstation forN
540, 80, 120, 160, 200, 300, 380 and 500~the dashed line!. a05ac5a1

520,as1
52 andas2

54. The full TDHF calculation is shown by the dotte
line. Each calculation is performed during the time interval between20.5
and 0.25 fs with the time step 0.025 fs.g525 meV.

FIG. 6. CPU time on an SGI Origin 200 workstation for differenta1. N
5120. g525 meV. a05ac524, as1

54 andas2
58. Each calculation is

performed during the time interval between20.5 and 0.25 fs with time step
0.025 fs.
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proximation or the introduction of the critical lengthl c .
When the cancellation is strong,l c' l 0; when the cancella-
tion is weak,l c@ l 0 is expected. The fast multiple metho
~FMM! has been used to calculate the summation of C
lomb interaction,19,53,54and its computational time scales lin
early with the system sizeN.19,54 It may be one of the alter
native ways to calculate Eq.~31!. The values of the critica
lengthsl 0 andl 1 ~or, a0 anda1) are determined empirically
For instance, we seta1530 and 40 and calculate the absor
tion spectra, respectively. We find that the two resulting
sorption spectra differ little, and thus, conclude thata1540
is a good critical length for the first-order induced dens
matrix, which is employed in the subsequent calculatio
Although the band diagonal form is utilized to achieve t
O(N) scaling in Ref. 36, it is not necessary when Eq.~26! is
solved in the time domain. Since the critical lengths a
roughly independent of the dimensionality of the system,
product of truncated matrices requires only the multiplicat
of the matrix elements within the critical lengths. This wou
lead to theO(N) scaling of computation time even for two
and three-dimensional systems, although a larger overh
of computational effort may be required. Therefore, t
method may be extended to two- and three-dimensional
tems, and a variety of physical, chemical, or biological s
tems may be investigated with this method. To probe m
excited states, we may generalize our current method to
culate the higher order responses. For the first order
sponse, only the first term on the rhs of Eq.~24! contributes.
For the higher order responses, the second and third term
the rhs contribute as well. With the truncation of dens
matrix and Fock matrix, the computational time spent
evaluating the second and third terms is proportional toN.
The computation for the higher order responses is thus
O(N) scaling as well. In our calculation, the HF ground sta
is obtained first. This part of the calculation scales asO(N3).
However, compared with the total time, its computation
time is trivial forN540 to 500. The HF ground state reduc

FIG. 7. CPU time on an SGI Origin 200 workstation for differentac .N
5120. g525 meV.a0524, a1530, as1

54 andas2
58. Each calculation

is performed during the time interval between20.5 and 0.25 fs with time
step 0.025 fs.
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density matrix may be calculated via the iterative usage
Eq. ~34! starting with a reasonable guess for the reduc
density matrix.55 Combining our method for the excite
states with the linear scaling algorithms for the grou
state55,1–23would lead to a linear scaling of the total comp
tational time. In our calculation, we observed that for t
frequency below 3.0 eV the first-order induced density m
trix is localized within a critical length of 42 Å . For higher
frequency modes, the induced density matrices have la
critical lengths,35 and thus, more computational time is r
quired. For extremely high energy modes, the induced d
sity matrices may spread over the entire molecule,35 and
therefore, the full TDHF calculation is required.

The overlap matrixS is introduced because the nono
thonormal basis set is employed. This leads to an increas
the computational time. However, the increase is limite
Since the overlap matrix elementSi j diminishes rapidly as
the distance betweeni and j increases, only the overlap
among few nearby atoms are considered. The inclusion
the differential overlap integrals together with the usage
the nonorthonormal basis set makes it possible to implem
the LDM at theab initio and semiempirical calculation lev
els. Since the linear scaling calculation nature of the LDM
not altered by the usage of the nonorthonormal basis set
the inclusion of complete differential overlap integrals, it
practical to achieve the linear scaling calculation for the
cited state properties at theab initio and semiempirical lev-
els. No further approximation is made for the Hamiltonia
The approximations are based solely on the feature of
reduced density matrix. This fact ensures the wide appl
bility of the new method.

