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NOTE

Determination of bearing capacity of shallow
foundations without using superposition
approximation

D.Y. Zhu, C.F. Lee, and K.T. Law

Abstract: The Terzaghi superposition assumption has been widely used to determine the bearing capacity of shallow
footings. Although this assumption always errs on the safe side, a rigorous procedure to calculate the bearing capacity
is still of engineering value. This paper presents such a procedure that is free from errors as a result of the superposi-
tion assumption. It demonstrates that the ultimate bearing capacity can be precisely expressed by the Terzaghi cquation,
except that the bearing capacity factor N, is dependent upon the surcharge ratio. A recently developed numerical
method, i.e., the critical slip field method, is used to calculate the modification coefficient for modifying N, It is found
that this modification coefficient increases with the surcharge ratio at small values of surcharge ratio and then remains
constant for large values of surcharge ratio. However, the errors invoked by the superposition assumption do not exceed
10%. On the basis of numerical calculations, a simple closed-form expression of the modification coefficient is pro-
posed that yields the theoretically rigorous ultimate bearing capacity. In the later part of the paper, errors in bearing ca-
pacity calculations owing to the use of conventional procedures are analyzed. It is concluded that the continued use of
conventional procedures is justified, but the inherent errors should not be neglected in assessing the performance of
shallow foundations.

Key words: shallow foundation, strip footing, ultimate bearing capacity, critical slip field.

Résumé : L’hypothése de superposition de Terzaghi a été communément utilisée pour déterminer la capacité portante
de scmelles superficielles. Quoique cette hypothese donne toujours des erreurs du c¢oté sécuritaire, unc procédure rigou-
reuse pour calculer la capacité portante demeure valable pour ’ingénicur. Cet article présente une tclic procédure qui
est libre d’erreurs dues a 'hypothese de superposition. 11 démontre que la capacité portante ultime peut &tre exprimée
de fagon précise par I’équation de Terzaghi, sauf que le coefficient de capacité portante Ny est dépendant du rapport de
surcharge. Une méthode numérique développée récemment, i.e., la méthode du champ de glissement critique, est uti-
lisée pour caleuler le coefficient de modification de N, On trouve que ce coefficient de modification augmente avec le
rapport de surcharge aux faibles valeurs du rapport de surcharge, et demeure ensuite constant pour les fortes valeurs du
rapport de surcharge. Cependant, les erreurs invoquées par I’hypothese de superposition ne dépassent pas 10 %. Sur la
base des calculs numériques, on proposc une expression simple exacte du coefficient de modification qui donne la ca-
pacité portante ultime théoriquement rigoureuse. Dans la derniére partie de Particle, on analyse les erreurs dans les cal-
culs de capacité portante dues a |'utilisation des procédures conventionnelles. On conclut qu’il est justifié de continuer
a utiliser les procédures conventionnelles, mais que les erreurs inhérentes ne devraient pas étre négligées dans
I’évaluation dc la performance des fondations superficielles.

Mots clés : fondation superficielle, semelle filante, capacité portante ultime, champ de glissement critique.
[ Traduit par la Rédaction]
Iintroduction which assumes that the ultimate bearing capacity is the sum
of three terms owing to surcharge, cohesion, and the weight

The bearing capacity of shallow foundations is commonly of the soil, respectively. In evaluating the three terms, most
calculated using the Terzaghi equation (Terzaghi 1943), methods assume two different failure mechanisms: one
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corresponding to a weightless ¢c—¢soil (c and ¢ are the cohe-
sion and internal friction angle of the soil, respectively) with
a surcharge ¢, and the other corresponding to a cohesionless
soil with weight but without surcharge. Their respective con-
tributions to the bearing capacity are then minimized sepa-
rately by finding the critical failure mechanisms and then
superimposed onto each other (Das 1999). The first failure
mechanism results in analytical solutions to the two bearing
capacity factors due to surcharge and cohesion, respectively,
while the second leads to a numerically approximate solu-
tion to the bearing capacity factor due to the soil weight. In
reality, only one failure mechanism should occur under the
ultimate loading condition, and all contributions to the bear-
ing capacity should be associated with a consistent critical
failure mechanism that minimizes the sum of these contribu-
tions. Therefore, the superposition assumption is approxi-
mate in nature, erring on the safe side, since the sum of the
minimal components is less than or equal to the minimal
sum.

