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A variational approach is employed to compute the wave function of a single polaron for a
two-dimensional Holstein Hamiltonian with arbitrary forms of linear particle—boson interactions
and boson dispersion relations. The Toyozawa ansatz is utilized, and generalizations to multiple
polarons are outlined. Applications are made to model superradiance in pseudoisocyanine bromide
J-aggregates, and to calculate quasiparticle dispersion of an itinerant hole in a two-dimensional
antiferromagnet. ©2000 American Institute of Physids$§0021-96060)50240-2

I. INTRODUCTION two sections we apply our approach to two problems of con-
temporary interest, namely, superradiance in PIC-Br
Over the last fifty years the problem of a few fermions J-aggregates of a brick-work structure, and hole motion in
interacting with a bath of bosons has attracted enduring inantiferromagnets of insulating cuprate,GuO,Cl,. Discus-
terest which encompasses many branches of physics amibns are presented in Sec. V.
chemistry. Systems of electrons and phonons, for example,
are found to constitute some of the simplest yet rich struc-
tures in condensed phase. The interest sometimes extends
beyond physical descriptions of materials. The field has been
a testing ground for various theoretical techniques, includingl. FORMULATION
the first application of field theories to condensed matter
physics. Recent applications of the theories are found in the The Holstein Hamiltonian with off-diagonal particle—
context of low dimensional systems such as Gb@sed boson interactions included reads
materials: quantum wireg, superfluidss and molecular
aggregate$=® A
In this article we are concerned with a two-dimensional HZZ JkalakﬁLE wqbébq
Holstein Hamiltonian and its applications to superradiance in . a
peudoisocyanine bromid@IC-Br) J-aggregates and quasi- 1
particle dispersion in hole-doped antiferromagnets. The pur- +—= E (Mk,qal,qakbgnL H.c.), (2.1
pose here is two-fold. First, we would like to establish a N g
general method to treat two-dimensional systems of a few
fermions coupled to a bath of bosons. The method needs twhere al (ay) creates(annihilate$ a particle (exciton or
be general enough to accommodate various forms ofiole) of momentumk, bg (bg) creategannihilate$ a boson
fermion—boson interactions, and at the same time, efficienfphonon or magnonof momentumg. Jy is the bare particle
enough to offer practical solutions with adequate precisionband, v, is the boson dispersion relatioiM, , is the
Second, we seek to offer insights to real systems which arparticle—boson coupling, and H.c. is short for Hermitian con-
described by the two-dimensional fermion-béthn exciton-  jugate.N is the number of sites.
bath model. We take, as two examples, the PIC-Br  The one-dimensional Holstein Hamiltonian with diago-
J-aggregates and the hole-doped antiferromagnets. Thaal and off-diagonal coupling to Einstein phonons was suc-
former is recently argued by Potma and WierStmbe a  cessfully modeled by a variational wave function pioneered
two-dimensional exciton—phonon system exhibiting the suby Toyozawa (the Toyozawa ansatz and its
perradiance behavidrThe latter is a hole—magnon system generalization$®*8 The variational methods are shown to
on a square lattice whose resemblance to the lattice polardre rather efficient while remaining quantitatively accurate
is a matter of much current interéSg!® compared with calculations involving far more expensive
The article is organized as follows. In Sec. Il we de-computational resourcé®?° The Toyozawa ansatz for the
scribe the Hamiltonian and methodology. In the following Hamiltonian(2.1) utilizes boson coherent states:
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(2.2
HereK is the crystal momentumy;¢ and\¢ are the varia-
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FIG. 1. The brick-work structure of PIC-B#-aggregates. The lattice is
elongated along the horizontaldirection.

tional parameters characterizing the boson distortion and the

particle amplitude, respectively0) is vacuum for both the
particle and the boson excitation. The Toyozawa anga®x

of PX. In fact, the single-particle Toyozawa ansatz E2j2)
is obtained from a simple particle—boson structure,

neglects explicit instantaneous correlations between the par-

ticle and the boson. We note that the wave functi212) is
in general not normalized. The variational energy is

given by the expectation value of,

HK

Bx= (2.3
where

HK=(DX|H|DK), (2.9

NK=(DK|DK), (2.5
Minimization of Ex requires

M RN (2.6

INg* N aNEx

gH®  HS ON©

auk* T NK gy @7

For each crystal momentuk, we solve Eqs(2.6) and(2.7)

by numerical means to obtain optimize{j andyy; . The set
of self-consistent equations resulting from E@8.6) and
(2.7) is given in the Appendix.

