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FINITE MORPHISMS ONTO FANO MANIFOLDS
OF PICARD NUMBER 1

WHICH HAVE RATIONAL CURVES
WITH TRIVIAL NORMAL BUNDLES

JUN-MUK HWANG AND NGAIMING MOK

Abstract

Let X be a Fano manifold of Picard number 1 admitting a rational curve
with trivial normal bundle and f : X′ → X be a generically finite sur-
jective holomorphic map from a projective manifold X′ onto X. When
the domain manifold X′ is fixed and the target manifold X is a pri-
ori allowed to deform we prove that the holomorphic map f : X′ → X
is locally rigid up to biholomorphisms of target manifolds. This result
complements, with a completely different method of proof, an earlier
local rigidity theorem of ours (see J. Math. Pures Appl. 80 (2001), 563–
575) for the analogous situation where the target manifold X is a Fano
manifold of Picard number 1 on which there is no rational curve with
trivial normal bundle. In another direction, given a Fano manifold X′

of Picard number 1, we prove a finiteness result for generically finite
surjective holomorphic maps of X′ onto Fano manifolds (necessarily of
Picard number 1) admitting rational curves with trivial normal bundles.
As a consequence, any 3-dimensional Fano manifold of Picard number 1
can only dominate a finite number of isomorphism classes of projective
manifolds.

There are various results concerning finiteness or rigidity of dominant mor-
phisms or rational maps from a fixed projective variety onto varieties of non-
positive curvature. For example, Kobayashi-Ochiai showed ([KO]) that for
any algebraic variety Y and any algebraic variety Z of general type, the num-
ber of dominant rational maps from Y to Z is finite. Another example is
Maehara’s result ([Ma]) that for a given projective algebraic manifold Y , the
number of minimal projective manifolds of general type, which can be the
image of a dominant rational map from Y , is finite. Eckart Viehweg had
informed us that the works on the semi-positivity of direct images of tensor
powers of dualizing sheaves, due to Kawamata, Viehweg and others, imply
that for any projective algebraic variety Y , there are only countably many
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minimal (not necessarily of general type) projective manifolds which can be
the image of Y under a morphism.

On the other hand, there are very few results of this type when the targets
have positive curvature, i.e. when the targets are Fano manifolds. In [HM1],
the authors showed that a projective manifold, which can be the image of a
rational homogeneous space G/P of Picard number 1 under a holomorphic
map, must be either G/P itself or the projective space. As a natural gen-
eralization of this result, one may ask which projective manifolds (which are
automatically Fano) can be the image of a holomorphic map from a fixed Fano
manifold Y of Picard number 1. However, for a general Y , the possible images
can be more than just itself or the projective space, as one can easily see in
the case of some Fano hypersurfaces in the projective space. So it seems that
a more modest question about the finiteness of such images is already worth
studying:

Question. Given a Fano manifold Y of Picard number 1, are there only
a finite number of isomorphism classes of projective manifolds which can be
the image of Y under a holomorphic map?

One of the results of this paper is an affirmative answer to the Question in
dimension 3. Our main results hold in any dimension, but we need to impose
an additional condition on the image manifolds. Let us explain this condition.

Let X be a Fano manifold of Picard number 1. It is easy to see from the
deformation theory of rational curves (e.g. [Kl]) that the following conditions
on X are equivalent.

(1) There exists a rational curve µ : P1 → X so that µ∗T (X) ∼= O(2) ⊕
On−1.

(2) For a generic point x ∈ X , there are only finitely many rational curves
through x which have minimal degree with respect to K−1

X .
(3) For a generic point x ∈ X , there exists a rational curve which has

degree 2 with respect to K−1
X .

A rational curve satisfying the first condition will be called a rational curve
with trivial normal bundle. The rational curve in the second and the third
conditions is a rational curve with trivial normal bundle.

There are many examples of Fano manifolds which satisfy the above equiv-
alent conditions. When n = 3, excepting the projective space P3 and the
3-dimensional hyperquadric, all Fano 3-folds of Picard number 1 satisfy the
condition ([Is]). Also, for any m ≥ 4, a smooth hypersurface of degree m− 1
or m in Pm satisfies it. When the degree is m−1, there are finitely many lines
through a generic point. When the degree is m, there exist no lines through
a generic point, but finitely many conics through a generic point.
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In this paper, we will study finite morphisms over Fano manifolds of Picard
number 1 which have rational curves with trivial normal bundles. We have
two main results. The first one is the deformation rigidity of such morphisms
in the following sense:

Theorem 1. Let χ : X → ∆ := {t ∈ C, |t| < 1} be a regular family of
Fano manifolds of Picard number 1 so that X0 = χ−1(0) has rational curves
with trivial normal bundles. For a given projective manifold X ′, suppose there
exists a surjective morphism f : X ′ = X ′ ×∆→ X respecting the projections
to ∆ so that ft : X ′ → Xt is a generically finite morphism for each t ∈ ∆.
Then there exists ε > 0 and a holomorphic family of biholomorphic morphisms
vt : Xo → Xt, |t| < ε, satisfying ft = vt ◦ fo, v0 = id.

In particular, the set Hol(X ′, X) of generically finite morphisms from a
complete variety X ′ onto X is countable up to automorphisms of X . An
analogous result was obtained in [HM3] for a class of Fano manifolds of Picard
number 1 which do not have rational curves with trivial normal bundles. The
methods employed in [HM3] cannot be applied to the current case at all and
have little to do with the techniques used in this paper.

Our second result is the boundedness of the degrees of the finite morphisms
when the domain X ′ is also a Fano manifold of Picard number 1.

Theorem 2. Let X and X ′ be n-dimensional Fano manifolds of Picard
number 1. Assume that X has rational curves with trivial normal bundles.
Then there exists a positive number N determined by X ′ such that for any
finite morphism f : X ′ → X, the degree of f is bounded by N .

As a consequence of Theorems 1 and 2, we obtain the following partial
answer to the Question.

Corollary 4. Let X ′ be a Fano manifold of Picard number 1. Amid Fano
manifolds of Picard number 1 which have rational curves with trivial normal
bundles, only finitely many can be the image of a holomorphic map from X ′.
Furthermore, for each such X there are at most a finite number of non-trivial
holomorphic maps f : X ′ → X up to automorphisms of X.

As mentioned above, among Fano threefolds only the hyperquadric and
the projective space do not have rational curves with trivial normal bundles.
Thus, Corollary 4 gives an affirmative answer to the Question in dimension 3.

It should be mentioned that Theorem 2 was proved in dimension 3 by [Am]
and [ARV]. In fact, they proved the same result for any (not necessarily Fano)
projective threefold X ′ of Picard number 1. In dimension 3, many additional
results on morphisms to Fano threefolds were obtained in [Am], [ARV], [IS]
and [Sc], many of which cannot be covered by our results. On the other hand,
their methods rely heavily on the classification of Fano threefolds while ours is
basically independent of the classification theory. Moreover, their methods do
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not seem applicable to the question of local rigidity (Theorem 1). For example,
our Corollary 2, that finite morphisms from Mukai-Umemura threefolds onto
Fano threefolds different from P3 must be isomorphisms, is out of reach of
their methods.

