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A concise algorithm for computing the factor of
safety using the Morgenstern–Price method

D.Y. Zhu, C.F. Lee, Q.H. Qian, and G.R. Chen

Abstract: A concise algorithm is proposed in this paper for the calculation of the factor of safety of a slope using the
Morgenstern–Price method. Based on force and moment equilibrium considerations, two expressions are derived for the
factor of safety Fs and the scaling factor λ, respectively, both in relatively simple forms. With this algorithm and as-
sumed initial values of Fs and λ, the solutions for Fs and λ are found to converge within a few iterations. Compared to
other procedures, the present algorithm possesses the advantages of simplicity and high efficiency in application. It is
rather straightforward to implement this algorithm into a computer program.
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Résumé : Dans cet article, on propose un algorithme concis pour le calcul de coefficient de sécurité de talus avec la
méthode Morgenstern–Price. En se basant sur des considérations de force et d’équilibre limite, on dérive deux expres-
sions pour le coefficient de sécurité Fs et le coefficient d’échelle λ respectivement, toutes deux dans des formes relati-
vement simples. Avec cet algorithme et des valeurs initiales supposées de Fs et de λ, on trouve que les solutions pour
Fs et λ convergent après quelques itérations. En comparaison d’autres procédures, le présent algorithme possède
l’avantage d’être efficace et simple d’application. C’est plutôt facile d’entrer cet algorithme dans un ordinateur.

Mots clés : talus, stabilité, coefficient de stabilité, méthode d’équilibre limite.
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Introduction

Slope-stability problems are usually analyzed using limit
equilibrium methods of slices. When evaluating the stability
conditions of soil slopes of simple configuration, circular
potential slip surfaces are usually assumed, wherein the ordi-
nary method (Fellenius 1936) or the simplified Bishop
method (Bishop 1955) can be used, the latter being preferred
because it is generally considered to be more vigorous. In
many situations, however, the actual surfaces of rupture are

found to deviate significantly from the circular shape, or the
potential slip surfaces are predefined by planes of weakness
in rock slopes. In such cases, a number of methods of slices
can be used to accommodate the noncircular shape of slip
surfaces (Janbu 1954; Lowe and Karafiath 1960;
Morgenstern and Price 1965; Spencer 1967; US Army Corps
of Engineers 1967). Of these, the Morgenstern–Price method
(Morgenstern and Price 1965) is commonly used because it
completely satisfies the equilibrium conditions and involves
the least numerical difficulty. The basic assumption underly-
ing the Morgenstern–Price method is that the ratio of normal
to shear interslice forces across the sliding mass is repre-
sented by an interslice force function that is the product of a
specified function f (x) and an unknown scaling factor λ.
Based on the vertical force equilibrium conditions for indi-
vidual slices and the moment equilibrium condition for the
whole sliding mass, two equilibrium equations are derived
involving the two unknowns, namely, the factor of safety Fs
and the scaling factor λ, thereby rendering the problem de-
terminate. Unfortunately, solving for Fs and λ is often com-
plex, since the equilibrium equations are highly nonlinear
and in complicated form. Some sophisticated iterative proce-
dures (Morgenstern and Price 1967; Fredlund and Krahn
1977; Zhu et al. 2001) have been developed for solution pur-
poses. Although these procedures can give converged solu-
tions to Fs and λ, they are not easily accessible to most
geotechnical designers who have to rely on commercial
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packages of the “black box” type. Moreover, when perform-
ing analyses of slope stability with established procedures
for the Morgenstern–Price method, tedious computations are
often involved, resulting in unduly long computation times.
This situation necessitates the improvement of the algorithm
for computing Fs and λ associated with the Morgenstern–
Price method.

In this paper, the two equilibrium equations used in the
Morgenstern–Price method are re-derived to obtain two ex-
pressions for the factor of safety Fs and the scaling factor λ.
This makes the algorithm for calculating the factor of safety
more concise and more easily implemented into a computer
program.