Generalizations to include two or more particles in the
variational calculation is straightforward. For the two-

¥0=3 snahet =3 ol o), 213

via the projection operatd?:

|@F)=PK|Wy). (2.12
Only the translationally-invariant components of the local-
ized wave functions, Eq$2.9) and(2.11), with a total mo-
mentumK survive the application oPX.

The ansatz wave function, ER.2) allows ample flex-
ibility for the fermion and boson degrees of freedom to settle
into a self-consistent state for each crystal momeniunin
one-dimensional systems E(R.2) was shown to provide
some of the best wave functions for the Holstein Hamil-
tonian with diagonal and off-diagonal couplintfs>'? Ap-
plications of Eq.(2.2) to two-dimensional fermion—boson
systems, however, have remained elusive. In the remainder
of the article we implement the above variational procedure
to two practical problems.

Ill. SUPERRADIANCE IN J-AGGREGATES

Molecular dye aggregates have many technological ap-

particle case, for example, one only needs to apply the proplications such as sensitizers for silver halide materials in

jection operatdy’

PK=8(K—P)

=N"1> ex;{in-(K—; kafa,— > qbgbq”,
n q

(2.9
onto a localized wavefunction,
2, MomBndn ex;{ =2 O\amyb{ =N 0 |10), (2.9
whereP is the crystal momentum of the system
ﬁ>=; kalaﬁ}q} qb{by, (2.10

n, m, |, andj are site indices for a finite lattice employed in
the calculation here, amgl k, andK are momentum indices.
The site—space particlébosor) operatorsa, (b;) are the
Fourier transforms ofa, (by). The variational parameters
Anm @ndA | acquire an extra indeK after the application

photographic films. Optical properties of dye aggregates dif-
fer from those of monomers due to intermolecular couplings
which depend on relative positioning of molecular transition
dipoles. For exampleJ-aggregates exhibit a characteristic
sharp absorption pedkhe J-band below the monomer tran-
sition energy. The-band corresponds to the delocalized ex-
citons created by dipole interactions. The fluorescence band
of J-aggregates is found to be the mirror image of #Heand

with respect to the monomer absorption p&aRherefore

the absorption model aFaggregates can be applied to emis-
sion as well. Superradian¢eoherent spontaneous emisgion

is the enhanced radiative decay compared to that of a mono-
mer as a result of the coherent nature of the electronic ex-
cited states.

It was argued that the superradiance of PIC-Br
J-aggregates have to be modeled as a two-dimensional ag-
gregate on a brick-work latticeAn illustration of the lattice
structure is shown in Fig. 1, where the horizontal axis in the
brick-work lattice is labeled a&, and the other axis &5 We
adopt the Einstein phonons and diagonal exiton—phonon
coupling to describe thédaggregates,
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FIG. 3. Ground-state phonon displacement§=(5) for J,=J;=J,

=0.3w, J;=0.1),, andg=1.

After optimization is carried out fok andy}; , and the
polaron bandey determined, the full density matrix at low
temperaturesT small compared withw) can be calculated
from

FIG. 2. Polaron ban&K:(Ka,Kb) (in units of w) in the full Brillouin zone.
J,=33=3,=0.30, J;=0.1,, andg=1.

» =z 1 N> HPdKye Ex /T pK , 33
A= Jalato> bl =213 N H|@K)e ST (33
k q

where the partition functioZ=X>y exp(—Ex /T). The one-

exciton reduced density matrjx,, is defined as
+ L3 al abltb_g), (3.0 Y MeaPom
\/N kg pmnETr(PaTman)- (3.4
where the bare exciton bardg has the form The superradiance is calculated froth
Jk=—J1co8K,) —J; cog k) —J3 cogkp—ky) |_SE%1 dry- oo (3.5
—J,coq 2k, —ky,), (3.2

whered,, is a unit vector pointing along the direction of the
with k, andky, being components & alonga andb direc-  transition diople at siten. If all transition dipoles are paral-
tions, respectively. Interactions from three pairs of nearesttel, and translational invariance is taken into accoumt(

neighbors(the J;, J, and J; termg and one pair of next- =p__.), then

nearest-neighborshe J, term) are included in Eq(3.2). The

electronic coupling parameteds(i=1,...,4) are determined L!=2 pren=N > pi, (3.6)
mn I=m—n

from the interactions of transition dipolek, is much smaller
than othei’s because of elongation of the brick lattice along \yhereN is the total number of chromophores.