Our approach is based on the philosophy that many problems on Fano
manifolds can be solved by looking at tangent directions to minimal rational
curves (see [HM1], [HM2] for other examples of this philosophy). The tan-
gent directions to rational curves with trivial normal bundles form a finite
branched covering of the Fano manifold. The main idea of the paper is to
study the geometry of the branch locus of this covering and examine how it
changes under a finite morphism. The crucial point in applying this study to
problems on generically finite morphisms is that the inverse image of rational
curves with trivial normal bundles under a generically finite morphism also
have trivial normal bundles (Proposition 6). In general, these inverse images
are not rational curves. So it is necessary to study curves with trivial normal
bundles of arbitrary genus. Compared with rational curves, the deformation
theory of curves of high genus could be quite tricky. However, in the situation
we are studying, no obstructions appear and the deformation theory is quite
parallel to that of rational curves with trivial normal bundles. The first two
sections present a general theory of curves with trivial normal bundles cov-
ering a projective manifold. The next two sections study its behavior under
generically finite morphisms. The proof of Theorem 1, which will be given in
Section 5, uses only Section 1 and Section 3 and is independent of Section 2
and Section 4. The proof of Theorem 2 will be given in Section 6.

Convention and terminology

1. All varieties and morphisms are defined over complex numbers. Open
sets of a variety mean Euclidean open sets, not Zariski open sets. A variety
need not be irreducible, but has finitely many components. A generic point of
a variety of pure dimension means a generic point of any of its components. So
when we say that a certain statement holds for a generic point of a variety of
pure dimension, it means that it holds for a generic point of each component
of the variety.

2. A projective manifold means an irreducible smooth projective variety. A
Fano manifold means a projective manifold with ample anti-canonical bundle.

3. For a proper morphism between two varieties ϕ : Y → X , the inverse
image ϕ−1(Z) of a subvariety Z ⊂ X is taken in the set-theoretical sense and
understood as a reduced subvariety of Y .
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4. Suppose a generically finite morphism ϕ : Y → X , from a complete
variety Y to a projective manifold X , is given. Consider the set

{y ∈ Y, Y is singular at y or ϕ is ramified at y}.

The ramification divisor of ϕ is the union of codimension-1 components of
the above set which are not contracted to lower dimensional subvarieties of X
by ϕ. The branch divisor of ϕ is the image of the ramification divisor. Let
B ⊂ X be the branch divisor. Then ϕ is unramified over X −B−Z for some
subvariety Z ⊂ X of codimension > 1. For a point y ∈ Y where ϕ is locally
finite, the degree of the germ of ϕ at y will be called the local sheeting
number of ϕ at y. Given a point x ∈ X , an isolating neighborhood of x
with respect to ϕ means a connected open subset U ⊂ X containing x such
that for each irreducible component G of ϕ−1(U), G∩π−1(x) is a single point.
There exists a subvariety of codimension > 1 in X so that any point outside
this subvariety has an isolating neighborhood.

1. Webs and their discriminantal divisors

Let X be a projective manifold of dimension n and C ⊂ X be an irreducible
reduced curve. We say that C has a trivial normal bundle if under the
normalization µ : C̃ → C, we get the following exact sequence

0 −→ ΘC̃ −→ µ∗ΘX −→ On−1

C̃
−→ 0

where Θ denotes the tangent sheaf. In this case, µ : C̃ → X is an immersion.
Suppose that C has a trivial normal bundle and deformations of C with
constant geometric genus cover an open subset of X . The germ of the space
of deformations of C with constant geometric genus must have dimension
≥ n− 1. The Zariski tangent space to this space at the point corresponding
to C is H0(C̃, µ∗ΘX/ΘC̃) (cf. [HM1], p. 212), which has dimension n−1 from
the triviality of the normal bundle. Thus the germ is smooth. The closure
MC of this germ in the Hilbert scheme of X will be called the irreducible
web defined by C. The underlying variety ofMC is irreducible, projective, of
dimension n−1 and smooth at the point [C] corresponding to C. Conversely,
an irreducible subscheme of dimension n−1 in the Hilbert scheme of curves on
X is called an irreducible web if its members cover X and generic members
have trivial normal bundles. A web is a finite collection of irreducible webs.
There are only finitely many irreducible webs in an irreducible component of
the Hilbert scheme of curves on X . Thus there are only countably many webs
for a given X .
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For a web M, let ψ : F → M and φ : F → X be the universal family
morphisms. We will assume that F and M are normal projective varieties
by taking the normalization of the underlying reduced structures of all the
schemes involved. Then ψ need not be flat any more, but every fiber of ψ is of
pure dimension 1 and a generic fiber of ψ is an irreducible smooth curve. Note
that F andM are varieties of pure dimension. Clearly, φ is generically finite.
If φ is d-to-1, d is called the degree of the web M. In a neighborhood of a
generic point of X , the images of fibers of ψ define d distinct local foliations
by open pieces of curves.

Remark. In local differential geometry, a finite collection of foliations of
equal rank is called a web. At a generic point of X a web in our sense defines
a web of rank-1 in the differential-geometric sense.

From the triviality of the normal bundle, φ is unramified in a neighborhood
of a generic fiber of ψ. It follows that for a given subvariety Z ⊂ X of
codimension > 1, a generic member of M is disjoint from Z.

We say that a connected curve C in a smooth variety is transversal to
a hypersurface H if either C ∩ H is empty or it consists of finitely many
smooth points of H where each local irreducible germ of C is smooth and is
not tangent to H .

Proposition 1. Let M be a web on X. Let H ⊂ X be an irreducible
hypersurface and y ∈ H be a generic point. Then for any v ∈ M with y ∈
φ(ψ−1(v)), one of the following holds.

(i) φ(ψ−1(v)) has trivial normal bundle and is transversal to H.
(ii) φ(ψ−1(v)) is locally irreducible at y and its component containing y

is contained in H.

Proof. Since φ is unramified in a neighborhood of a generic fiber of ψ, the
statement (i) holds for a generic v ∈M. Let

N := {v ∈ M, (i) does not hold for v}.

Then dim(N ) ≤ n − 2 and φ(ψ−1(N )) is a proper subvariety of X . When
H 6⊂ φ(ψ−1(N )), choose y ∈ H − φ(ψ−1(N )). Then for any v ∈ M with y ∈
φ(ψ−1(v)), (i) is always satisfied. When H ⊂ φ(ψ−1(N )), let φ(ψ−1(N )) =
H∪G where G consists of components different from H and choose y ∈ H−G.
Then for any v ∈ M with y ∈ φ(ψ−1(v)), either Case (1) v 6∈ N and (i)
holds, or Case (2) v ∈ N and φ(ψ−1(v)) ⊂ H ∪G. In Case (2), an irreducible
component of φ(ψ−1(v)) containing y is contained inH . Since dim(N ) ≤ n−2,
such a curve is locally irreducible at a generic point of H . �

Let Φ : F → PT (X) be the rational map defined by

Φ(a) := PTφ(a)(φ(ψ−1(ψ(a))))



FINITE MORPHISMS ONTO FANO MANIFOLDS OF PICARD NUMBER 1 633

for a generic point a ∈ F . Namely, Φ(a) is the tangent direction of the curve
corresponding to ψ(a) ∈ M at the point φ(a). Φ will be called the tangent
map. Let C ⊂ PT (X) be the strict image of Φ. C will be called the variety
ofM-tangents.

Proposition 2. Let π : C → X be the restriction of the projection PT (X)
→ X to C. Then π is generically d-to-1, where d is the degree of the web.
Moreover, there exists a subvariety E of codimension ≥ 2 in X so that Φ
is well-defined on F − φ−1(E) and can be regarded as the normalization of
C|X−E.

