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A variational approach is employed to compute the wave function of a single polaron for a
two-dimensional Holstein Hamiltonian with arbitrary forms of linear particle–boson interactions
and boson dispersion relations. The Toyozawa ansatz is utilized, and generalizations to multiple
polarons are outlined. Applications are made to model superradiance in pseudoisocyanine bromide
J-aggregates, and to calculate quasiparticle dispersion of an itinerant hole in a two-dimensional
antiferromagnet. ©2000 American Institute of Physics.@S0021-9606~00!50240-2#
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I. INTRODUCTION

Over the last fifty years the problem of a few fermio
interacting with a bath of bosons has attracted enduring
terest which encompasses many branches of physics
chemistry. Systems of electrons and phonons, for exam
are found to constitute some of the simplest yet rich str
tures in condensed phase. The interest sometimes ext
beyond physical descriptions of materials. The field has b
a testing ground for various theoretical techniques, includ
the first application of field theories to condensed ma
physics. Recent applications of the theories are found in
context of low dimensional systems such as CuO2-based
materials,1 quantum wires,2 superfluids,3 and molecular
aggregates.4–9

In this article we are concerned with a two-dimension
Holstein Hamiltonian and its applications to superradiance
peudoisocyanine bromide~PIC-Br! J-aggregates and quas
particle dispersion in hole-doped antiferromagnets. The p
pose here is two-fold. First, we would like to establish
general method to treat two-dimensional systems of a
fermions coupled to a bath of bosons. The method need
be general enough to accommodate various forms
fermion–boson interactions, and at the same time, effic
enough to offer practical solutions with adequate precisi
Second, we seek to offer insights to real systems which
described by the two-dimensional fermion-bath~or exciton-
bath! model. We take, as two examples, the PIC-
J-aggregates and the hole-doped antiferromagnets.
former is recently argued by Potma and Wiersma6 to be a
two-dimensional exciton–phonon system exhibiting the
perradiance behavior.4 The latter is a hole–magnon syste
on a square lattice whose resemblance to the lattice pol
is a matter of much current interest.10–15

The article is organized as follows. In Sec. II we d
scribe the Hamiltonian and methodology. In the followin
6500021-9606/2000/113(16)/6502/7/$17.00
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two sections we apply our approach to two problems of c
temporary interest, namely, superradiance in PIC
J-aggregates of a brick-work structure, and hole motion
antiferromagnets of insulating cuprate Sr2CuO2Cl2 . Discus-
sions are presented in Sec. V.

II. FORMULATION

The Holstein Hamiltonian with off-diagonal particle
boson interactions included reads

Ĥ5(
k

Jkak
†ak1(

q
vqbq

†bq

1
1

AN
(
kq

~M k,qak2q
† akbq

†1H.c.!, ~2.1!

where ak
† (ak) creates~annihilates! a particle ~exciton or

hole! of momentumk, bq
† (bq) creates~annihilates! a boson

~phonon or magnon! of momentumq. Jk is the bare particle
band, vq is the boson dispersion relation,M k,q is the
particle–boson coupling, and H.c. is short for Hermitian co
jugate.N is the number of sites.

The one-dimensional Holstein Hamiltonian with diag
nal and off-diagonal coupling to Einstein phonons was s
cessfully modeled by a variational wave function pionee
by Toyozawa ~the Toyozawa ansatz! and its
generalizations.16–18 The variational methods are shown
be rather efficient while remaining quantitatively accura
compared with calculations involving far more expensi
computational resources.19,20 The Toyozawa ansatz for th
Hamiltonian~2.1! utilizes boson coherent states:
2 © 2000 American Institute of Physics
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uFK&5N21(
nk

ei (K2k)•nck
Kak

†

3expF2N21/2(
q

~lq
Ke2 iq•nbq

†2lq
K* eiq•nbq!G u0&.

~2.2!