The one-electron integrals of the effective Hamiltoni
obtained in this work are similar to that of Ref. 50 while th
two-electron integrals are much smaller. This is caused
the inclusion of the overlap matrixS and the differential
overlap integrals. To improve the accuracy of the effect
Hamiltonians, the one-electron integrals other than those

FIG. 8. CPU time on an SGI Origin 200 workstation for differenta0. N
5120. g525 meV.ac524, a1530, as1

54 andas2
58. Each calculation

is performed during the time interval between20.5 and 0.25 fs with time
step 0.025 fs.
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the nearest neighbors should be included,56 and moreover the
CDMV approach should be extended beyond the HF leve
include the electron–electron correlation.

To summarize, we have generalized the LDM method
adopt the nonorthonormal basis set and to include all
Coulomb differential overlap integrals. The generaliz
LDM method retains its linear scaling calculation nature
the excited state properties, which has been confirmed by
calculation of the absorption spectra of PA oligomers. W
the employment of the nonorthonormal basis set and the
clusion of the complete differential overlap integrals, t
generalized LDM method may be implemented readily at
ab initio and semiempirical levels.
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APPENDIX: DERIVATION OF THE TDHF EQUATION
IN NONORTHONORMAL BASIS

In this Appendix, we outline the derivation of the EOM
within the TDHF approximation for the reduced single ele
tron density matrix in the nonorthonormal basis. We st
with the definition of the reduced single electron density m
trix r in the spin-spatial representation,

r~r1u1 ,r18u18 ,t !

5NE dr2 du2 dr3 du3•••drN duN

3F~r1u1 ,r2u2 , . . . ,rNuN ,t !

3F* ~r18u18 ,r2u2 , . . . ,rNuN ,t !, ~A1!

F is the many-body wave function. Within the TDHF ap
proximation,F may be expressed by a single Slater det
minant
F~r1u1 ,r2u2 , . . . ,rNuN ,t !5~N! !2
1
2U c1~r1u1 ,t ! c2~r1u1 ,t ! ••• cN~r1u1 ,t !

c1~r2u2 ,t ! c2~r2u2 ,t ! ••• cN~r2u2 ,t !

A A A

c1~rNuN ,t ! c2~rNuN ,t ! ••• cN~rNuN ,t !

U , ~A2!
il-
wherec i is theith occupied time-dependent molecular spin
orbital and satisfieŝc i uc j&5d i j . Integrating the rhs of Eq
~A1! results in

r~r1u1 ,r18u18 ,t !5 (
k51

N

uck~r1u1 ,t !&^ck~r18u18 ,t !u. ~A3!

The time derivative of Eq.~A3! may be expressed as

i\ṙ~r1u1 ,r18u18 ,t !5 (
k51

N

i\uċk~r1u1 ,t !&^ck~r18u18 ,t !u

1 (
k51

N

i\uck~r1u1 ,t !&^ċk~r18u18 ,t !u.

~A4!

The time evolution of the wave functionF is determined by
the Schro¨dinger equation

HuF&5 i\
]

]t
uF&. ~A5!

With the Frenkel principle,57 Eq. ~A5! converts to

^dFuHuF&2^dFu i\
]

]t
uF&50, ~A6!
wheredF is an arbitrary variation ofF. Since]/]t behaves
like a one-electron operator, we have

^dFuḞ&5(
i

S ^dc i uċ i&1 (
j ~Þ i !

^dc i uc i&^c j uċ j& D .

~A7!

According to the Brillouin theorem,57 the first term of Eq.
~A6! may be written as

^dFuHuF&5(
i

^dc i uF̂uc i&. ~A8!

Here F̂ is the Fock operator corresponding to the Ham
tonianH,

F̂~ t !5ĥ~ t !1 f̂ ~ t !, ~A9!

where

ĥ~ t !52
1

2
¹ r

21U~r !1(
i

N

@ Ĵi~ t !2K̂ i~ t !#, ~A10!

f̂ ~ t !5eE~ t !•r , ~A11!
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Ĵi~ t !ck~ru,t !

5E dr 8 du8Fc i* ~r 8u8,t !
1

r 12
c i~r 8u8,t !Gck~ru,t !,

~A12!

K̂ i~ t !ck~ru,t !

5E dr 8 du8Fc i* ~r 8u8,t !
1

r 12
ck~r 8u8,t !Gc i~ru,t !.