Although the Terzaghi superposition assumption proves to
be always on the conservative side, an understanding of the
resultant errors is also of value from the engineering stand-
point. A more rigorous solution could potentially provide in-
sights on foundation behaviour (Sieffert and Bay-Gress
2000) and pinpoint the uncertainties associated with soil pa-
rameters and the calculation method itself. On the other
hand, a normally conservative procedure could sometimes
become unconservative when back-analyzed shear strength
values are used to design other foundations on the same soils
but under significantly different loading conditions and (or)
with different dimensions.

Several previous studies have involved the direct computa-
tion of bearing capacity of footings without superposition of
the three terms contributed by frictional angle, cohesion, and
surcharge, respectively. The results thus obtained involve no
errors due to the Terzaghi superposition assumption. In this
regard, the method of characteristics has often been em-
ployed to compute the bearing capacity of footings
(Lundgren and Mortensen 1953; Cox 1962; Sokolovskii
1965; Davis and Booker 1971; Bolton and Lau 1993; and
Xiao et al. 1998). According to Davis and Booker (1971),
between the limiting case of no body forces, i.e., the Prandtl
solution, and the limiting case of no surcharge, the superpo-
sition assumption could yield errors of up to 30%. Bolton
and Lau (1993) also confirmed that the superposition as-
sumption would always err on the safe side, by a margin of
no more than 20%. Xiao et al. (1998) proposed a rather
complex empirical equation for the bearing capacity factor
Ny, to eliminate the error caused by the superposition as-
sumption. Michalowski (1997) examined the influence of
soil weight on bearing capacity using a limit analysis in the
context of the upper bound theorem (Chen 1975). He dem-
onstrated that the bearing capacity factor N, due to soil
weight would increase with an increase in the ratios g/yB
and ¢/yB (where ¢ is the surcharge above the base level of
the footing, 7 is the unit weight of the soil, and B is the
width of the footing).

The purpose of this paper is to determine rigorously the
bearing capacity of shallow foundations without making the
superposition assumption and to examine the errors that
could be invoked by this assumption. For simplicity, shallow
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strip footings with central and vertical loading are consid-
ered. In the aforementioned studies, most investigators have
employed Prandtl-like and Hill-like failure mechanisms to
incorporate the effects of roughness and smoothness be-
tween the footing base and the soil underneath. However,
the Hill-like failure mechanism rarely occurs in the field or
in tests where base smoothness is artificially provided
(Vesic 1975). Hence, only the Prandtl-like mechanism is
considered in this paper.

Consider also an active wedge immediately under the
footing and two symmetrical fans sliding sideways and up-
ward to the ground surface. This active wedge is assumed to
be inclined at an angle 45° + ¢/2 to the horizontal. The same
assumption was also made by most previous investigators
(e.g., Meyerhof 1963; Vesic 1973; Bolton and Lau 1993;
Michalowski 1997), and its validity has been confirmed ex-
perimentally (De Beer and Vesic 1958). The determination
of the thrust forces between the active wedge and the sliding
fan (the location of which is to be determined) is the key
step in computing the bearing capacity. In this paper, a
newly developed numerical method, called the critical slip
field method (Zhu et al. 2001), is employed for this purpose.
With this method, a series of critical slip surfaces, constitut-
ing a critical slip field, is determined by a numerical proce-
dure that is based on the limit equilibrium method of slices
and the principle of optimality (Bellman 1957). Studics have
shown that this method can yield solutions of active or pas-
sive earth pressures, along with the locations of critical slip
surfaces, that are as accurate as those from the mecthod of
characteristics (Zhu et al. 2001), albeit within the limit equi-
librium context. The implementation of this method is rather
straightforward in comparison to the method of characteris-
tics. Therefore, this method deserves to be employed for
solving the bearing capacity problem. Before doing so, let us
first examine an equivalent relationship inherent in the prob-
lem of bearing capacity.