HereK is the crystal momentum,ck
K andlq

K are the varia-
tional parameters characterizing the boson distortion and
particle amplitude, respectively.u0& is vacuum for both the
particle and the boson excitation. The Toyozawa ansatz~2.2!
neglects explicit instantaneous correlations between the
ticle and the boson. We note that the wave function~2.2! is
in general not normalized. The variational energyEK is
given by the expectation value ofĤ,

EK[
HK

NK
, ~2.3!

where

HK5^FKuĤuFK&, ~2.4!

NK5^FKuFK&. ~2.5!

Minimization of EK requires

]HK

]lq
K*

2
HK

NK

]NK

]lq
K*

50, ~2.6!

]HK

]cq
K*

2
HK

NK

]NK

]cq
K*

50. ~2.7!

For each crystal momentumK , we solve Eqs.~2.6! and~2.7!
by numerical means to obtain optimizedlq

K andcq
K . The set

of self-consistent equations resulting from Eqs.~2.6! and
~2.7! is given in the Appendix.

Generalizations to include two or more particles in t
variational calculation is straightforward. For the tw
particle case, for example, one only needs to apply the
jection operator17

P̂K5d~K2P̂!

5N21(
n

expF in•S K2(
k

kak
†ak2(

q
qbq

†bqD G ,
~2.8!

onto a localized wavefunction,

(
nm

lnman
†am

† expF2(
l

~lnm,lbl
†2lnm,l* bl!G u0&, ~2.9!

whereP̂ is the crystal momentum of the system

P̂5(
k

kak
†ak1(

q
qbq

†bq , ~2.10!

n, m, l, andj are site indices for a finite lattice employed
the calculation here, andq, k, andK are momentum indices
The site–space particle~boson! operatorsan (bl) are the
Fourier transforms ofak (bq). The variational parameter
lnm andlnm,l acquire an extra indexK after the application
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of P̂K. In fact, the single-particle Toyozawa ansatz Eq.~2.2!
is obtained from a simple particle–boson structure,

uCL&5(
m

cmam
† expF2(

l
~l lbl

†2l l* bl!G u0&, ~2.11!

via the projection operatorP̂K:

uFK&5 P̂KuCL&. ~2.12!

Only the translationally-invariant components of the loc
ized wave functions, Eqs.~2.9! and ~2.11!, with a total mo-
mentumK survive the application ofP̂K.

The ansatz wave function, Eq.~2.2! allows ample flex-
ibility for the fermion and boson degrees of freedom to se
into a self-consistent state for each crystal momentumK . In
one-dimensional systems Eq.~2.2! was shown to provide
some of the best wave functions for the Holstein Ham
tonian with diagonal and off-diagonal couplings.17,21,22Ap-
plications of Eq.~2.2! to two-dimensional fermion–boso
systems, however, have remained elusive. In the remain
of the article we implement the above variational proced
to two practical problems.

III. SUPERRADIANCE IN J-AGGREGATES

Molecular dye aggregates have many technological
plications such as sensitizers for silver halide materials
photographic films. Optical properties of dye aggregates
fer from those of monomers due to intermolecular couplin
which depend on relative positioning of molecular transiti
dipoles. For example,J-aggregates exhibit a characterist
sharp absorption peak~theJ-band! below the monomer tran
sition energy. TheJ-band corresponds to the delocalized e
citons created by dipole interactions. The fluorescence b
of J-aggregates is found to be the mirror image of theJ-band
with respect to the monomer absorption peak.23 Therefore
the absorption model ofJ-aggregates can be applied to em
sion as well. Superradiance~coherent spontaneous emissio!
is the enhanced radiative decay compared to that of a mo
mer as a result of the coherent nature of the electronic
cited states.