Equilibrium equations

Consider a sliding mass bounded by the ground surface

and a noncircular slip surface, which is subject to self-
weight, seismic forces, water pressures, and surface loads, as
shown in Fig. 1. As with the other methods of slices, the
sliding mass is divided into a number of vertical slices. A
typical slice is shown in Fig. 1b, with height hi, width bi,
and base inclination αi. The ith slice is subject to 10 sets of
forces as follows: (i) self-weight Wi; (ii) seismic force KcWi,
where Kc is the horizontal seismic coefficient; (iii) external
force Qi, making angle ωi with the vertical (positive as indi-
cated in Fig. 1); (iv) resultant water force U u bi i i i= secα ,
where ui is the average water pressure; (v) effective normal
force on the base Ni′ ; (vi) mobilized shear resistance
S N c b Fi i i i i i= ′ ′ + ′( tan sec ) /φ α s, where φi′ is the effective
friction angle, ci′ is the cohesion along the base, and Fs is the
factor of safety, which is assumed to be constant along the
whole sliding surface; in the case of total stress analysis, the
strength parameters are in terms of total stress with zero wa-

Fig. 1. (a) Sliding body. (b) Typical slice. Pi, interslice force.



ter pressure; (vii) normal interslice forces Ei and Ei−1 acting
on the left and right boundaries of the slice at vertical dis-
tances zi and zi−1 from the bottom, respectively; and (viii)
shear interslice forces λ f Ei i and λ f Ei i− −1 1; commensurate
with the Morgenstern–Price method, the ratio between the
normal and shear interslice forces is assumed to be de-
scribed by a function λf(x).

Considering the force equilibrium of the ith slice, and re-
solving perpendicular to the slip surface,

[1a] N W f E f E Qi i i i i i i i i′ = + − +− −( cos ) cosλ λ ω α1 1

+ − + − + −−( sin ) sinK W E E Q Ui i i i i i ic 1 ω α

and resolving parallel to the slip surface,

[1b] ( tan sec )/N c b Fi i i i i′ ′ + ′φ α s

= + − +− −( cos ) sinW f E f E Qi i i i i i i iλ λ ω α1 1

− − + − +−( sin ) cosK W E E Qi i i i i ic 1 ω α

Substituting eq. [1a] into eq. [1b] yields

[2] E f f Fi i i i i i i i[(sin cos ) tan (cos sin ) ]α λ α φ α λ α− ′ + + s

= − ′− −E fi i i i i1 1[(sin cos ) tanα λ α φ
+ + + −−(cos sin ) ]α λ αi i i i if F F T R1 s s

in which

[3a] R W K W Q Ui i i i i i i i i= − + − −[ cos sin cos( ) ]α α ω αc

× ′ + ′tan secφ αi i i ic b

[3b] T W K W Qi i i i i i i i= + − −sin cos sin( )α α ω αc

Actually, Ri is the sum of the shear resistances contributed
by all the forces acting on the slices except the normal shear
interslice forces, and Ti is the sum of the components of
these forces tending to cause instability.

Equation [2] is rearranged in the form

[4] E E F T Ri i i i i i iΦ Φ= + −− − −ψ 1 1 1 s

in which

[5a] Φi i i i if= − ′(sin cos ) tanα λ α φ
+ +(cos sin )α λ αi i if Fs

[5b] Φi i i i if− − − − −= − ′1 1 1 1 1(sin cos ) tanα λ α φ
+ +− − −(cos sin )α λ αi i if F1 1 1 s

[5c] ψ α λ α φi i i i if− −= − ′1 1[(sin cos ) tan

+ + − −(cos sin ) ]/α λ αi i i if F1 1s Φ

With the condition E0 = 0 and En = 0 (where E0 and En
are the interslice forces at the upper and lower ends, respec-
tively) from eq. [4], the force equilibrium equation is derived
in the form of an expression for the factor of safety Fs:

[6] F
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Equation [6] is of an implicit nature because the variable
Fs appears on both sides, and thus iteration is required for
solving this equation.

Now consider the moment equilibrium of the ith slice.
Taking moments of all the forces acting on the slice about
the centre of the base,
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Fig. 2. Flow chart of the computation algorithm. ε ε1 2, ; limits of
tolerance for Fs and λ, respectively.
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Assume that

[8] M E z M E zi i i i i i= =− − −1 1 1

in which Mi and Mi – 1 are termed interslice moments (Zhu et
al. 2001). Substitution of eq. [8] into eq. [7] gives
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Fig. 3. Slope profile for example 1. Conversions as follows: 1 ft = 0.3048 m, 1 lb/ft3 = 0.1571 kN/m3, 1 lb/ft2 = 0.0479 kPa. r, radius
of the slip circle.