a direction. _ _ _ Figure 2 shows the polaron band structure in the full
There may be phonon modes with nonuniform dispergyjjiouin zone for electronic couplingd,=Jz;=J,=0.30,

sions which are coupled diagonally or off-diagnonally to theleo_lle and exciton—phonon couplirg= 1. The flat top-
electronic excitations in PIC-Bd-aggregates. Our model ping of the band signifies the bottom of the one-phonon con-

with Einstein phonons and diagonal exciton—phonon coutinyym where the polaron momenta is carried by its phonon
pling is rather simplified in this respect. There are little ex-

perimental data on relevant phonon modes to constraint
theory except the fact that coupling to low-energy acoustic
phonons is unimportant because of the constant radiative
lifetime up to 30 K. Exciton—acoustic-phonon coupling is 08
therefore ruled out. In a previous publication on superradi-o'
ance of light-harvesting antenna syste(ind2),* it was dem-

onstrated that temperature dependence of superradiance
insensitive to the detailed forms of exciton—phonon cou-
pling. Diagonal and off-diagonal couplings were found to
generate similar superradiance-vs.-temperature plots. Thes
are the rationale behind which we adopt Einstein phonons
coupled diagonal to excitons in the first step of modeling the
J-aggregates. Generalizations to nonuniform phonon disper-
sions off-diagonally coupled to excitons can be readily done:G. 4. Ground-state exciton amplitude& =22 for J,=J5=J,= 0.3,

- (a,b)
within the framework of the Toyozawa ansatz. J1=0.1J,, andg=1. gk~ is normalized so thagf-§s=1.

0.2
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ote - - - - ticipated 1ink%1547 between the lattice polaron and the
+ ] magnon-dressed hole by treating the two on an equal footing.
The Holstein—Primakoff spin—wave approximation may
be derived from a B expansion of the purdéupdoped
Heisenberg Hamiltonian expressed in terms of Schwinger
bosons’? The mean-field solution corresponds to zeNetate
with spins on one sublattice pointing down and spins on the
other sublattice pointing up. The lowest-order fluctuations
around the Nel order in powers of the spin-deviation opera-
tors are described by the linear spin—wave approximation.
Higher-order nonlinear spin—wave corrections have been
shown to be smafl’ A thorough numerical demonstration of
the accuracy of the spin—wave approximation was carried
0 s s s s out by one of the authors in Ref. 48. In the linear spin-wave
° 00 * T 018 o2 approximatiort3? only terms lowest in the spin-deviation
FIG. 5. Inversed superradiancel {/(radiative lifetime of an aggregate in OP€rators are retained, and the spin Hamiltonian is diagonal-
units of the monomer lifetimevs temperatureJ,=J;=J,=0.30, J, ized by a Bogoliubov transformation. The effective Hamil-

=0.1J,, andg=1. Solid: 16x16 lattice. Dashed: 88 lattice. Points: ex-  tonian reads
periment(Ref. 6).

012 |
118

0.06 -

N tz

H2=§ wabiby+ N ;q hi il (UgYk—qFvgyib)

cloud in significant portiod* The minimum of the band is

locatedK = (0,0) where the exciton is more mobile along the + (Ug Ykt vgYk—g)b—ql, 4.7

a—2b direction (the vertical direction in Fig. Jlthan along t + o

the a or a+ b directions. Figures 3 and 4 display the varia- Wheréhq (hg) andbg (bg) are hole and magnon annihilation

tional parameters X and ¢~ at K =(0,0), respectively. A (creation operators, respectively,is the number of nearest-
q q 1 1 . . . .

spreading of both the phonon displacements and the excitdf€ighPorsN is the number of sites, and

amplitudes over 3—4 sites is observed. In line with the band

structure, the spread is also more pronounced alongathe yqzz[cogqx)+cos(qy)], 4.2
—2b direction.