It was argued that the superradiance of PIC-
J-aggregates have to be modeled as a two-dimensiona
gregate on a brick-work lattice.6 An illustration of the lattice
structure is shown in Fig. 1, where the horizontal axis in
brick-work lattice is labeled asa, and the other axis asb. We
adopt the Einstein phonons and diagonal exiton–pho
coupling to describe theJ-aggregates,

FIG. 1. The brick-work structure of PIC-BrJ-aggregates. The lattice is
elongated along the horizontala direction.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Ĥ15(
k

Jkak
†ak1v(

q
bq

†bq

1
g

AN
(
kq

ak2q
† ak~bq

†1b2q!, ~3.1!

where the bare exciton bandJk has the form

Jk52J1 cos~ka!2J2 cos~kb!2J3 cos~kb2ka!

2J4 cos~2kb2ka!, ~3.2!

with ka andkb being components ofk alonga andb direc-
tions, respectively. Interactions from three pairs of near
neighbors~the J1 , J2 and J3 terms! and one pair of next-
nearest-neighbors~theJ4 term! are included in Eq.~3.2!. The
electronic coupling parametersJi ( i 51,...,4) are determined
from the interactions of transition dipoles.J1 is much smaller
than otherJ’s because of elongation of the brick lattice alo
a direction.

There may be phonon modes with nonuniform disp
sions which are coupled diagonally or off-diagnonally to t
electronic excitations in PIC-BrJ-aggregates. Our mode
with Einstein phonons and diagonal exciton–phonon c
pling is rather simplified in this respect. There are little e
perimental data on relevant phonon modes to constr
theory except the fact that coupling to low-energy acou
phonons is unimportant because of the constant radia
lifetime up to 30 K. Exciton–acoustic-phonon coupling
therefore ruled out. In a previous publication on superra
ance of light-harvesting antenna systems~LH2!,1 it was dem-
onstrated that temperature dependence of superradian
insensitive to the detailed forms of exciton–phonon co
pling. Diagonal and off-diagonal couplings were found
generate similar superradiance-vs.-temperature plots. T
are the rationale behind which we adopt Einstein phon
coupled diagonal to excitons in the first step of modeling
J-aggregates. Generalizations to nonuniform phonon dis
sions off-diagonally coupled to excitons can be readily do
within the framework of the Toyozawa ansatz.

FIG. 2. Polaron bandEK5(Ka ,Kb) ~in units of v) in the full Brillouin zone.
J25J35J450.3v, J150.1J2 , andg51.
Downloaded 06 Nov 2006 to 147.8.21.97. Redistribution subject to AIP
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After optimization is carried out forlq
K andcq

K , and the
polaron bandEK determined, the full density matrix at low
temperatures (T small compared withv) can be calculated
from

r5Z21(
K

NK
21uFK&e2EK /T^FKu, ~3.3!

where the partition functionZ[(K exp(2EK /T). The one-
exciton reduced density matrixrnm is defined as

rmn[Tr~ram
† an!. ~3.4!

The superradiance is calculated from5,24

Ls[(
mn

dm•dnrmn , ~3.5!

wheredm is a unit vector pointing along the direction of th
transition diople at sitem. If all transition dipoles are paral
lel, and translational invariance is taken into account (rmn
5rmÀn), then

Ls
uu5(

mn
rmn5N (

l5mÀn
r l , ~3.6!

whereN is the total number of chromophores.
Figure 2 shows the polaron band structure in the f

Brillouin zone for electronic couplingsJ25J35J450.3v,
J150.1J2 , and exciton–phonon couplingg51. The flat top-
ping of the band signifies the bottom of the one-phonon c
tinuum where the polaron momenta is carried by its phon

FIG. 3. Ground-state phonon displacementsln5(a,b)
K5(0,0) for J25J35J4

50.3v, J150.1J2 , andg51.