~A13!

Assuming the electric field polarized along the chain axisz,
f̂ (t)5E(t)eẑ with the dipole approximation. Substitution o
Eqs.~A7! and ~A8! in Eq. ~A6! then gives

(
i

F ^dc i uS F̂2 i\
]

]t D uc i&2 i\ (
j ~Þ i !

^dc i uc i&^c j uċ j&G50.

~A14!

Using the orthonormality constraint of the MOs, we have

^dc i uc i&1^c i udc i&50, ~A15!

^dc i uc j&50, ~ iÞ j !. ~A16!

We multiply Eqs.~A16! by an arbitrary constantsbji , sum it
over i and j , and then subtract the resulting expression fr
Eq. ~A14!, and obtain

S F̂2 i\
]

]t
2 i\ (

j ~Þ i !
^c j uċ j& D uc i&2(

j
uc j&bji 50.

~A17!

Multiplying ^cku from the left and integrating Eq.~A17! for
kÞ i , we find

^ckuF̂uc i&2 i\^ckuċ i&5bki . ~A18!

Similarly with ^c i u, we obtain

^c i uF̂uc i&2 i\^c i uċ i&2 i\ (
j ~Þ i !

^c j uċ j&5bii . ~A19!

On defining

eji 5^c j uF̂uc i&2 i\^c j uċ i& ~all j , i !, ~A20!

Eq. ~A17! becomes

S F̂2 i\
]

]t D uc i&5(
j

uc j&eji , ~A21!

which is the TDHF equation for$c j%. It may be shown that
$ei j % is a Hermitian matrix. According to Eq.~A21!, Eq.
~A4! is rewritten as
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i\ṙ~r1u1 ,r18u18 ,t !

5 (
k51

N

F̂uck~r1u1 ,t !&^ck~r18u18 ,t !u

2 (
k, j 51

N

uc j~r1u1 ,t !&ejk^ck~r18u18 ,t !u

2 (
k51

N

uck~r1u1 ,t !&^ck~r18u18 ,t !uF̂

1 (
k, j 51

N

uck~r1u1 ,t !&ejk^c j~r18u18 ,t !u

5F̂~ t !r~r1u1 ,r18u18 ,t !2r~r1u1 ,r18u18 ,t !F̂~ t !. ~A22!

The occupied spin–spatial MO can be expanded in
spin–AO basis set,

ck~ru,t !5(
m

cml
sk~ t !xm~r !sk~u!, ~A23!

wherecml
sk is the coefficient which measures the amplitude

an electron at the AOxm for the kth molecular spin–orbital
ck ,k[( l ,sk) with l representing the spatial component
the kth molecular spin-orbital, andsk5a or b for its spin
component.a(b) stands for spin up~down!. Then the density
matrix operator can be expressed in this basis set

r~ru,r 8u8,t !5(
i j

ux i~r !&r i j ~u,u8,t !^x j~r 8!u, ~A24!

see Eq.~16!. After taking the time derivative and multiplying
^xmsu from the left anduxns& from the right to Eq.~A24!
and using Eq.~10!, we have

i\^xmsuṙ~ru,r 8u8,t !uxns&55 i\(
i j

Smiṙ i j
s~ t !Sjn .

~A25!

The matrix element of rhs of Eq.~A22! can be expressed a

^xmsu@ F̂,r~ru,r 8u8,t !#uxns&

5^xmsuF F̂,(
k51

N

uck~ru,t !&^ck~r 8u8,t !uG uxns&

5 (
l 5occ

^xmsuF̂uc l&^c l uxns&

2 (
l 5occ

^xmsuc l&^c l uF̂uxns&

5 (
l 5occ

(
i j

@^xmuF̂sux i&cil
s~cjl

s !* ^x j uxn&

2^xmux i&cil
s~cjl

s !* ^x j uF̂suxn&#

5(
i j

~Fmi
s r i j

s Sjn2Smir i j
s F jn

s !. ~A26!
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In our Hamiltonian ~1!–~4!, the Fock matrix is given by
Fki

s 5hki
s 1 f ki , see Eqs.~18! and ~19!. By comparing Eqs.

~A25! and ~A26!, we have the EOM~16!.
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