Equivalence of bearing capacity problems

The soil under the foundation is assumed to be a rigid
plastic medium obeying the Mohr—Coulomb fatlure criterion
as follows:

[1] O, — 03 = (0) + Gy)sind + 2¢ cosd

where ¢, and oy are the major and minor stresses respec-
tively. Equation [[] can be rewritten in the form

[2] (0, + ccotd) — (o3 + ¢ cotd) = (O + ¢cotd

+ Gy + ¢ cotP)sing

Equation [2] implies that the general ¢—¢ soil can be re-
garded as cohsionless if a hydrostatic stress equal to ¢-cotdis
imposed everywhere within the failure region, as illustrated
in Fig. 1.

For a strip footing subject to vertical and central loading,
as shown in Fig. 2a, the bearing capacity is expressed by the
Terzaghi equation as

i (a
[3] Gy =qNg + N + > YBN, ’
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Fig. 1. Diagram of Mohr-Coulomb failure criterion. 1, T° are
shear stresses.

AT | T

¢

Q
L) > (9]
c-cotd l

where ¢, is the ultimate bearing capacity; N, is the bearing
capacity factor related to ¢; N, is the bearing capacity factor
related to ¢; and N, is the bearing capacity factor related to
v. The superscript “(a)” represents the case that is being con-
sidered. Bearing capacity factors Ny and N, can be deter-
mined by analytical solutions, that is,

14] N‘I :l,;m2 T_E+(l) Cnlz:nd:
4 2

[5] N.= (N, = 1) cot

In general, NY(“) should be dependent upon the following
parameters of the soil and the footing: v, ¢, & and B. Now
the soil underneath the footing is taken as a cohesionless
material by imposing a uniform normal stress, c-cotdy on the
surface of the footing and the soil, as shown in Fig. 2b. The
bearing capacity can then be written as

I [
6] Gy tccotd=(q+ccotP Ny + 5 YBN, ?

where Ny(”) is dependent upon g + c-cotd, y, and B.

The bearing capacity problem can be normalized by as-
suming unity in soil self-weight and in footing breadth, with
the stress terms divided by B, as shown in Fig. 2¢. The
bearing capacity equation is rewritten as
(7] qu tecotd _gteeotdy 1y @©

YB YB oS g
where N, is dependent only upon the term (g + c-cot¢)/yB
as well as ¢. The term (g + c-cot¢)/yB is referred to as the
surcharge ratio A, i.e.,

8] l:_q__-!—c'pult])
B

By comparing eqgs. [3], [6], and [7], it is found that

(a) _ pp (0 _ py (0} _
Ny =Ny7 =Ny =Ny

Therefore, the bearing capacity factor N, in the Terzaghi
equation is only dependent upon the surcharge ratio A for a
specific value of ¢ The term (g, + c-cot)/yB is defined as
the normalized bearing capacity, p,, i.e.,

9] P, = g, +ccol O
u ’Y{f
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Fig. 2. Equivalent bearing capacity problems. (@) Original prob-
lem with general soil and strip footing. () Equivalent problem
with cohesionless soil. (¢) Equivalent problem with cohesionless
and unit-weight soil and unit-breadth footing.
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Equation {7] becomes

|
[10]  py =ANg + 2Ny

[t should be noted that Ny, which is dependent upon 2,
would be an integrated bearing capacity factor without in-
volving the superposition approximation if a consistent fail-
ure mechanism is used to calculate the ultimate bearing
capacity. Further, this equivalence holds under any vertical
and central loading conditions, irrespective of the methods
used to compute the bearing capacity.

Bearing capacity determination without
superposition approximation

Consider a normalized situation of the bearing capacity
problem, as shown in Fig. 3. The active wedge immediately
underneath the footing is assumed to be inclined at an angle
of n/4 + ¢/2 to the horizontal. From eq. [10], N, can be ex-
pressed as

(111 N, =2p, — 2\N

q

For specific values of ¢ and A, the normalized bearing ca-
pacity p, is to be determined.