FIG. 4. Ground-state exciton amplitudescn5(a,b)
K5(0,0) for J25J35J450.3v,

J150.1J2 , andg51. cn5(a,b)
K5(0,0) is normalized so thatcn5(0,0)

K5(0,0)51.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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cloud in significant portion.24 The minimum of the band is
locatedK5(0,0) where the exciton is more mobile along t
a22b direction ~the vertical direction in Fig. 1! than along
the a or a1b directions. Figures 3 and 4 display the vari
tional parameterslq

K and cq
K at K5(0,0), respectively. A

spreading of both the phonon displacements and the exc
amplitudes over 3–4 sites is observed. In line with the ba
structure, the spread is also more pronounced along tha
22b direction.

In Fig. 5 the radiative lifetime of the aggregate in un
of the monomer lifetime~the inverse of superradiance! is
plotted as a function of the temperature. The phonon
quency is assumed to be 656 K, and the monomer lifetim
5555 ps. The solid curve is from a 16 by 16 lattice, and
dashed from an 8 by 8 lattice. The parameters are chose
be the same as in Fig. 2. Agreements with the experime
data from Ref. 6 are reasonably good except for one hig
temperature point. The discrepancy may be due to the
that the aggregates are three-dimensional entities.

IV. HOLE MOTION IN AN ANTIFERROMAGNET

Interest in the problem of a single hole in a tw
dimensional antiferromagnet is stimulated recently by pho
emision measurements in the insulating cuprate Sr2CuO2Cl2
~Refs. 25–29! and Ca2CuO2Cl2 ~Ref. 30! which allow a
close comparison of the quasiparticle dispersion relation
tween theories31–46and experiments. In this section we app
the Toyozawa ansatz to calculate the quasiparticle disper
for an itinerant hole in a two-dimensional antiferromagn
We start from the linear spin–wave approximation of theS
5 1

2 antiferromagnetic background following Schmitt–Rin
et al. and Kaneet al. However, instead of resorting to pe
turbative expansions which often carry uncontrolled appro
mations, we employ a trial wave function of magnon coh
ent states to variationally compute the energy–momen
relation. Apart from its simplicity and reliability as compare
with other methods, the approach clearly establishes the

FIG. 5. Inversed superradiance 1/Ls
uu ~radiative lifetime of an aggregate in

units of the monomer lifetime! vs temperature.J25J35J450.3v, J1

50.1J2 , andg51. Solid: 16316 lattice. Dashed: 838 lattice. Points: ex-
periment~Ref. 6!.
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ticipated link10–15,47 between the lattice polaron and th
magnon-dressed hole by treating the two on an equal foot

The Holstein–Primakoff spin–wave approximation m
be derived from a 1/S expansion of the pure~updoped!
Heisenberg Hamiltonian expressed in terms of Schwin
bosons.32 The mean-field solution corresponds to a Ne`el state
with spins on one sublattice pointing down and spins on
other sublattice pointing up. The lowest-order fluctuatio
around the Ne`el order in powers of the spin-deviation oper
tors are described by the linear spin–wave approximat
Higher-order nonlinear spin–wave corrections have b
shown to be small.37 A thorough numerical demonstration o
the accuracy of the spin–wave approximation was carr
out by one of the authors in Ref. 48. In the linear spin-wa
approximation,31,32 only terms lowest in the spin-deviatio
operators are retained, and the spin Hamiltonian is diago
ized by a Bogoliubov transformation. The effective Ham
tonian reads

Ĥ25(
q

vqbq
†bq1

tz

AN
(
kq

hk2q
† hk@~uqgk2q1vqgk!bq

†

1~uqgk1vqgk2q!b2q#, ~4.1!

wherehq (hq
†) andbq (bq

†) are hole and magnon annihilatio
~creation! operators, respectively,z is the number of nearest
neighbors,N is the number of sites, and

gq5
1

2
@cos~qx!1cos~qy!#, ~4.2!

vq5JzSA12a2gq
2, ~4.3!

uq5AJzS1vq

2vq
, ~4.4!

vq52sgn~gq!AJzS2vq

2vq
. ~4.5!

