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Two-dimensional solitary waves generated by a submerged body moving near the critical speed in
a shallow water channel are studied numerically. The incompressible Navier–Stokes equations in a
curvilinear free-surface-fitted coordinate system are solved by the finite difference method. The
present numerical results are compared with the existing experimental data, and with the numerical
solutions of two inviscid-flow models, i.e. the general Boussinesq equation and the forced
Korteweg-de Vries equation. It is found that the viscous effect in the boundary layer around the body
and on the bottom of the channel plays an important role in the generation of solitary waves on the
free surface. Hence the Navier–Stokes solutions have a better agreement with the experimental data
than those obtained from two inviscid-flow models. The effect of the submergence depth of the body
on the waves generated is also investigated. It reveals that waves are insensitive to the submergence
depth of the body, except for a small region quite close to the bottom of the water channel. ©1996
American Institute of Physics.@S1070-6631~96!02901-2#

I. INTRODUCTION

A disturbance moving with a transcritical velocity in
shallow water can periodically generate a succession of soli-
tary waves advancing upstream of the disturbance. Immedi-
ately behind the moving disturbance there trails an ever elon-
gating stretch of a uniformly depressed water surface
followed by a train of cnoidal-like waves oscillating about
the initial free-surface level, decreasing in amplitude with
distance and eventually vanishing in the farfield. The distur-
bance can be a surface pressure distribution, a submerged
body, or a bottom topography. Although the disturbance
moves at a constant speed~steady motion!, the flow gener-
ated can be unsteady and periodic. The first recorded obser-
vation of this phenomenon was reported, as a ‘‘great solitary
wave,’’ by John Scott Russell in 1834. A century later, this
phenomenon was observed by Thews and Landweber1 in a
series of towing tank tests of ship models in shallow water.
Thereafter several systematic experimental investigations
were reported.2–4

This phenomenon was rediscovered, first numerically by
Wu and Wu5 based on the generalized Boussinesq~g-B!
model derived earlier by Wu6 for describing two-dimensional
long waves with moving surface pressure or bottom topog-
raphy. A simplified forced Korteweg-de Vries~fKdV ! model
derived from the Boussinesq equation was employed by Wu7

to explore the basic mechanism underlying the phenomenon.
Leeet al.8 carried out a combined numerical and experimen-
tal study with a two-dimensional cambered bottom topogra-
phy moving along the bottom of a water channel in order to
verify the numerical solutions of theoretical models, i.e., the
g-B model and the fKdV model. A broad agreement between
the experimental data and solutions derived from two theo-
retical models were found, in terms of both the amplitude
and phase of the generated waves.

In addition to these studies there were papers reporting
calculations using the Korteweg-de Vries~KdV! equation by
Akylas9 and Cole,10 and using the fKdV model by Grimshaw

and Smyth.11 These studies have also been extended to non-
linear waves in two horizontal dimensions by Mei12 based on
approximations for slender bodies in a shallow channel, by
Ertekinet al.13 employing Green–Nagdi’s theory, by Wu and
Wu14 based on the g-B model, and by Katsis and Akylas15

using the Kadomtsev–Petviashvili model.
Besides the simplified theoretical studies, many numeri-

cal schemes for two-dimensional potential flows with fully
nonlinear boundary conditions on the free surface have been
presented. Longuet-Higgins and Cokelet16 applied the
boundary element method based on the Green’s integral
theorem with the mixed Eulerian–Lagrangian scheme to the
simulation of transient free-surface flows. Their work was
modified by Suzuki17 for the problem of a semicircular
mound in shallow water and by Cointe18 for the shallow-
water swell. For problems of wave–body interactions, Yeung
et al.19 developed a finite difference method to solve the
Laplace equation using a mixed Eulerian–Lagrangian formu-
lation to satisfy the fully nonlinear free-surface conditions.
Cao and Beck20 presented a simple numerical method using
the complete Laplace equation and fully nonlinear free-
surface boundary conditions to include the higher-order ef-
fect. The method was applied to calculate two-dimensional
solitary waves generated by a moving surface pressure dis-
turbance, a submerged circular cylinder, and a bottom bump.
From the numerical results, it was found that for strong dis-
turbances, the fully nonlinear model predicted larger waves
than those predicted by the fKdV model. The fully nonlinear
calculations showed that a free-surface pressure distribution
generated significantly larger waves than those due to a bot-
tom topography.