Proof. Suppose π : C → X is generically m-to-1 for m ≤ d. At a generic
point x ∈ X where π is unramified, C ⊂ PT (X) defines m distinct local
foliations by open pieces of curves. This must agree with d distinct foliations
by open pieces of curves defined by the φ-images of the ψ-fibers. Thus m = d.
It follows that Φ : F → C is birational. Since Φ respects the morphisms
φ : F → X and π : C → X , the second statement is immediate. �

The branch divisor of φ : F → X will be called the discriminantal divisor
of the web M and denoted by DM. The branch divisor of π : C → X

will be called the extended discriminantal divisor of M and denoted
by EM. From Proposition 2, it is clear that DM ⊂ EM. When y is a
smooth point of DM, let PTy(DM) be the projectivized tangent space. Let
PT (DM) ⊂ PT (X) be the subvariety defined as the closure of the union of
PTy(DM) as y varies over the smooth points of DM. The variety PT (EM)
is defined similarly.

Proposition 3. Let R ⊂ F be the ramification divisor of φ : F → X.
Then Φ(R) ⊂ PT (DM).

Proof. Recall that F and M are normal varieties. Since φ is unramified
in a neighborhood of a generic fiber of ψ, a generic fiber of ψ is disjoint from
R and R consists of certain components of fibers of ψ over a hypersurface
in M. These components of fibers of ψ are sent to curves in DM = φ(R).
Generic points of Φ(R) correspond to tangent vectors to these curves, hence
Φ(R) ⊂ PT (DM) by Proposition 1. �

2. Discriminantal order

LetM be a web on a projective manifold X . In this section, we will define
integers δL for certain components L of the extended discriminantal divisor
EM ⊂ X .

Let L be an irreducible component of EM and let y ∈ L be a generic point.
Let U be an isolating neighborhood of y with respect to the generically finite
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morphism π : C → X (cf. Convention and Terminology, 4). Let G be the
union of components of C|U which intersect PTy(L). When G is non-empty, it
is generically m-to-1 over U for some positive integer m. This m is certainly
independent of the choice of the generic point y and depends only on the
choice of the component L of EM. We will call it the tangential sheeting
number of M along L and denote it by τL.

Proposition 4. If M is a component of DM, then τM > 1.
Proof. Let R be a component of the ramification divisor of φ : F → X

over M . For a generic point y of M , any germ of R over y is smooth because
F is normal. Since φ is ramified at y, the local sheeting number > 1. By
Proposition 3, Φ(R) is contained in PT (M). Thus for a generic point y ∈M ,
any germ of C at a generic point of Φ(R) gives a germ of G where the local
sheeting number of π is strictly bigger than 1. �

Suppose L is a component of EM with τL > 1. Let ξ be the tautological
line bundle on the projectivized tangent bundle PT (X). By shrinking U if
necessary, we may assume that ξ is trivial on G. Let V be a non-vanishing
section of ξ over G̃, the normalization of G. In terms of a coordinate system
(z1, . . . , zn) centered at y ∈ L, V can be written as

V = v1
∂

∂z1
+ · · ·+ vn

∂

∂zn

where vi’s are multi-valued holomorphic functions on U , or more precisely,
holomorphic functions on G̃. Set m = τL. For a generic point x ∈ U , let
x1, . . . , xm be the points of G over x. As x approaches y, at least two of
x1, . . . , xm get closer from the definition of EM. For an antisymmetric n× n
complex matrix Q = (qij) ∈ o(n,C), consider the holomorphic function on U
defined by

ΓQ(x) :=
∏

1≤α6=β≤m

 n∑
i,j=1

qijvi(xα)vj(xβ)


for generic x ∈ U . Let γQ ≥ 1 be the vanishing order of ΓQ along L and set

δy := min
Q∈o(n,C)

γQ.

Proposition 5. The positive integer δy is uniquely determined by the
choice of y ∈ L, namely, it is independent of the choice of a local coordi-
nate system at y and the choice of the multi-valued vector field V .

Proof. First, we will show that once V is chosen, then δy is independent
of the choice of coordinates. Let Γ]Q, γ

]
Q and δ]y be as defined above using

another coordinate system (z]1, . . . , z
]
n) given by z]i = Ψi(z1, . . . , zn) for some
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holomorphic functions Ψi, 1 ≤ i ≤ n. Let

V = v]1
∂

∂z]1
+ · · ·+ v]n

∂

∂z]n
.

Then we have

v]i =
n∑
k=1

vk
∂Ψi

∂zk
.

It follows that

Γ]Q(x) :=
∏

1≤α6=β≤m

 n∑
i,j=1

qijv]i (x
α)v]j(x

β)


=

∏
1≤α6=β≤m

 n∑
i,j,k,l=1

qijvk(xα)vl(xβ)
∂Ψi

∂zk

∂Ψj

∂zl


=

∏
1≤α6=β≤m

 b∑
k,l=1

qkl] vk(xα)vl(xβ)


= ΓQ](x)

where Q] is the antisymmetric matrix with entries

qkl] =
n∑

i,j=1

qij
∂Ψi

∂zk

∂Ψj

∂zl
.

It follows that the vanishing order of Γ]Q along L is greater than or equal to
δy. This shows that δy ≤ δ]y. Applying the same argument in reverse, we get
δy ≥ δ]y. It follows that δy = δ]y.

Now let us show that δy is independent of the choice of the section V of ξ
on G. Let V [ be another non-vanishing section and let Γ[Q, δ

[
y be as defined

above using V [. Then V [ = hV for some non-vanishing holomorphic function
h on G̃. With respect to the coordinate system (z1, . . . , zn),

V [ = hv1
∂

∂z1
+ · · ·+ hvn

∂

∂zn
,

from which we get

Γ[Q(x) =
∏

1≤α6=β≤m

 n∑
i,j=1

qijh(xα)vi(xα)h(xβ)vj(xβ)


= ΓQ(x) ·

∏
1≤α6=β≤m

(
h(xα)h(xβ)

)
.

Since
∏

1≤α6=β≤m
(
h(xα)h(xβ)

)
is non-vanishing on L, we see that δy = δ[y. �
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It is easy to see that δy does not depend on the choice of the generic point
y ∈ L. It will depend only on the choice of an irreducible component L of
EM, satisfying the condition τL > 1. We call it the discriminantal order
of L.

3. Inverse image webs

Let f : X ′ → X be a generically finite morphism between two projective
manifolds. Let B ⊂ X be the branch divisor and R ⊂ X ′ be the ramification
divisor of f . Let Kerdf ⊂ PT (X ′) be the projectivization of the kernel of
the differential df : T (X ′) → T (X). Note that for a generic point z ∈ R,
Kerdf ∩ PTz(R) = ∅. We denote the projectivization of df by the same
symbol df : PT (X ′) → PT (X). This is a rational map which is well-defined
outside Kerdf .

Proposition 6. Given a generically finite morphism f : X ′ → X between
two projective manifolds of dimension n, suppose there exists a web M for X
and let C ⊂ X be a generic member. Then each irreducible component C′ of
f−1(C) has trivial normal bundle.

We start with an elementary lemma.
Lemma 1. Let f : X ′ → X be a generically finite morphism between two

compact complex manifolds. Let x ∈ B be a generic point of the branch divisor
and ∆ ⊂ X be a germ of smooth complex analytic curve through x intersecting
B transversally. Then f−1(∆) is also smooth.