J is the antiferromagnetic exchange energy between
spins on copper atoms, andS51/2. We adopt the usual Bo
goliubov coefficientsuq andvq . A square lattice with a lat-
tice constanta51 is assumed. Wave vectors of the recipr
cal lattice are labeled byqx andqy . The magnon dispersion
is denoted byvq . The parametera is introduced to offer
passage from the Ising limit (a50) to the Heisenberg limit
(a51). The effective Hamiltonian, Eq.~4.1!, bears close
resemblance to the polaron Hamiltonian incorporating o
diagonal coupling.21,22,49–52 Difficulties of treating off-
diagonal coupling lie in finding reliable methods to diagon
ize the Hamiltonian, Eq.~2.1!.49 As a consequence, off
diagonal coupling was customarily omitted.52 In a recent
work by Zhaoet al.22 the Toyozawa ansatz was utilized
solve the one-dimensional problem of simultaneous diago
and off-diagonal exciton–phonon coupling. Results from
variational treatment are in excellent agreement with th
from a mean-field theory with optimization21 and a dynami-
cal coherent potential approach.53 This encourages applica
tions of the Toyozawa wave function to other Hamiltonian
Calculations are carried out for 8 by 8 lattices. Due to sy
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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metry the computation needs only be performed for the i
ducible part of the Brillouin zone which corresponds to on
sixteenth of the full zone area.

In Fig. 6 the quasiparticle dispersion of the Heisenb
spins is shown forJ/t50.4. The lowest energy state for th
Heisenberg spins has a crystal momentum (p/2,p/2).
Around the points (0,p) and (p,0), a very flat band is ob
served. In agreement with previous theoretical results~see,
e.g., Ref. 46!, the effective mass along the direction fro
(0,p) to (p,0) is significantly larger than that along the d
rection from (0,0) to (p,p). Width of the quasiparticle band
is plotted againstJ/t in Fig. 7. A bandwidth maximum is
reached aroundJ/t50.9.

V. DISCUSSION

We have proposed a general numerical method ap
cable to two-dimensional particle–boson systems with a
trary forms of linear particle–boson interactions and bos
dispersion relations. The Toyozawa ansatz is utilized for
relative efficiency, and for its flexibility to accommoda
various forms of off-diagonal particle–boson couplings
compared to other methods~such as a recent density matr
approach to phonon Hilbert-space truncation!.54 Applications

FIG. 6. Quasiparticle dispersionEK5(Kx ,Ky) ~in units of t) in one-quarter of
the Brillouin zone for thet-J model.J/t50.4.

FIG. 7. Quasiparticle bandwidth~in units of t) plotted againstJ/t for the
Heisenberg spins.
Downloaded 06 Nov 2006 to 147.8.21.97. Redistribution subject to AIP
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are made to model superradiance in PICJ-aggregates, and to
study single-hole motion in a two-dimensional antiferroma
net.

The dynamic-disorder model of superradiance has b
previously developed and applied in a one-dimensional fo
to light-harvesting antenna complexes.5,24 Phonon-induced
localization is believed to be more relevant in P
J-aggregates.6 The brick-work lattice of PICJ-aggregates is
entirely different from the ring-like structures of LH1 an
LH2 for which one-dimensional models with period
boundary conditions apply. The number of coherently em
ting chromophores at low temperatures is significantly lar
in PIC J-aggregates than in LH1 and LH2 as a result of t
dimensionality. This has been clearly demonstrated by
model employing the generalized Holstein Hamiltonian. F
example, a two-dimensional aggregate of size 16Lm (Lm is
the size of a monomer! free of static inhomogeneities i
needed in order for 256 monomers to emit coherently at
temperatures. In one dimension, however, this requires
aggregate size of 256Lm which can easily reach the uppe
size limit of superradiance—the size of the optical wav
length.