The theoretical and numerical studies of this phenom-
enon mentioned above are based on the potential-flow
theory. The main limitation of these methods is that the vis-
cous effect cannot be accounted for, except in a very crude
way for the modeling of the bottom friction. To analyze the
complexities of the phenomenon, including nonlinear effects,
dispersion, and dissipation, a more general formulation is re-
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quired. Solutions of Navier–Stokes~NS! equations with
consistent viscous boundary conditions offer an opportunity
to capture these complexities. The earliest and most famous
method for solving time-dependent viscous flows with a free
surface is the MAC method by Harlow and Welch.21 This
method has been improved and extended to many different
versions, for instance the SUMAC method of Chan and
Street,22 the TUMAC method of Miyataet al.,23 and the
method of Tanget al.24 Because the MAC-type methods use
a spatial fixed Cartesian coordinate system, they require spe-
cial treatment on the boundaries of arbitrary shape such as
the deformed free surface and body boundary. Therefore
these methods are not particularly well suited for the free-
surface flow around a body with a complicated geometry. On
the other hand, a method based on a free-surface-fitted coor-
dinate system has been considered as an alternative approach
to solve the fully nonlinear free-surface problem. Methods of
this type have been developed and applied to a variety of
nonlinear wave problems.25–28 Chang and Tang26 studied
nonlinear water waves generated by a bottom bump, and
found that the amplitudes of advancing solitary waves and
downstream train waves were attenuated by the viscous ef-
fect at low Reynolds numbers. Hinatsu27 investigated various
nonlinear wave problems, including the wave generated by a
moving topography.

In the present work, numerical solutions of the NS equa-
tions in primitive variables using a moving grid system fitted
to the free surface are solved to simulate nonlinear solitary
waves generated by a submerged body moving along the
horizontal bottom of a water channel. A finite difference
method similar to the scheme of Hinatsu27 is adopted for the
present computation. As mentioned before, most theoretical
and numerical studies of nonlinear solitary waves generated
by a submerged body were based on the inviscid-flow theory.
Although a few attempts were made in these studies to com-
pare theories with experiments, only qualitative agreement
between them can be inferred. Leeet al.8 made a quantitative
comparison between their experimental data and the numeri-
cal results of the fKdV and g-B models, in which the viscous
effects were accounted for in a crude way, and found reason-
ably good agreement. The results of the present viscous flow
analysis with consistent viscous boundary conditions are
compared with the experimental data and the numerical re-
sults of the g-B model and the fKdV model obtained by Lee
et al.8 for validating the present computational method. A
series of calculations are conducted for various submergence
depths of the body in order to investigate the effect of the
submergence depth of the body on the generated waves.

II. GOVERNING EQUATIONS

The nonlinear wave problem considered in the present
paper is shown in Fig. 1. A Cartesian coordinate system fixed
with respect to the body is chosen with thex1 axis along the
bottom of the channel andx2 axis pointing upward. In this
body frame, the body is fixed in a uniform stream of velocity
u0 with unperturbed water depthh0 . The motion of an in-
compressible viscous fluid is governed by the NS equations

and the continuity equation. The dimensionless conservative
form of the two-dimensional NS equations in this Cartesian
coordinate system is
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and the continuity equation is
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whereui is the velocity component along thexi axis,p is the
pressure, andt is the time. The governing equations are nor-
malized with the steady velocity of the disturbance~or in the
body frame, the uniform stream velocity! u0 and the initial
uniform water depthh0 . The Reynolds number and Froude
number are defined as Re5u0h0/n andFn 5 u0 /Agh0, re-
spectively, whereg is the gravitational constant andn is the
kinematic viscosity coefficient.

For accurate computation of viscous flow with a free
surface, it is necessary to transform the governing equations
to a time-dependent, curvilinear coordinate system fitted to
the moving free surface as well as the body boundaries. A
curvilinear transformation from the physical coordinate sys-
tem to the computational coordinate system is defined by

j j5j j~xi ,t ! and t5t~ t !. ~3!

In the above transformation,t is a function oft only, and in
the present paper it is assumed thatt5t. The Jacobian of the
transformation is
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computational coordinate system (j i ,t) as
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FIG. 1. A submerged disturbance moving with a transcritical velocity in
shallow water.

148 Phys. Fluids, Vol. 8, No. 1, January 1996 D. Zhang and A. T. Chwang

Downloaded¬09¬Nov¬2006¬to¬147.8.21.97.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://pof.aip.org/pof/copyright.jsp



whereUj is the contravariant velocity component along the
j j direction,gjl is the metric tensor,f is the redefined pres-
sure term, and]j j /]t associated with the grid movement is
the grid point speed. The following metric identities are used
for the transformation:

]

]j j S 1J ]j j

]xi
D50,

]

]t S 1JD1
]

]j j S 1J ]j j

]t D50. ~8!

III. BOUNDARY CONDITIONS

The free-surface boundary is not knowna priori. The
location of the free surface is part of the solution in the
problem and is determined from the free-surface boundary
conditions. The free-surface boundary conditions consist of
one kinematic condition and two dynamic conditions. The
kinematic condition states that the fluid particles of the free
surface stay on the free surface at any time. Ifh(x1 ,t) is the
free-surface elevation, this condition is

]h
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5u2 , at x25h~x1 ,t !. ~9!