Proof of Lemma 1. Choose a local coordinate system z1, . . . , zn centered
at x and a local coordinate system w1, . . . , wn centered at a point x′ ∈ f−1(x)
such that f is given by

z1 = w1, . . . , zn−1 = wn−1, zn = wrn

where r is the local sheeting number and B is defined by zn = 0. Since ∆ is
transversal to B, it is given by equations of the form

z1 = h1(zn), . . . , zn−1 = hn−1(zn)

for some convergent power series h1, . . . , hn−1 of one variable zn. Thus
f−1(∆) is defined near x′ by

w1 = h1(wrn), . . . , wn−1 = hn−1(wrn),

which is smooth. �
Proof of Proposition 6. Let µ : C̃ → C be the normalization. From the

genericity of C and Proposition 1, C intersects B transversally. Thus the
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normalization µ′ : C̃′ → C′ ⊂ X ′ is an immersion by Lemma 1. Let f̃ : C̃′ →
C̃ be the induced morphism on the normalizations. From the exact sequence

0 −→ On−1

C̃
−→ µ∗T ∗(X) −→ T ∗(C̃) −→ 0,

we have n − 1 pointwise independent sections ω1, . . . , ωn−1 of µ∗T ∗(X) an-
nihilating T (C̃). Furthermore, we can assume that any linear combination
of ω1, . . . , ωn−1 is non-zero on Tb(B) for any b ∈ C ∩ B. By pulling them
back via f̃ , we get n− 1 sections ω′1, . . . , ω

′
n−1 of µ′∗T ∗(C′) on C̃′ which are

pointwise linearly independent at points different from µ′−1(R). From the
genericity of C, we may assume that f |R is unramified at C′ ∩ R. Thus for
any b′ ∈ C′ ∩ R and b = f(b′) ∈ C ∩ B, the differential df : Tb′(R) → Tb(B)
is an isomorphism. It follows that any linear combination of ω′1, . . . , ω′n−1

is non-zero on Tb′(R). This implies that ω′1, . . . , ω′n−1 give n − 1 pointwise
independent sections of µ′∗T ∗(X ′) annihilating T (C̃′), showing that C′ has
trivial normal bundle. �

Remark. An important case where Proposition 6 will be applied is when
both X and X ′ are Fano manifolds (Section 6). Note that any curve with triv-
ial normal bundle on a Fano manifold must be a rational curve and immersed
rational curves through generic points have semi-positive normal bundle. In
this case, the proof of Proposition 6 gets slightly simpler. In fact, since the
conormal bundle of C is trivial, the conormal bundle of C′, which is immersed
by Lemma 1, has non-negative degree because it is generated by global sec-
tions at generic points by pulling back the global sections of the conormal
bundle of C. It follows that K−1

C′ ≥ K−1
X′ |C′ > 0 since X ′ is Fano. Thus

C′ is a rational curve. From the genericity of C, the normal bundle of C′ is
semi-positive. Since the conormal bundle is generated by global sections at a
generic point, C′ has trivial normal bundle.

From Proposition 6, the components of f−1(C) for various choices of [C] ∈
M define a webM′ on X ′. This webM′ is called the inverse image web of
M under f . Let ψ′ : F ′ →M′ and φ′ : F ′ → X ′ be the associated universal
family morphisms. As before, we assume the normality of F ′ and M′. Let
Φ′ : F ′ → PT (X ′) be the tangent map and C′ ⊂ PT (X ′) be the variety
of M′-tangents. Then df(C′), the strict image of C′ under the rational map
df : PT (X ′)→ PT (X), is exactly C. The union of the components of df−1(C)
which are dominant over X ′ is exactly C′. The degree of M′ is the same as
that of M.

Proposition 7. Let f : X ′ → X be a generically finite morphism between
two projective manifolds. Suppose there exists a web M on X and M′ is the
inverse image web on X ′. Then f−1(EM) ⊂ EM′ .
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Proof. Let L be an irreducible component of EM. Suppose for a generic
point y of L, there exists y′ ∈ f−1(y) with y′ 6∈ EM′ . Let d be the degree
of M and M′. Since π′ : C′ → X ′ is unramified at y′, there exist d distinct
germs C′1, . . . , C′d of smooth curves through y′ with distinct tangent vectors
at y′ which are germs of members of M′.

If y′ is not in R, C1 := f(C′1), . . . , Cd := f(C′d) give d distinct germs of
smooth curves through y with distinct tangents which are germs of members
of M, a contradiction to y ∈ EM.

Suppose y′ ∈ R. From the genericity of y, this means that the component
of R containing y is sent to a component of EM by f . We may assume that
y′ is a smooth point of R and dfy′ : Ty′(R) → Ty(L) is an isomorphism. We
claim that there is at most one germ among C′1, . . . , C

′
d which is not contained

in R. In fact, suppose C′1 and C′2 do not lie on R. Then f(C′1) and f(C′2) are
germs of members of M which do not lie on L. From Proposition 1, f(C′1)
and f(C′2) are transversal to L at y. This implies that C′1 and C′2 are tangent
to the kernel of df at y′; however, they have distinct tangent vectors at y′, a
contradiction.

Suppose all of C′1, . . . , C′d are contained in R. Since dfy′ : Ty′(R)→ Ty(L)
is an isomorphism, f(C′1), . . . , f(C′d) give d distinct germs of smooth curves
through y with distinct tangents which are germs of members of M. A con-
tradiction to y ∈ L.

Suppose C′1 is not contained in R and all of C′2, . . . , C
′
d are contained in R.

Then f(C′1) must be transversal to L by Proposition 1, while f(C′2), . . . , f(C′d)
give d − 1 distinct germs of smooth curves through y with distinct tangent
vectors at y which are germs of members of M, a contradiction to y ∈ L

again. �

Proposition 8. In the situation of Proposition 7, let L be a component of
EM and L′ be a component of f−1(L) ⊂ EM′ . Then τL = τL′ .

Proof. Let y ∈ L be a generic point and y′ ∈ f−1(y) ⊂ L′. Let U be
an isolating neighborhood of y with respect to π : C → X and U ′ be an
isolating neighborhood of y′ with respect to π′ : C′ → X ′. We may assume
that U = f(U ′). Let G (resp. G′) be the union of components of C|U (resp.
C′|U ′ ) which intersect PT (EM) (resp. PT (EM′)). Recall that τL is the degree
of π on G and τL′ is the degree of π′ on G′.

The strict image of C′|U ′ under df |U ′ is contained in C|U . Since dfu′ :
PTu′(X ′)→ PTu(X) is an isomorphism for a generic u′ ∈ U ′ with u = f(u′),
the degree of π on the strict image df(C′|U ′) is d, the degree of M and M′.
It follows that df(C′|U ′) = C|U .



FINITE MORPHISMS ONTO FANO MANIFOLDS OF PICARD NUMBER 1 639

The genericity of y′ implies that PTy(L′) ∩Kerdf = ∅. Thus the rational
map df : PT (U ′)→ PT (U) is a well-defined morphism on G′. Then it is clear
that df(G′) ⊂ G and τL′ ≤ τL.

Let A (resp. A′) be the union of components of C|U (resp. C′|U ′) which
are disjoint from PT (L) (resp. PT (L′)) so that

C|U = G ∪A,
C′|U ′ = G′ ∪ A′.