From the geometry of the footing and failure mechanism
shown in Fig. 3, the weight of the active wedge is
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Fig. 3. Diagram for deriving the expression of N,
1

/4-

Ry

Wy =lt:m Tl:+i)
4 4 2

From vertical equilibrium of the active wedge, p, is ex-
pressed as

Pu = 2P, cos E_ 91 tan Trf-i-g
4 2] 4 4 2

where P, is the passive carth force acting on the edges of the
active wedge.

Substituting P, from the above equation into eq. [11] re-
sults in

[12] Ny, =4P,cos| -2 |- Lian[ T+ 2]_20,
4 2] 2 |4 2

Herein, the passive earth force P, is calculated using the
critical slip field method (Zhu et al. 2001). A typical exam-
ple of the passive critical slip field is shown in Fig. 4.

It has been found that the location of the outermost pas-
sive critical failure surface moves outwards as A increases, as
illustrated in Fig. 5. When A is too large, for example, with
A = 100, the failure surface approaches the limit that is cor-
responding to the case of a weightless soil, or A = co. How-
ever, in this situation, it can be seen from eq. [10] that the
coptributism of the term N, to the ultimate bearing capacity
is insignificant when compared to the term AN,. Hence, the
value of N, thus computed using eq. [11] may not be accu-
rate enough if small numerical errors exist in computing p,,.
This is inevitable for all numerical methods in common use.
Fortunately, in this limiting case, there exists an analytical
solution based on the theory of plasticity (Powrie 1997). For
A 2 100, the soil can be regarded as weightless and the ana-
lytical slip surface is a combination of a log—spiral and a
straight line (scc Appendix A). A closed-form solution for
computing N, (A = o) can thus be obtained using the limit
equilibrium method, with the derivation given in Appendix
A. Numerical values of Ny for A=0, 0.01, 0.1, t, and 10 are
computed using the critical slip field method. Values of N,
for A = 100 are directly determined from the analytical solu-
tion given in the Appendix. These values are presented in
Table 1.

To demonstrate the applicability of the critical slip field
method to the bearing capacity problem, a comparison of
values of N, for A = 0 with other solutions is given in Ta-
ble 2. It can be seen that the values of N, presently calcu-
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Fig. 4. A typical passive critical slip field. p,, passive earth
pressure.

UL

Fig. 5. Critical failure surfaces associated with different sur-
charge ratios.
A

A

L
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lated are smaller than those of Bolton and Lau (1993) by
10% or less, for ¢ in the range of 20-50°. For ¢ < 20° the
term containing N, plays a minor role in the sum of conlri-
butions to the bearing capacity. Thus the diffcrence in values
of N, given from various sources may be of no practical sig-
nificance. The differences between the present solutions and
those of Vesic (1973) are considerably smaller except for ¢ >
45°, when the discrepancy reaches 12-20%. This probably
results from the conservative approximation made in Vesic
(1973). The differences among the present solutions and
those of Meyerhof (1963); Hansen (1970); and Chen (1975)
are also evident in Table 2.

To further investigate the relationship between N, and A,
we re-examine the computation results given in Michalowski
(1997) based on a limit analysis. Bearing capacity factors
N, Ny, and N, for various values of ¢/yB and c¢/yB and for
¢ = 35°, as cited in Michalowski (1997), are shown in Ta-
ble 3 of this paper and sorted according to the valuc of A To
bring the bearing capacity factors into the same context as
the present study, the factors N, and N, are restricted herein
to their theoretical values from the Prandtl solution. The
equivalent values of N,, which yield identical total bearing
capacity values as Michalowski (1997), are also given in Ta-
ble 3. Values of the surcharge ratio A are calculated for vari-
ous combinations of ¢/yB and ¢/yB. Table 3 indicates that,
for a given ¢ N, is related to A This also verifics the gencral
existence of the equivalence of bearing capacity problems,
as postulated in this paper, unrelated to the specific method
used to calculate bearing capacity (such as limit analysis or
the limit equilibrium method).