In Fig. 5 the radiative lifetime of the aggregate in units B —> >
of the monomer lifetime(the inverse of superradiances wg=JzS/1=a%yy, 4.3
plotted as a function of the temperature. The phonon fre- 757 o
quency is assumed to be 656 K, and the monomer lifetime to = /=— 9 (4.4)
5555 ps. The solid curve is from a 16 by 16 lattice, and the 2wq
dashed from an 8 by 8 lattice. The parameters are chosen to 75
be the same as in Fig. 2. Agreements with the experimental D= —SINM Yg) / 5 ' (4.5)

data from Ref. 6 are reasonably good except for one highest
temperature point. The discrepancy may be due to the fa
that the aggregates are three-dimensional entities.

@q

?Jt is the antiferromagnetic exchange energy between two
spins on copper atoms, ais#= 1/2. We adopt the usual Bo-
goliubov coefficiental, andv . A square lattice with a lat-
tice constana=1 is assumed. Wave vectors of the recipro-
cal lattice are labeled bg, andq, . The magnon dispersion
Interest in the problem of a single hole in a two- is denoted byw,. The parameter is introduced to offer
dimensional antiferromagnet is stimulated recently by photopassage from the Ising limita(=0) to the Heisenberg limit
emision measurements in the insulating cuprat€®0,Cl,  (a=1). The effective Hamiltonian, Eq4.1), bears close
(Refs. 25—-29 and CaCuO,Cl, (Ref. 30 which allow a resemblance to the polaron Hamiltonian incorporating off-
close comparison of the quasiparticle dispersion relation bediagonal coupling!?24°~52 Difficulties of treating off-
tween theorie® ~*®and experiments. In this section we apply diagonal coupling lie in finding reliable methods to diagonal-
the Toyozawa ansatz to calculate the quasiparticle dispersidme the Hamiltonian, Eq(2.1).*° As a consequence, off-
for an itinerant hole in a two-dimensional antiferromagnet.diagonal coupling was customarily omittédin a recent
We start from the linear spin—wave approximation of e work by Zhaoet al?? the Toyozawa ansatz was utilized to
=1 antiferromagnetic background following Schmitt—Rink solve the one-dimensional problem of simultaneous diagonal
et al. and Kaneet al. However, instead of resorting to per- and off-diagonal exciton—phonon coupling. Results from the
turbative expansions which often carry uncontrolled approxivariational treatment are in excellent agreement with those
mations, we employ a trial wave function of magnon coher-from a mean-field theory with optimizatiéhand a dynami-
ent states to variationally compute the energy—momentursal coherent potential approathThis encourages applica-
relation. Apart from its simplicity and reliability as compared tions of the Toyozawa wave function to other Hamiltonians.
with other methods, the approach clearly establishes the ai@alculations are carried out for 8 by 8 lattices. Due to sym-

IV. HOLE MOTION IN AN ANTIFERROMAGNET
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are made to model superradiance in Bi&ggregates, and to
study single-hole motion in a two-dimensional antiferromag-
net.

The dynamic-disorder model of superradiance has been
previously developed and applied in a one-dimensional form
to light-harvesting antenna complex&¥. Phonon-induced
localization is believed to be more relevant in PIC
J-aggregate8.The brick-work lattice of PICJ-aggregates is
entirely different from the ring-like structures of LH1 and
LH2 for which one-dimensional models with periodic
boundary conditions apply. The number of coherently emit-

n ting chromophores at low temperatures is significantly larger
FIG. 6. Quasiparticle dispersidf _ «, k) (in units oft) in one-quarter of in PIC J-aggregates than in LH1 and LH2 as a result of the
the Brillouin zone for the-J model.J/t=0.4. dimensionality. This has been clearly demonstrated by our

model employing the generalized Holstein Hamiltonian. For
example, a two-dimensional aggregate of sizé 1L, is