From Proposition 3, A (resp. A′) is disjoint from Φ(R) (resp. Φ′(R′)) where
R (resp. R′) is the ramification divisor of φ : F → X (resp. φ′ : F ′ → X ′). By
shrinking U (resp. U ′), one can assume that φ (resp. φ′) is locally one-to-one
over U (resp. U ′) outside R (resp. R′) and Φ (resp. Φ′) is a normalization
map over U (resp. U ′) by Proposition 2. Thus π (resp. π′) is 1-to-1 on each
component of A (resp. A′).

We claim that the strict image of A′ under df is contained in A. This is
obvious if y′ 6∈ R, the ramification divisor of f . Thus we may assume that
L′ ⊂ R. Since π′ is 1-to-1 on each component A′ of A′, we may assume that A′

defines a foliation by smooth curves on U ′. Since A′ is disjoint from PT (L′),
the leaves of this foliation are transversal to L′. Each leaf of this foliation
is part of a member of M′. Thus from the genericity of y′, we may assume
that the leaves are parts of generic members ofM′ and their images under f
are parts of generic members ofM. From Proposition 1, the images of leaves
of the foliation on U ′ are sent to germs of curves transversal to L. Thus by
shrinking U ′ if necessary, we may assume that the image of this foliation under
f defines a foliation by smooth curves in a neighborhood of y whose leaves are
transversal to L. This foliation defines the strict image df(A′) which contains
a unique point in C ∩ π−1(y) corresponding to the tangent vector of the leaf
through y. Since the leaf is transversal to L, df(A′) is disjoint from PT (L).
Thus df(A′) is an irreducible component of A.

Let e (resp. e′) be the degree of π (resp. π′) on A (resp. A′). Since dfu′ for
a generic u′ ∈ U ′ is an isomorphism, df(A′) ⊂ A implies that e ≥ e′. Since
d = τL + e = τL′ + e′, we see that τL′ ≥ τL and we are done. �

Remark. One cannot rule out the possibility that an irreducible com-
ponent of C|U is pulled back to a reducible set in C′|U . This point causes
some complications in the statements and proofs of some results of this pa-
per. For example, we are not able to extend Proposition 7 to a statement like
f−1(DM) ⊂ DM′ .
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4. Discriminantal orders of inverse image webs

We will continue to use the notation in the previous section. We are given
a generically finite morphism f : X ′ → X between two projective manifolds
of dimension n, a web M on X and the inverse image web M′. Let M be
a component of DM and L′ be a component of f−1(M) ⊂ EM′ given by
Proposition 7. By Proposition 4 and Proposition 8, 1 < τM = τL′ . Thus the
discriminantal orders δM and δL are well-defined. If L′ is not contained in
the ramification divisor R of f , then δL′ = δM . When L′ is a component of
R, we have the following result.

Proposition 9. Given a generically finite morphism f : X ′ → X, a web
M and its inverse image M′ as above, let L′ be a component of EM′ which is
at the same time a component of the ramification divisor R of f and satisfies
M := f(L′) ⊂ DM. Write r > 1 for the local sheeting number of f at a
generic point of L′ and let m > 1 be the tangential sheeting number of L′ and
M . Then r ≤ mδL′ .

Proof. We may assume that r > m. Let y′ ∈ L′ be a generic point and
set y = f(y′) ∈ M . We can choose a coordinate system (w1, . . . , wn) on an
isolating neighborhood U ′ of y′ with respect to C′ and a coordinate system
(z1, . . . , zn) on an isolating neighborhood U = f(U ′) of y with respect to C,
so that f is given by

z1 = w1, . . . , zn−1 = wn−1, zn = wrn.

Note that zn = 0 defines M ∩ U and wn = 0 defines L′ ∩ U ′. Let G ⊂ C|U be
the union of components intersecting PT (M) and let G′ ⊂ C′|U ′ be the union
of components intersecting PT (L′). By definition, the tangential sheeting
number m is the degree of π′ on G′, which is equal to the degree of π on G,
by Proposition 8. Let ξ be the tautological line bundle of PT (X) restricted
to the normalization G̃ of G. By shrinking U , we assume that ξ is trivial on G̃
as in Section 2. Let

V = v1
∂

∂z1
+ · · ·+ vn

∂

∂zn

be a section of ξ on G̃ as in Section 2. Since G∩π−1(y) ⊂ PTy(M), vn vanishes
over zn = 0 and one of v1, . . . , vn−1 is non-vanishing at points over U ∩M .
Consider

f∗V := df∗v1
∂

∂w1
+ · · ·+ df∗vn−1

∂

∂wn−1
+

df∗vn

r · wr−1
n

∂

∂wn
,

where df∗vi is the pull-back of the holomorphic function vi on G̃ by the holo-
morphic map df : G̃′ → G̃ which is the lifting of df : G′ → G to the normaliza-
tions. f∗V is a meromorphic section of the tautological bundle ξ′ of PT (X ′)
over G̃′.
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We claim that the meromorphic function df∗vn
wr−1
n

on G̃′ must be holomorphic.
Suppose not. Since we are interested in a generic point y′ ∈ L′, we may assume
that G̃′ is smooth and a generic point a of the polar divisor of df∗vn

wr−1
n

lies over

G′∩PT (L′). Let h be a holomorphic function on G̃′ defining the polar divisor
so that hdf

∗vn
wr−1
n

is non-vanishing at a. Thus hf∗V is a non-vanishing section

of ξ′ in a neighborhood of a in G̃′. However, at a point of h = 0,

h f∗V = h
df∗vn

wr−1
n

∂

∂wn

corresponds to a tangent vector transversal to L′. This is a contradiction to
the fact that G′ ∩ π−1(y′) ⊂ PTy′(L′).

Since one of df∗v1, . . . , df
∗vn−1 is non-vanishing on G̃′, we see that f∗V is

a non-vanishing section of ξ′ over G̃′. Thus we can compute the discriminantal
order δL′ using f∗V . As in Section 2, for a given Q = (qij) ∈ o(n,C), let

ΓQ(x) =
∏

1≤α6=β≤m

 n∑
i,j=1

qijvi(xα)vj(xβ)

 ,

Γ′Q(x′) =
∏

1≤α6=β≤m

 n∑
i,j=1

qijv′i(u
α)v′j(u

β)

 ,

where {u1, . . . , um} are the points of G′ over a generic point u ∈ U ′,
{x1 = dfu(u1), . . . , xm = dfu(um)} are the points of G over x = f(u), and

v′1 = df∗v1, . . . , v
′
n−1 = df∗vn−1, v′n =

df∗vn

r · wr−1
n

.