Constant interslice function Half-sine interslice function

Fs λ Fs λ

Case Description
Fredlund
and Krahn

Present
method

Fredlund
and Krahn

Present
method

Fredlund
and Krahn

Present
method

Fredlund
and Krahn

Present
method

1 Circular slip surface; dry slope 2.073 2.075 0.237 0.258 2.076 2.074 0.318 0.324
2 Noncircular slip surface; dry slope 1.373 1.381 0.185 0.188 1.370 1.371 0.187 0.228
3 Circular slip surface; ru = 0.25 1.761 1.760 0.255 0.250 1.764 1.760 0.304 0.314
4 Noncircular slip surface; ru = 0.25 1.118 1.119 0.139 0.163 1.118 1.109 0.130 0.195
5 Circular slip surface; piezometric line 1.830 1.831 0.247 0.240 1.832 1.831 0.290 0.299
6 Noncircular slip surface; piezometric

line
1.245 1.261 0.121 0.144 1.245 1.254 0.101 0.165

Note: Two hundred slices were used in the computation. ru, ratio of pore-water pressure.

Table 1. Comparison of Fs and λ values computed using the present method with those reported by Fredlund and Krahn (1977) (ex-
ample 1).

Case 1 Case 2

Step Fs λ Fs λ
1 1.0000 0 1.0000 0
2 2.0037 1.3560
3 1.8701 0.3231 1.3304 0.2161
4 2.0918 1.3707
5 2.0724 0.3240 1.3686 0.2277
6 2.0746 1.3709
7 2.0745 0.3240 1.3708 0.2283
8 2.0744 1.3709
9 2.0744 0.3240 1.3709 0.2283

Table 2. Values of Fs and λ at each step (half-sine
interslice force function is used) (example 1).

Layer γ (kN/m3) c′ (kPa) φ′ (°)

1 19.0 0.0 26.0
2 18.8 21.5 20.0
3 18.0 15.5 26.0
4 18.5 28.0 22.0
5 19.0 50.0 10.0

Table 3. Soil properties used in example 2.



As M0 = E0z0 = 0 and Mn = Enzn = 0, the moment equilib-
rium equation is derived in the form of an explicit expres-
sion for the scaling factor λ:

[10] λ
α ω

=
+ + +−

=
∑ [ ( ) tan sin ]

[ (

b E E K W h Q h

b f E

i i i i i i i i i
i

n

i i

1
1

2c

i i i
i

n

f E+ − −
=
∑ 1 1

1

)]

Iterative algorithm for calculating Fs and �

The expressions for the factor of safety Fs and the scaling
factor λ (eqs. [6] and [10], respectively) were derived in the
foregoing section, with the former in an implicit form and
the latter in an explicit form. To calculate Fs and λ, an itera-
tive algorithm should be employed in the following steps:
(1) Divide the sliding body into a number of slices.

(2) Calculate Ri and Ti using eqs. [3a] and [3b], respec-
tively, for all the slices.

(3) Specify the form of the interslice function f(x). An ex-
tension of the half-sine function is suggested herein for
examining the sensitivity of the choice of f(x) on the
calculated factor of safety:

[11] f x
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in which a and b are abscissa of the left and right ends
of the failure surface, respectively; and µ and ν are spec-
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Fig. 4. Diagram showing the process of iteration for example 1
(half-sine interslice force function is used): (a) case 1; (b) case
2.

f(x′) = 1 f(x′) = sin(x′)
Water
pressure

Earthquake
effect Fs λ Fs λ Procedure

Yes Yes 0.827 0.3273 0.791 0.4472 Zhu et al. 2001
0.829 0.3296 0.793 0.4500 Present method
0.834 0.3278 0.798 0.4479 Geo-Slope International Ltd. 1998

Yes No 1.023 0.2512 1.000 0.3307 Zhu et al. 2001
1.028 0.2530 1.004 0.3332 Present method
1.032 0.2518 1.008 0.3315 Geo-Slope International Ltd. 1998

No Yes 1.081 0.3526 1.045 0.4800 Zhu et al. 2001
1.081 0.3551 1.046 0.4836 Present method
1.084 0.3522 1.048 0.4797 Geo-Slope International Ltd. 1998

No No 1.341 0.2707 1.316 0.3591 Zhu et al. 2001
1.342 0.2725 1.317 0.3618 Present method
1.345 0.2703 1.320 0.3587 Geo-Slope International Ltd. 1998

Table 4. Comparison of computed values of Fs and λ (example 2).

µ ν λ Fs

0 — 0.2725 1.342
0.5 0.3315 1.351

0.5 1.0 0.3188 1.329
2.0 0.3713 1.315
0.5 0.3856 1.359

1.0 1.0 0.3618 1.317
2.0 0.4471 1.311
0.5 0.4769 1.374

2.0 1.0 0.4390 1.300
2.0 0.5684 1.320
0.5 0.5504 1.387

3.0 1.0 0.5058 1.290
2.0 0.6709 1.329
0.5 0.6123 1.397

4.0 1.0 0.5644 1.283
2.0 0.7631 1.336
0.5 0.6665 1.405

5.0 1.0 0.6165 1.279
2.0 0.8483 1.342

Table 5. Effect of the choice of interslice function
on the computed factor of safety (example 2).



ified non-negative values, with µ = 0–5.0 and ν = 0.5–
2.0, in general.