metry the computation needs only be performed for the irrethe size of a monomgrfree of static inhomogeneities is
ducible part of the Brillouin zone which corresponds to one-n€eded in order for 256 monomers to emit coherently at low
sixteenth of the full zone area. temperatures. In one dimension, however, this requires an
In Fig. 6 the quasiparticle dispersion of the Heisenbercfdgregate size of 25, which can easily reach the upper
spins is shown fod/t=0.4. The lowest energy state for the Sizeé limit of superradiance—the size of the optical wave-
Heisenberg spins has a crystal momentum/2(=/2). length.
Around the points (Gr) and (7,0), a very flat band is ob- In Sec. v we have reproduced many features of the
served. In agreement with previous theoretical resise, dispersion relation of the-J model variationally. The band
e.g., Ref. 48, the effective mass along the direction from Structure as well as the band width as a functiord/f(cf.
(0,7) to (w,0) is significantly larger than that along the di- Figs. 6 and ¥ are in agreement with previous theoretical
rection from (0,0) to ¢, 7). Width of the quasiparticle band results. The approach also serves as a direct link between the

is plotted againstl/t in Fig. 7. A bandwidth maximum is spin polaron and the traditional lattice polaron. Recent pho-
reached around/t=0.9. toemission datd indicated a rather isotropic structure

around the band minimumn(/2,7/2) which was believed to
result from direct oxygen—oxygen hoppit§ on the same
V. DISCUSSION sublattice. The approach developed here still appli¢$ i§
. introduced into the model. Since the next-nearest hopging
We have proposed a general numerical method appligoes not disturb the antiferromagnetic background, tthe
cable to two-dimensional particle—boson systems with arbiery s therefore not coupled to the magnons. Its role is
trary forms of linear particle—boson interactions and bosorimijar to that of the electronic transfer integral on the lattice

dispersion relations. The Toyozawa ansatz is utilized for 'tﬁ)olaron. Analytical tools such as the self-consistent Born ap-
relative efficiency, and for its flexibility to accommodate proximation, which were quite successful in treating the

various forms of off-diagonal particle—boson couplings as.,odel. remain to be justified when appliedttt’ -J.374°0ur
compared to other methodsuch as a recgg}r}gen;lty matrix yariational approach provides a reliable alternative to cir-
approach to phonon Hilbert-space truncafithApplications  ¢;myent those speculative approximations discarding unex-

amined vertex corrections. In addition, as formulated in Sec.

Il, our approach can also be applied to the problem of two
1.1

holes in an antiferromagnet which has recently attracted
1L ] attention®>>°
+
oot . T, ]
N
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0sl * . | APPENDIX: THE SELF-CONSISTENT EQUATIONS
) + ] FOR THE VARIATIONAL PARAMETERS
02t . ]
. , . , . . , . In this appendix we work out the self-consistent equa-
) 1 2 3 4 5 6 7 8 i K K iati i
h tions forh; andyy in the variational procedure. The Hamil-

tonian, Eq.(2.1) has three terms:
FIG. 7. Quasiparticle bandwidtfin units oft) plotted againstl/t for the A " "
Heisenberg spins. H=Ha+HP+H2 P, (A1)
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which are the particle term, the boson term, and the particle—

. . b_ n-— K K
boson coupling term, respectively, Hq=N 2% wquK_k_q_qr|¢E|2|)\q,|2. (A17)
Ha=Y Jealay, A2 _ _
; kS (A2) H2™P=—N 2; U U g (Mg ar Sk g g N
q
~ K
HP=2 wqbgbs, (A3) M} LSS A ). (A18)
Turning to minimization o, with respect to/fl'f* , one
N 1 arrives at
Ha—b:\/—N > (M qal_qaxbli+H.c). (A4) .
kq ]
K k
. . . = , Al
The expectation values of each term in the trial state are Vi Vi — (Ex—J0) Sk _k (A19)
given below: where
PKIAZ D) =N"1D) SK_ | Jluk|?, A5 ~
< | | > Ek: K —k k|¢k| (AS) UE=N 1§q: l//E+q(Mk+q,qS§7k7q)\§*
~ _ * K K
(@RI =NZS) g kNS (6) FME S (n20)
and
(I)K Hafb (I)K :_N72 Kx ;K M K K%
< | | > qu l)bk warq( k+q,qSK7k7q)\q VK:N_]'E quﬁ—k—ql)\gv- (AZ].)
q

K K
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