For each µ = (α, β) ∈ I, we define

Λµ :=
n−1∑
i,j=1

qijvi(xα) · vj(xβ),

Λ′µ :=
n−1∑
i,j=1

qijdf∗vi(uα) · df∗vj(uβ),

Ωµ :=
n−1∑
i=1

qinvi(xα)vn(xβ) +
n−1∑
i=1

qnivi(xβ)vn(xα),

Ω′µ :=
n−1∑
i=1

qindf∗vi(uα)
df∗vn(uβ)
r · wr−1

n

+
n−1∑
i=1

qnidf∗vi(uβ)
df∗vn(uα)
r · wr−1

n

,

so that

Γ′Q(u) =
∏
µ∈I

(Λ′µ + Ω′µ).
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To prove Proposition 9, it suffices to show that the vanishing order of Γ′Q on
wn = 0 is ≥ r

m .
Consider the holomorphic arc ρ(t) ∈ U, t ∈ ∆ε defined by z1 = · · · =

zn−1 = 0, zn = t, and the holomorphic arc ρ′(s) ∈ U ′, s ∈ ∆ε′ defined by
w1 = · · · = wn−1 = 0, wn = s. f restricted to these arcs is given by t = sr. By
restricting to these holomorphic arcs, we regard Λµ and Ωµ as multi-valued
functions of the variable t and Λ′µ and Ω′µ as multi-valued functions of the
variable s. By Puiseux expansion, we can consider the fractional vanishing
orders λµ (resp. ωµ) of Λµ (resp. Ωµ) in t and the fractional vanishing orders
λ′µ (resp. ω′µ) of Λ′µ (resp. Ω′µ) in s. Since

Λ′µ = df∗Λµ,

Ω′µ =
1

r · wr−1
n

df∗Ωµ,

we have λ′µ = rλµ and ω′µ = rωµ − (r − 1) = (ωµ − 1)r + 1.
From y ∈ M , there exists an irreducible component of Go of G which is

generically k-to-1 over π(Go) for some k > 1. Regard V as a non-vanishing
section of ξ over Go and vi as holomorphic functions on the normalization G̃o.
By Puiseux expansion, there exist convergent power series g1(τ), . . . , gn(τ) of
a variable τ , so that

v1|ρ(∆ε) = g1(t
1
k ), . . . , vn|ρ(∆ε) = gn(t

1
k ).

Let g be the order of gn(τ) in τ . Then

df∗vn

r · wr−1
n

|ρ′(∆ε′ )
=

gn(s
r
k )

r · sr−1

has vanishing order gr
k − r + 1 in s, which must be non-negative. So we get

g ≥ k(r−1)
r . From the assumption r > m, we see g ≥ k.

Choose ν = (α, β) ∈ I so that both xα and xβ lie on Go. Then both λν

and ων are ≥ 1
k . For ζ = e

2π
√
−1
k , we can write

Ων |ρ(∆ε) =
n−1∑
i=1

qin
(
gi(ζαt

1
k ) · gn(ζβt

1
k )− gi(ζβt

1
k ) · gn(ζαt

1
k )
)
.

We claim that this has vanishing order ≥ k + 1 in t
1
k . The claim is obvious

if g > k. So assume that g = k. Suppose gi has no constant term. Then it
is obvious that the i-th term of Ων has vanishing order ≥ g + 1 = k + 1 in
t

1
k . Suppose gi has a non-zero constant term. Then the lowest order term

of gi(ζαt
1
k ) · gn(ζβt

1
k ) cancels that of gi(ζβt

1
k ) · gn(ζαt

1
k ) because ζg = 1.

Thus in all cases, the vanishing order of Ων is ≥ k + 1 in t
1
k . In other words,
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ων ≥ 1 + 1
k . We conclude that λ′ν = rλν ≥ r

k and ω′ν = (ων − 1)r+ 1 ≥ r
k + 1.

Thus the vanishing order of

Γ′Q(u) =
∏
µ∈I

(Λ′µ + Ω′µ)

is ≥ min(λ′ν , ω′ν) ≥ min( rk ,
r
k + 1) ≥ r

m . �

5. Deformation rigidity of generically finite morphisms

Let X be a projective manifold and C be a rational curve with trivial nor-
mal bundle on X . Since H1(P1,On−1) = 0, we can deform C as rational
curves to cover an open subset of X . Thus the existence of a rational curve
with trivial normal bundle is equivalent to the existence of a web of rational
curves. As mentioned in the introduction, this is also equivalent to the ex-
istence of a family of rational curves covering X which have degree 2 with
respect to K−1

X . This property is preserved under deformation:

Proposition 10. Let χ : X → ∆ be a regular family of projective mani-
folds. Suppose X0 := χ−1(0) has a web M0 of rational curves; then, for some
ε > 0, Xt := χ−1(t) has a web Mt of rational curves for all 0 < |t| < ε so
that Mt forms a flat family over 0 < |t| < ε and members of M0 are limits
of members of Mt.

In the statement of Proposition 10, we do not exclude the possibility that
the limit ofMt at t = 0 has other components different from M0.

Proof. Let C be a generic member of a component of M0. Since C has
trivial normal bundle in X0, it has trivial normal bundle in the complex mani-
fold X . Thus C can be deformed as rational curves to cover an open subset of
X . This also follows from Kodaira stability ([Kd]) since H1(P1, NC⊂X0) = 0
for the normal bundle NC⊂X0

∼= On−1
C . Let D be the irreducible component

of the normalized Douady-Hilbert scheme of rational curves in X containing
the point [C] corresponding to C. Then D is smooth at [C] and the natural
projectionD → ∆ is of maximal rank at [C]. Let Dt be the the fiber of D → ∆
at t ∈ ∆. Since all members of Dt have degree 2 with respect to K−1

Xt
, a com-

ponent of Dt whose members cover Xt is an irreducible web on Xt. Let Dot
be the union of the components of Dt whose members cover Xt. Then letMt

be the union of all Dot which arises as we choose C from different components
of M0. Clearly, {Mt, 0 < |t| < ε} form a flat family for a suitable choice
of ε. �
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Proposition 11. Let χ : X → ∆ be as in Proposition 10 and Ct ⊂ PT (Xt)
be the variety of Mt-tangents. For a given projective manifold X ′, let X ′ :=
X ′×∆. Suppose there exists a morphism f : X ′ → X respecting the projections
to ∆, such that ft : X ′ → Xt is generically finite for each t ∈ ∆. Then there
exists a subvariety C′ ⊂ PT (X ′) so that the union of components of df−1

t (Ct)
dominant over X ′ is C′ whenever 0 < |t| < ε; the union of components of
df−1

0 (C0) dominant over X ′ is contained in C′.
Proof. Let C′t ⊂ PT (X ′) be the union of components of df−1

t (Ct) dominant
over X ′. C′t is a flat family for 0 < |t| < ε. C′0 is contained in the closure of
the union of {C′t, 0 < |t| < ε}. From Section 3, {C′t, 0 < |t| < ε} gives a flat
family of webs on X ′. Since there are only countably many webs on X ′, C′t
must be independent of t. Just set C′ = C′t for any t, 0 < |t| < ε. �

Note that any web on a Fano manifold is a web of rational curves. In the
previous sections, we made the assumption that the discriminantal divisor of
a web is non-empty. This is always the case for webs on a Fano manifold of
Picard number 1:

Proposition 12. Let X be a Fano manifold of Picard number 1 andM be a
web. Let ψ : F →M and φ : F → X be the universal family morphisms. Then
φ is not birational on any component of F . Consequently, the discriminantal
divisor DM ⊂ X is non-empty.

Proof. We may assume that M and F are irreducible. Recall that φ is
unramified in an analytic neighborhood of a generic fiber ψ−1(v), v ∈ M.
Choose a hypersurface H ⊂ M disjoint from v such that φ(ψ−1(H)) is a
hypersurface in X . If φ is birational, the curve φ(ψ−1(v)) is disjoint from the
hypersurface φ(ψ−1(H)) in X , a contradiction to the fact that X is of Picard
number 1. �

Now let us go to the situation of Theorem 1:
Proposition 13. Let χ : X → ∆ := {t ∈ C, |t| < 1} be a regular family

of Fano manifolds of Picard number 1 so that X0 = χ−1(0) has a web M0 of
rational curves. By Proposition 10, we have a web Mt on Xt for 0 < |t| <
ε. Let Zt ⊂ Xt be the subvariety of codimension > 1 so that the universal
family morphism φt : Ft → Xt associated to the web Mt is unramified over
Xt −DMt − Zt. Given f : X ′ → X as in Proposition 11, let M′ be the web
defined by C′ on X ′. For a generic member C ⊂ X0 ofM0 and any irreducible
component C′ of f−1

0 (C), the following holds:

(i) C′ intersects EM′ transversally;
(ii) Ct := ft(C′) is a member of Mt having trivial normal bundle, is not

contained in DMt and is disjoint from Zt for all 0 < |t| < ε.
Proof. This is a direct consequence of Proposition 1 and DMt ⊂ ft(EM′)

which follows from Proposition 7. �
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Proposition 14. Under the assumptions of Proposition 13, for each fixed
t ∈ ∆, the intersection Ct ∩DMt contains at least two distinct points on the
normalization C̃t of Ct.