Evaluation of error margins of the
superposition assumption

As noted previously, the bearing capacity factor N, in-
creascs with the surcharge ratio A if no superposition as-
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Table 1. Numerical values of Ny and resultant errors in ultimate bearing capacity.

A Ny £ (%)
Present Present Vesic Meyerhof ~ Hansen  Chen
modified  unmodified 1973 1963 1970 1975

$=5°

0.00 0.38 0.0 0.0 184 816 789 237
0.01 0.38 0.0 0.0 179 793 -76.7 23.0
0.10 040  -0.3 3.9 97  -584 622 13.6
1.00 044  -0.1 3.8 06 -234 228 1.9
10.00 0.47 0.4 0.8 0.1 34 3.3 0.0
100.00 0.49 0.0 -0.1 00  -04 04 0.0
o= 10°

0.00 111 0.0 0.0 99 658 -64.9 18.0
0.01 .12 -0.8 -0.8 87  -64.4 -63.5 16.5
0.10 .16 -04 3.4 41 536 -53.0 10.3
1.00 130 -02 45 19 -186 214 0.2
10.00 1.41 0.3 1.0 0.6 33 -3.3 0.3
100.00 1.45 0.0 -0.1 00  -04 0.4 0.0
o= 15°

0.00 2.52 0.0 0.0 52 552 532 16.7
0.01 253 04 -0.4 46  -54.1 -52.1 15.8
0.10 263 -0.5 34 06  -46.6 -45.1 9.6
1.00 295 -0.4 4.9 34 2206 -20.0 0.1
10.00 3.23 03 1.1 0.9 3.4 33 05
100.00 3.28 0.0 -0.1 -0.1 0.4 0.4 0.0
o = 20°

0.00 527 0.0 0.0 23 455 -44.0 17.6
0.01 530 0.6 -0.6 17 -44.9 435 16.6
0.10 551 -05 3.6 18 -40.1 -38.8 10.5
1.00 6.18  -04 5.4 46  -195 -19.0 0.1
10.00 6.83 0.3 1.4 -1.3 34 3.4 0.5
100.00 6.91 0.0 0.2 0.1 04 0.4 0.0
¢ = 25°

0.00 10.85 0.0 0.0 0.3 -37.7 -37.7 19.4
0.01 1091 -0.6 0.6 03 374 374 18.5
0.10 1134 -05 3.7 37 345 345 12.4
1.00 1274 04 5.9 58  -186 -18.6 0.7
10.00 14.14 0.3 1.6 -1.6 36 36 -0.6
100.00 14.33 0.0 0.2 02 -04 04 0.0
o = 30°

0.00 22.75 0.0 0.0 15 311 -33.8 21.6
0.01 2290 -0.6 0.6 22 311 -33.7 20.5
0.10 2377 -04 3.7 50 297 319 14.3
1.00 2672 05 6.4 7.0 -18.0 -18.9 1.5
10.00 29.79 0.3 1.9 2.0 3.7 39 0.6
100.00 30.38 0.0 0.2 0.2 0.4 04 -0.1
0= 35°

0.00 49.98 0.0 0.0 39 257 -32.1 23.0
0.01 5029 -0.6 0.6 L 44 257 32.1 21.9
0.10 5216 -03 3.7 70 256 3111 15.9
1.00 5870 -0.6 7.1 87  -175 20.1 22
10.00 65.61 0.3 22 2.5 4.0 45 0.6
100.00 67.74 0.0 0.3 -0.3 0.5 0.5 0.0
o = 40°

0.00 118.18 0.0 0.0 74 2207 327 22.9
0.01 118.88  -0.6 0.6 79 2209 32.7 21.9
0.10 12323 0.2 3.7 102 217 322 16.2
1.00 138.82  -0.7 7.8 AL -17.0 223 24
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Table 1 (concluded).