In Sec. IV we have reproduced many features of
dispersion relation of thet-J model variationally. The band
structure as well as the band width as a function ofJ/t ~cf.
Figs. 6 and 7! are in agreement with previous theoretic
results. The approach also serves as a direct link between
spin polaron and the traditional lattice polaron. Recent p
toemission data27 indicated a rather isotropic structur
around the band minimum (p/2,p/2) which was believed to
result from direct oxygen–oxygen hoppingt8 on the same
sublattice. The approach developed here still applies ift8 is
introduced into the model. Since the next-nearest hoppint8
does not disturb the antiferromagnetic background, thet8
term is therefore not coupled to the magnons. Its role
similar to that of the electronic transfer integral on the latt
polaron. Analytical tools such as the self-consistent Born
proximation, which were quite successful in treating thet-J
model, remain to be justified when applied tot-t8-J.37,40Our
variational approach provides a reliable alternative to c
cumvent those speculative approximations discarding un
amined vertex corrections. In addition, as formulated in S
II, our approach can also be applied to the problem of t
holes in an antiferromagnet which has recently attrac
attention.13,55
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APPENDIX: THE SELF-CONSISTENT EQUATIONS
FOR THE VARIATIONAL PARAMETERS

In this appendix we work out the self-consistent equ
tions forlq

K andcq
K in the variational procedure. The Hami

tonian, Eq.~2.1! has three terms:

Ĥ5Ĥa1Ĥb1Ĥa2b, ~A1!
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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which are the particle term, the boson term, and the partic
boson coupling term, respectively,

Ĥa5(
k

Jkak
†ak , ~A2!

Ĥb5(
q

vqbq
†bq , ~A3!

Ĥa2b5
1

AN
(
kq

~M k,qak2q
† akbq

†1H.c.!. ~A4!

The expectation values of each term in the trial state
given below:

^FKuĤauFK&5N21(
k

SK2k
K Jkuck

Ku2, ~A5!

^FKuĤbuFK&5N22(
kq

vqSK2k2q
K uck

Ku2ulq
Ku2, ~A6!

^FKuĤa2buFK&52N22(
kq

ck
K* ck1q

K ~M k1q,qSK2k2q
K lq

K*

1M k,2q* SK2k
K* l2q

K !. ~A7!

Here,Sk
K is the Fourier transform of the generalized Deby

Waller factorsSn
K ,

Sk
K5(

n
e2 ik•nSn

K , ~A8!

Sn
K5expFN21(

q
ulq

Ku2~eiq•n21!G . ~A9!

The trial state is in general not normalized,

NK5^FKuFK&5N21(
k

SK2k
K uck

Ku2. ~A10!

We define the total energy as

EK5
HK

NK
. ~A11!

Minimization of EK with respect to the boson displacemen
lq

K* leads to

lq
K5

Lq
K

vqNq
K1Hq

K2Nq
KEK

, ~A12!

where

Lq
K5N21(

k
M k1q,qSK2k2q

K ck
K* ck1q

K , ~A13!

Nq
K5N21(

k
SK2k2q

K uck
Ku2, ~A14!

andHq
K is the sum of three terms:

Hq
K5Hq

a1Hq
b1Hq

a2b , ~A15!

Hq
a5N21(

k
SK2k2q

K Jkuck
Ku2, ~A16!
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Hq
b5N22(

kq8
vq8SK2k2q2q8

K uck
Ku2ulq8

K u2, ~A17!

Hq
a2b52N22(

kq8
ck

K* ck1q8
K

~M k1q8,q8SK2k2q2q8
K lq8

K*

1M k,2q8
* SK2k2q

K* l2q8
K

!. ~A18!

Turning to minimization ofEK with respect tock
K* , one

arrives at

ck
K5

Uk
K

Vk
K2~EK2Jk!SK2k

K , ~A19!

where

Uk
K5N21(

q
ck1q

K ~M k1q,qSK2k2q
K lq

K*

1M k,2q* SK2k
K* l2q

K ! ~A20!

and

Vk
K5N21(

q
vqSK2k2q

K ulq
Ku2. ~A21!
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