Proof. Since Xt has Picard number 1, Ct has non-empty intersection with
DMt . Suppose the intersection is only at one point on C̃t. Then the normal-
ization of Ct − DMt is biholomorphic to C and is simply connected. Since
Ft is unramified over Xt − DMt − Zt, this means that φ−1

t (Ct) consists of
dt distinct irreducible components, where dt is the degree of φt : Ft → Xt.
This is a contradiction to Proposition 12 and the next lemma applied to each
irreducible component W of Ft. �

Lemma 2. Let η : W → X be a generically finite morphism from an
irreducible normal variety W onto a Fano manifold X with Picard number 1
which has a web M. Suppose for a generic member C of M, each component
of the inverse image η−1(C) is birational to C by η. Then η : W → X itself
is birational.

Proof. We may assume that W is a projective manifold by desingulariza-
tion. Suppose η is not birational. Let B ⊂ X be the branch divisor of η
and R ⊂ W be the ramification divisor of η. By the assumption on η, each
component C1 of η−1(C) is a rational curve. By Proposition 6, C1 has trivial
normal bundle. So we have KW · C1 = −2 = KX · C = η∗KX · C1. This
implies C1 is disjoint from the ramification divisor R ⊂ W . Since this holds
for any component C1 of η−1(C), C is disjoint from B, a contradiction to the
assumption that X is of Picard number 1. �

Proposition 15. Fix a complex number s, 0 < |s| < ε. Under the as-
sumptions of Proposition 14, for a generic choice of C ⊂ X0 and an irre-
ducible component C′ of f−1

0 (C), let y1, y2 ∈ C′ be any two points satisfying
fs(y1) = fs(y2). Then ft(y1) = ft(y2) whenever |t| < ε.

Proof. By continuity, it suffices to prove ft(y1) = ft(y2) for t satisfying
|t− s| < δ for some positive real number δ < min(|s|, ε − |s|). By our choice
of C, Ct = ft(C′) is a member of Mt with trivial normal bundle in Xt.
Since Xt is Fano, Ct is a rational curve. From Proposition 1 and Proposition
13, we can choose a generic C and ε > 0, so that Ct = ft(C′) intersects DMt

transversally for all 0 < |t| < ε. By Proposition 14, there exists a simultaneous
normalization µt : P1 → Ct for all t satisfying 0 < |t − s| < δ so that µt(o)
and µt(∞) lie in Ct ∩DMt for two fixed distinct points {o,∞} in P1. Also,
we can assume that C′ is transversal to EM′ .

Let f̃t : C̃′ → P1 be the pull-back of ft|C′ to the normalizations.
{f̃t, |t − s| < δ} gives a holomorphic family of meromorphic functions on
C̃′ with zeroes and poles lying over the points of C′ intersecting f−1

t (µt(o))
and f−1

t (µt(∞)). Since f−1
t (DMt) ⊂ EM′ from Proposition 7, these points
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are contained in the finite set C′ ∩ EM′ which does not depend on t. So
this family of meromorphic functions must have the same zeroes and poles on
C̃′. Thus f̃t = h(t)f̃0 for some non-vanishing holomorphic function h(t) on
{|t− s| < δ}, from which the assertion is obvious. �

We are ready to prove:

Theorem 1. Let χ : X → ∆ := {t ∈ C, |t| < 1} be a regular family of
Fano manifolds of Picard number 1 so that X0 = χ−1(0) has rational curves
with trivial normal bundles. For a given projective manifold X ′, suppose there
exists a surjective morphism f : X ′ = X ′ ×∆→ X respecting the projections
to ∆ so that ft : X ′ → Xt is a generically finite morphism for each t ∈ ∆.
Then there exists ε > 0 and a holomorphic family of biholomorphic morphisms
vt : Xo → Xt, |t| < ε, satisfying ft = vt ◦ fo, v0 = id.

Proof. By assumption, X0 has a web M0. We will use the notation from
Propositions 13–15.

Suppose that f is birational. Then f is biholomorphic over X −Z where Z
is a subvariety of codimension ≥ 2. On X ′ we have the vector field V lifting d

dt

on ∆. f∗V is a vector field on X −Z. By Hartogs, we can extend it to a vector
field on X which generates the required family of biholomorphic morphisms.

Suppose that ft is not birational, but generically e-to-1. We will construct
a new projective manifold X̂, a generically finite dominant rational map ν :
X ′ → X̂ and a holomorphic family of generically finite morphisms gt : X̂ →
Xt, so that ν is not birational and ft = gt ◦ ν over generic points of X ′. This
proves Theorem 1 by induction on e.

Fix s as in Proposition 15. We say that a reduced 0-cycle y1 + · · ·+ yk of
length k on X ′ is special if fs(y1) = · · · = fs(yk) and we can find a sequence
of points z1, . . . , zm so that {z1, . . . , zm} = {y1, . . . , yk} as subsets of X ′ and
there exist irreducible curves l1, . . . , lm−1 which are members of the inverse
image web of M0 so that zi, zi+1 ∈ li for 1 ≤ i ≤ m − 1. All special cycles
have length ≤ e and there are special cycles of length > 1 containing a generic
point of X ′, otherwise ft is birational by Lemma 2.

The set of all special cycles on X ′ gives a constructible subset of the Hilbert
scheme of 0-dimensional subschemes of X ′. We can find an irreducible com-
ponent of this set so that the corresponding cycles cover an open set of X ′.
Make such a choice with maximal possible length. Let S be the closure of
that component and let σ : A → S and λ : A → X ′ be the universal family
morphisms so that σ is flat, but not birational. We claim that λ is birational.
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Otherwise we have two distinct special cycles containing a given generic point
y of X ′, from which we can construct a special cycle of strictly longer length
containing y, a contradiction to the choice of S.

Let X̂ be a desingularization of S and σ̂ : Â → X̂, λ̂ : Â → X ′ be the
induced morphisms. Define the rational map ν : X ′ → X̂ as ν := σ̂ ◦ λ̂−1.
Then ν is a generically finite dominant rational map which is not birational.
Consider the morphism f̂t = ft ◦ λ̂ from Â to Xt. From Proposition 15, a
generic fiber of σ̂ is contained in a fiber of f̂t. Thus each fiber of σ̂ is contained
in a fiber of f̂t by the flatness of σ̂. It follows that we get a morphism
gt : X̂ → Xt satisfying ft = gt ◦ ν. Since X ′, Xt are all projective, it is easy
to see that {gt} is a holomorphic family. �

An immediate consequence of Theorem 1 is:

Corollary 1. For any irreducible complete variety X ′ of dimension ≥ 3,
there are only countably many Fano manifolds of Picard number 1 having ra-
tional curves with trivial normal bundles, which can be the image of a gener-
ically finite morphism from X ′.