A N, £ (%)

Present Present Vesic Meyerhof ~ Hansen  Chen

modified  unmodified 1973 1963 1970 1975
10.00 156.79 0.3 2.7 -3.3 -4.4 -5.4 -0.8
100.00 163.50 0.0 -0.4 -0.4 -0.5 -0.7 0.0
o = 45°
0.00 311.94 0.0 0.0 -12.9 -15.7 -35.6 19.9
0.01 313.72 -0.6 -0.6 -13.3 -16.1 -35.6 19.1
0.10 324.70 -0.1 -3.6 -16.8 -17.6 -35.2 14.0
1.00 366.19 -0.7 -8.6 -14.7 -16.1 -25.7 1.2
10.00 418.54 0.2 -3.4 -4.7 -5.0 -7.0 -1.4
100.00 442.74 -0.1 -0.5 -0.6 -0.7 -0.9 -0.2
¢ = 50°
0.00 963.26 0.0 0.0 -20.8 9.3 -41.0 13.0
0.01 968.76 -0.6 -0.6 21.1 9.7 -41.0 12.5
0.10 1001.07 0.1 -3.6 -22.4 -12.5 -40.6 8.3
1.00 1126.93 -0.5 -9.3 -20.7 -143 -31.7 -2.1
10.00 1316.69 -0.1 -4.6 1.2 -5.8 9.7 2.9
100.00 1412.67 -0.2 -0.7 -1.0 -0.8 -1.3 -0.5
Table 2. Comparison of N, values for A=0.

Bolton and Vesic Meyerhof Hansen Chen
¢ (%) Present Lau 1993 1973¢ 1963" 1970¢ 1975¢

5 0.38 0.62 0.45 0.07 0.08 0.47

10 111 1.71 1.22 0.38 0.39 1.31
15 2.52 3.17 2.65 1.13 .18 2.94
20 5.27 5.97 5.39 2.87 2.95 6.20
25 10.85 11.6 10.88 6.77 6.76 12.96
30 2275 23.6 22.40 15.67 15.07 27.66
35 49.98 510 48.03 37.15 33.92 61.47
40 118.18 121.0 109.41 93.69 79.54 145.19
45 311.94 324.0 271.74 262.74 200.81 374.02
50 963.26 1052.0 762.85 873.84 568.56 1089.46

“Ny =2(N, + Dtan ¢.

"Ny = (N, = Dtan(1.49).

Ny = L5(N,, — Dtan ¢.

N, = 2(N, + Dtan $tan E+»43
Y ( q ) [q) [2 5

Table 3. Re-examination of bearing capacity factors given in Michalowski (1997), for ¢ = 35°.
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Original values in Michalowski (1997)

Equivalent values

A q/yB c/yB N, Nq Ny N, N(I NY

0.000 0 0 — — 48.681 48.68
1.428 0 | 48.256 — 54.118 58.384
2.000 2 0 — 34.338 55.647 59.815
2.856 0 2 47.099 — 57.380 46.123 33.296 061.284
3.428 2 [ 46.897 33.838 58.271 61.987
4.856 2 2 46.629 33.649 59.799 63.235
7.140 0 5 46.420 — 61.482 064.452
9.140 2 5 46.313 33.429 62.646 65.078

Note: —, indicates data not available.
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Fig. 6. Curves of N, modification coefficient versus surcharge ratio A
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sumption is made. At their limits, the values of NY increase 1.0 for A <0.01
by 30-50% for a range of ¢ from 5 to 50°. However, this [14]  E={ 0.04(logoA+2)% +1 for 0.01 <A <10
does not automatically imply that the total bearing capacity H‘( . " k it -
20 or >

would be underestimated by the same degree when the su-
perposition assumption is made. The exact degree by which
the superposition assumption errs, along with its elimination,
is of engineering interest.