(4) Assume initial values of Fs and λ. The initial choice of
Fs and λ might have an influence on the number of iter-
ations required for convergence but would have no ef-
fect on the final values of Fs and λ. Equation [4] shows
that the effective transfer of the thrust force from one
slice to another requires that

Φi i i i if= − ′(sin cos ) tanα λ α φ

+ + >(cos sin )α λ αi i if Fs 0

Thus, for any specified value of λ, the choice of the
initial Fs should at least satisfy the criterion as follows:

[12] F
f
f

s
i i i

i i i

> − −
+

′sin cos
cos sin

tan
α λ α
α λ α

φ

In general, it can be assumed that Fs = 1 and λ = 0
for the first iteration.

(5) Calculate Φi and ψ −i 1 using eqs. [5a]–[5c] for all slices.
(6) Calculate Fs using eq. [6].
(7) With the calculated value of Fs and the prescribed value

of λ, repeat steps 5 and 6 once more for improved val-
ues of Φi, ψ −i 1, and Fs.

(8) Calculate Ei using eq. [4] for all slices.
(9) Calculate λ using eq. [10].
(10)With the updated values of Fs and λ, return to step 3

and proceed to step 8 until the differences in values of

Fs and λ between two consecutive iterations are within
specified limits of tolerance, ε1 and ε2.

The flow chart illustrating this algorithm is presented in
Fig. 2.

Example 1

A benchmark example previously studied by Fredlund and
Krahn (1977) is reexamined herein. The slope profile and
soil parameters are presented in Fig. 3. Six computation
cases are considered and represent six combinations of slip
surfaces (two in total) and water-pressure conditions (three
in total). A comparison of the computed factors of safety for
this problem is shown in Table 1. It can be seen from Ta-
ble 1 that for the circular slip surface, the present method
gives values of the factor of safety identical to those reported
by Fredlund and Krahn. For the noncircular slip surface,
there are minor, but practically negligible, differences, possi-
bly as a result of the imperfect reproduction of the slope
profile. It is clear from Table 2 and Fig. 4 that the values of
Fs and λ have converged within fewer than 10 iterations
with a tolerance as small as 0.0001.

Example 2

This example has been previously analysed using a New-
ton–Raphson procedure proposed by the authors (Zhu et al.
2001), and a comparison was made with the Slope/W soft-
ware (Geo-Slope International Ltd. 1998). The slope profile
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Fig. 5. Slope profile for example 2, showing soil layers 1–5.

Fig. 6. Curves of interslice force function, f(x) = sinµ{π[(x – a)/(b – a)]υ}, with various values of the exponents.



used is shown in Fig. 5 and the soil properties are presented
in Table 3. A horizontal seismic coefficient of 0.1 is
adopted. It is reanalysed here using the present algorithm,
resulting in nearly identical results, as shown in Table 4. Six
to eight iterations are required by the present algorithm with
a tolerance of 0.0001. It is evident that the present algorithm
is simpler and easier to use in practice.

To further examine the sensitivity of the choice of
interslice function to the computed factor of safety, the gen-
eral form of interslice force function (eq. [11]) is used in an
analysis of this example without water pressure and seismic
force, and with 10 different combinations of the exponents µ
and ν, which cover a wide range of possible distributions of
the ratio of shear to normal interslice forces across the slid-
ing mass. The curves of the 10 interslice force functions are
plotted in Fig. 6, and the results are presented in Table 5,
showing that the maximum difference is within 10% in val-
ues of factors of safety associated with these different
interslice functions. Thus, for this particular example, the
choice of interslice function has a relatively minor influence
on the calculated factor of safety. This is probably due to the
vigorous nature of the Morgenstern–Price method, which
satisfies all the equilibrium conditions.

Conclusion

The Morgenstern–Price method is reformulated in this pa-
per, resulting in two simple expressions for the factor of
safety, Fs, and scaling factor, λ. Solving these two equations
with the proposed algorithm requires fewer than 10 itera-
tions, even if the tolerance on the factor of safety is as small
as 0.0001. The initial values of Fs and λ can be assumed to
be unity and zero, respectively. It has also been demon-
strated that the choice of the interslice function has only a
minor effect on the calculated factor of safety. The proposed
algorithm thus renders the Morgenstern–Price method no
more complex than the simplified Bishop method, and its
implementation into a computer program is rather straight-
forward.
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