In [HM1], we showed that for any Fano manifold S of Picard number 1
which is homogeneous, a finite morphism f : S → X onto a projective mani-
fold X must be a biholomorphism unless X ∼= Pn. It is natural to ask what
happens if S is almost homogeneous. We will consider a special case here.
A Mukai-Umemura threefold (cf. [MU]) is a Fano threefold of Picard num-
ber 1 which is almost homogeneous under PGL2. There are two such Fano
threefolds, one having the octahedral group as the isotropy group, and the
other having the icosahedral group as the isotropy group. Note that both the
octahedral group and the icosahedral group are maximal finite subgroups in
PGL2 (e.g. [YY]).

Corollary 2. Let S be a Mukai-Umemura threefold and X be a smooth
variety of positive dimension. If f : S → X is a surjective morphism, then
either X ∼= P3 or f is biholomorphic.

Proof. Since S is of Picard number 1, f is a finite morphism and X is
a Fano threefold. If X is different from P3, it is either the 3-dimensional
hyperquadric or a Fano threefold having a rational curve with trivial normal
bundle. The PGL2-action on S descends to X by [HM2] for the hyperquadric
and by Theorem 1 for the others. Thus X is almost homogeneous under
PGL2, and the isotropy subgroup is a finite subgroup of PGL2 containing
the isotropy subgroup for S. However, the isotropy subgroup for S, either the
octahedral group or the icosahedral group, is a maximal finite subgroup of
PGL2, a contradiction unless f is 1-to-1. �
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6. Boundedness of degrees of finite morphisms

In this section we will prove:

Theorem 2. Let X and X ′ be n-dimensional Fano manifolds of Picard
number 1. Assume that X has rational curves with trivial normal bundles.
Then there exists a positive number N determined by X ′ such that for any
finite morphism f : X ′ → X, the degree of f is bounded by N .

In fact, N can be calculated from the degrees of extended discriminan-
tal divisors and discriminantal orders of webs on X ′, together with Chern
numbers of X ′ and X . Note that there are only finitely many webs on X ′

and X :

Proposition 16. On a Fano manifold, there are only finitely many webs.

Proof. Any curve with trivial normal bundle on a Fano manifold must be
a rational curve and its degree with respect to the anti-canonical bundle is 2.
Since the anti-canonical bundle is ample, we get the finiteness of irreducible
webs. Since a web is just the finite union of irreducible webs, there are only
finitely many webs. �

Proposition 17. Let X ′ be an n-dimensional Fano manifold. Then there
exists a positive number N1 determined by X ′ with the following property: for
any finite morphism f : X ′ → X onto a Fano manifold X which has a web
M and for any component L′ of f−1(DM), the local sheeting number of f at
a generic point of L′ is bounded by N1.

Proof. The local sheeting number is bounded by a number determined
by the discriminantal orders of L′ from Proposition 9. Since there are only
finitely many possibilities of M′ from Proposition 16, there are only finitely
many possibilities for L′. Thus we can find a bound N1. �

Proof of Theorem 2. Choose a webM on X and let C be a generic member
ofM. C is an immersed rational curve. For a given finite morphism f : X ′ →
X , let M′ be the inverse image web of M. Let C′ be a member of M′
so that f(C′) = C. Let h : C̃′ → C̃ be the the pull-back of f |C to the
normalization.

We may assume that C (resp. C′) intersects DM (resp. EM) transversally.
For z ∈ C̃′, let ez be the ramification index of h at z. If rz is the local sheeting
number of f at µ(z) where µ : C̃′ → X ′ is the normalization onto its image,
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then ez = rz − 1. For x ∈ C̃, let |h−1(x)| be the number of points of C̃′ over
x. When m is the degree of h,∑

z∈C̃′∩f−1(DM)

ez =
∑

x∈C̃∩DM

(m− |h−1(x)|)

= m C ·DM −
∑

x∈C̃∩DM

|h−1(x)|

= m C ·DM − C′ · f−1(DM)

≥ 2m− C′ · EM′

where we used f−1(DM) ⊂ EM′ from Proposition 7 and C · DM ≥ 2 from
Proposition 14. The readers can easily see below that for the proof of Theorem
2, the obvious inequality C ·DM ≥ 1 is, in fact, sufficient. From Proposition
17, ∑

z∈C̃′∩f−1(DM)

ez ≤
∑

z∈C̃′∩f−1(DM)

(N1 − 1)

≤ (N1 − 1) C′ ·EM′ .
It follows that m ≤ N1

2 C′ ·EM′ .
From Proposition 16, there are only finitely many webs on X ′. Consider

the union L of extended discriminantal divisors of all the webs on X ′. Let
L = N2K

−1
X′ in Pic(X ′) ⊗ Q for some positive rational number N2. Then

C′ ·EM′ ≤ C′ · L ≤ 2N2. Thus m ≤ N1N2.
Let R̂ ⊂ X ′ be the ramification divisor R of f with the multiplicity given

by the ramification indices of each component. Then R̂ = f∗K−1
X −K

−1
X′ and

R̂ · C′ = 2m− 2. It follows that R̂ = (m− 1)K−1
X′ and f∗K−1

X = K−1
X′ + R̂ =

mK−1
X′ in Pic(X ′). Thus

deg(f) =
(f∗K−1

X )n

(K−1
X )n

= mn (K−1
X′ )

n

(K−1
X )n

≤ (N1N2)n(K−1
X′ )

n. �

As an immediate consequence, we obtain:
Corollary 3. A non-constant self-morphism f : X → X of a Fano mani-

fold of Picard number 1 which has rational curves with trivial normal bundles
is an isomorphism.

Proof. If f has degree d > 1, the m-th successive composition fm : X → X

gives a finite morphism of degree dm, where m can be arbitrary large; a
contradiction to Theorem 2. �

Now we obtain the following partial answer to the Question discussed in
the introduction of this paper.

Corollary 4. Let X ′ be a Fano manifold of Picard number 1. Amid Fano
manifolds of Picard number 1 which have rational curves with trivial normal
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bundles, only finitely many can be the image of a holomorphic map from X ′.
Furthermore, for each such X there are at most a finite number of non-trivial
holomorphic maps f : X ′ → X up to automorphisms of X.

Proof. Suppose there exists an infinite sequence fi : X ′ → Xi of holomor-
phic maps to Fano manifoldsXi of Picard number 1 which have rational curves
with trivial normal bundles. By the boundedness of Fano manifolds of a given
dimension ([Kl]), we may assume that Xi’s are members of an irreducible flat
family of Fano manifolds. By a pluri-anti-canonical embedding, we can re-
gard Xi’s as submanifolds in some projective space PN with the same Hilbert
polynomial. The graphs of fi’s are Fano submanifolds in X ′ × PN , which
are of bounded degree with respect to K−1

X′ ⊗ O(1) from Theorem 2, where
O(1) denotes the hyperplane bundle on PN . Thus there are finitely many
irreducible families of subvarieties in X ′ ×PN , so that the graphs of fi’s are
dense in each family. Generic members of such a family must be isomorphic to
X ′ under the projection X ′ ×PN → X ′. Thus they give a continuous family
of finite morphisms from X ′ to a family of Fano manifolds having rational
curves with trivial normal bundles and must be related by automorphisms
of the images by Theorem 1. It follows that there are only finitely many
isomorphism classes of fi’s up to automorphisms of the images. �
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