Let N, for the case of A= 0 be denoted as Ny, since it is
the minimum value. Then N, for the case of nonzero A can
be represented by the product of a modification coefficient &
and Ny i, that is:
(13] &= NT_(E

¥, min

The numerical values of & in Table I (not shown) are plot-
ted graphically in Fig. 6. It can be seen in Fig. 6 that the in-
ternal friction angle has a ncgligible effect on & when 2 is
less than unity. For larger values of A, the effect of the inter-
nal friction angle becomes more and more significant. At the
same time, the contribution of N, to the bearing capacity de-
creases. For practical use, a simple closed-form solution for
the modification coefficient & independent of the internal
friction angle, is preferred as long as the error involved in
the ultimate bearing capacity calculated (not N, itself) is
negligible. For this purpose, three approximate values of N.
applicable to all values of internal friction angle (§ = 1.0
when log oA = —2; & = 1.04 when log,gA = —1; and = 1.16
when log, A = 0) are chosen as a basis to form a Lagrangian
interpolation function & = 0.04(log;y A + 2)% + 1.

The above equation is extended to the casc of logjh = 1,
or A= 10. For the case of A greater than 10, £ is assumed to
remain constant. Thus, the following approximate closed-
form solution for the modification coefficient § is proposed
for use in practice.

The error involved in the computation of the bearing ca-
pacity that results from the use of the approximate value of
N, is defined as

e = f'q—q
u
where ¢i"P"* represents the ultimate bearing capacity associ-
ated with the approximate values of N, i.e., N;‘W’"‘”‘, and
q&™t represents the ultimate bearing capacity associated
with the exact values of N, (denoted as NYCX“C‘) numerically
computed without using the superposition assumption.
From eq. [3] it follows
aApprox _ pjexact
(5] &= 0.5(NyP" _____NI_ )
AN, =D +-L 4 0.5Ngx
B

For simplicity, the maximum value of € is adopted, that is
appr xacl
o -().SI(N-‘:I)]’I“X _N;’L itk )

[16] &= —

AN, — 1)+ 0.5Ngx
Values of € associated with the various sets of N, are listed
in Table [. It can be seen in Table I that the maximum error
that results from conventional superposition approximation
is up to 5-9% on the conscrvative side in most cases, bcing
generally less than 10%. Such an error margin is quite ac-
ceplable from the practical point of view since it is compati-
ble with the error involved in determining the shear strength
of soil. If eq. [14] is used to modify N,, the crrors in the
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computed bearing capacity will be less than 0.7% on the
safe side and less than 0.4% on the unsafe side.

Assuming that the present numerical values of N, are
“exact”, the errors associated with the use of the NY-equa~
tions proposed by Vesic (1973), Meyerhof (1963), Hansen
(1970), and Chen (1975) are determined and presented in
Table 1. Because of the large differences in values of N,
among these solutions, the resultant errors are as much as
45% on the conservative side and 22% on the unsafe side for
¢ in the range of 20-50°, beyond which larger errors could
occur. However, when the surcharge ratio A is greater than
unity, the maximum errors would be less than 10% when us-
ing Vesic’s equation and 20% when using Meyerhof’s or
Hansen’s equation, decreasing rapidly with the increase of A
With Chen’s equations, the errors in bearing capacity would
become practically insignificant in the case of A > . In the
case of a cohesionless soil, A > 1 represents the situation that
the thickness of overburden is greater than the width of the
foundation. In the case of frictional-cohesive soils, the corre-
sponding overburden thickness would be shallower. There-
fore, it can be tentatively concluded for most shallow
foundations, the differences in ultimate bearing capacity re-
sulting from the use of these well-known values of N, would
be no greater than 20%. This suggest that the use of conven-
tional procedures to compute the bearing capacity of shallow
footings is justified from a practical point of view, given the
many uncertainties involved in the acquisition of soil
strength parameters and the large factors of safety com-
monly adopted in practice.

Conclusion

The bearing capacity of shallow foundations is convention-
ally determined using the superposition method. The exact so-
lution without superposition approximation can still be
expressed by the Terzaghi equation of bearing capacity, with
the provision that the bearing capacity N, is dependent on the
surcharge ratio and the internal friction angle. Values of N,
without superposition approximation are numerically calcu-
lated using the critical slip field method. It is found that
N, increases with an increase in the surcharge ratio, ap-
proaching a limit as the surcharge ratio exceeds 100. It is also
found that the error in bearing capacity that results from the
use of the superposition method is less than 10% on the safe
side, which is quite acceptable from the practical standpoint.
An approximate closed-form solution for the modification co-
efficient is proposed herein to modify the conventionally used
N, thus reducing the errors in bearing capacity calculations to
less than 0.7% on the conservative side and less than 0.4% on
the unsafe side. The errors in bearing capacity involved in
some commonly used N, equations are discussed, and for
most practical problems, the maximum etror would be around
20%. The use of conventional procedures appears to be justi-
fied, but the inherent errors should be borne in mind when in-
terpreting the causes of foundation failures or predicting the
performance of foundations.
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Appendix A: Derivation of N, for the case of
A= oo
The failure surface in the case of A = e is a combination
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Fig. Al. Derivation of N, for the case of A = eo.
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of a straight line and a log-spiral as shown in Fig. Al. The
failure region can be divided into the passive Rankine zone
and the radial shear zone. The failure surface bounding the
radial shear zone is described by

m

i
[Al] KB =ne *

—E lan @
2

where 0 is the angular coordinate shown in Fig. Al, and r, is
the length of OA. Taking the breadth of the footing and the
self-weight of the soil as unity, we have

[A2] N, =4F,cos E_B —lmn E-l*(—b
4 2) 2 4 2

(A3] p=—F
2sin| F - .|
4 2
The length of the edge of the passive Rankine zone is

i tan &

Py |
[Ad4] n, =ne?
The weight of the passive Rankine zone is

1 2 T
W, =—n,” cos ¢ = 2P, cos| — + ¢
2 4 2
From vertical equilibrium of the passive Rankine zone,

the force acting on the edge OB is derived as follows:

I 2 T 0
A5 P.==—n-cos|l =Z-2X
] I b 2 b [4 2]

The point of action of Py lies at the lower third point of

OB. Taking the moment of P, about point O (moment being
positive when taken in clockwise rotation),

M(Py) = % Pyri, cos O

Substituting P, from eq. [AS] and r, from eq. |A4], the
above equation becomes

Radial Shear Zone

[AG] M(P) = ] J;,:‘c"‘i”"'” ® cos geos x4
3 4 2

Now determine the moment of weight of the radial shear
zone about point O, i.e., M(W). Selecting an infinitesimal
slice with a weight of dW as shown in Fig. 6

dw = 1 r2do
2

Herein, dW is acting at the lower third point of the infini-
tesimal slice. Then taking the moment of dW about point O

dM = 1 e 2 rsin 0d6
2 3

and integrating over the whole radial shear zone yields

E+E
1 5 [%% ]fllamdz 4 2_ .
MW) =—r"e\* ? jmn ge’tan @949
& LX)
42

Integrating the above equation gives

| 5 E..?.’u-‘mq»
[A7] MW)=————re4 2
3(1 + 9 tan” ¢)
il r_r.}ﬁ
% {3[;1[]{1_]3“]9_(5058) c.'il:miil-ﬂ Jinfdl
42

Taking the moment of the earth force P, about point O
and noting that its point of action lies at the lower third
point,

— 2 r, P, cos ¢

[A8]  M(F) = 3 falp

From moment equilibrium of the radial shear zone

M(Py) + M(W) + M(P,) =0
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Substituting eqgs. [A6] and [A7] into eq. [A9] and then
into eq. [A2], the bearing capacity factor N, for the case A=
o is analytically obtained as

The earth force P, can be expressed as

3
[A9] P,=— —— [M(P) + M(W)] -
2r, cos @ [A10] N‘r’ g ) S 1
2tan" L 2tanpt
Let :
2 S 3
ot 10 ——[(3f cospL —sinp) e/ ¢+
oo . 4sin’) (14 91°)
— S =13 X
H 4 2 / n ¢ +(3f sinp + cosp)e VM ]
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