The dynamic conditions represent the continuity of
stresses on the free surface. Neglecting the surface tension on
the free surface, the dynamic conditions are

nis i j nj50 ~10!

and

t is i j nj50, at x25h~x1 ,t !, ~11!

whereni is the unit normal vector andt i is the unit tangential
vector to the free surface. The stress tensor for an incom-
pressible Newtonian fluid can be expressed as
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whered i j is the Kronecker delta. Equations~9! and~12! can
be partially transformed into the curvilinear coordinate sys-
tem (j i ,t) as

]h

]t
1S ]j i

]t
1u1

]j i

]x1
D ]h

]j i
5u2 ~13!

and

s i j52pd i j1
1

Re S ]uj
]j l

]j l

]xi
1

]ui
]j l

]j l

]xj
D . ~14!

The velocity componentu1 on the free surface is ex-
trapolated from the interior in such a way that the dynamic
free-surface boundary conditions are satisfied on the free sur-
face. The velocity gradient]u1/]j2 on the free surface,
which is needed for the extrapolation, are obtained by solv-
ing Eqs.~10! and ~11! simultaneously. The velocity compo-
nentu2 on the free surface is calculated from the continuity
equation~2!. The normal dynamic free-surface condition, Eq.
~10!, is used to specify the pressure on the free surface. And
the kinematic boundary condition, Eq.~9!, is used to deter-
mine the location of the free surface.

The no-slip boundary condition is imposed on the body
boundary surface. In the body frame, the body is fixed,

whereas the bottom of the channel moves with uniform ve-
locity u0 . Therefore the free-slip boundary condition is used
on the bottom. These conditions are stated mathematically as

u15u0 , u250, on the bottom, ~15!

u150, u250, on the body surface. ~16!

For the case where the body touches the bottom, Neumann
~zero gradient! boundary condition,]u1/]j250, is specified
on the bottom of the channel to avoid the singularity. Far
upstream, flow is uniform and the free surface is undisturbed.
Thus

u15u0 , u250, as x1→2`. ~17!

The open boundary conditions for free-surface problems are
treated by various methods.28,29 To prevent the reflection of
waves into the solution domain the open boundary condi-
tions must be carefully implemented. In the present work, the
so-called added dissipation zone method of Chiba and Ku-
wahara~cf. Hinatsu27! is used. In this method the computa-
tional domain is extended with a coarse grid, which induces
a numerical dissipation effect, and waves are damped by this
sort of numerical damping. A Neumann-type boundary con-
dition is imposed on the outmost boundary. The coarse grid
is obtained by increasing the grid size toward open bound-
aries with a geometrical progression. A fictitious damping
force was included in thej2 direction in the added dissipa-
tion zone by Hinatsu,27 but it is found unnecessary in the
present work.

The initial velocity field is taken to be that of the static
~quiescent! fluid case, that is,u15u250, and a constant ac-
celeration is imposed in the entire domain until the inflow
velocity attains one.

IV. DISCRETIZATION AND SOLUTION PROCEDURE

A regular grid is used in the present method for discreti-
zation. The velocity and pressure are evaluated at computa-
tional cell centers. The advantage of this stencil is that the
conservation of mass and momentum are exactly satisfied,
even in the discretized formulation. Spatial differentials are
discretized using the second-order central difference, and the
QUICK scheme of Leonard30 is used for discretization of
convection terms. Time marching is carried out using a time-
splitting fractional-step method. It is a two-step predictor–
corrector scheme. In the predictor step, an intermediate ve-
locity field ũi is computed explicitly by integrating Eq.~5! in
time using the velocity and pressure from previous time step
n,

ũi
Jn112S uiJ D n5DtF2
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whereDt is the time increment and the superscriptsn and
n11 denote the previous and the present time steps, respec-
tively. After the predictor step, the location of the free sur-
face at time stepn11 is evaluated by integrating Eq.~13!
explicitly,

149Phys. Fluids, Vol. 8, No. 1, January 1996 D. Zhang and A. T. Chwang

Downloaded¬09¬Nov¬2006¬to¬147.8.21.97.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://pof.aip.org/pof/copyright.jsp



hn115hn1DtS u22u1
]j i

]x1

]h

]j i D
n

, ~19!

and the grid of the flow domain is regenerated to fit the
newly estimated free surface. The Jacobian and the metric
tensor are recalculated according to the new grid.

At the second step,ũi is corrected by the pressure incre-
ment df5fn112fn between the present time stepn11
and the previous time stepn to obtain the velocity fieldui

n11

at the present time stepn11,
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Note that the difference of the pressure differential between
n11 andn time steps is simply approximated by the differ-
ential of the pressure increment at then11 time step. How-
ever, the pressure incrementdf in Eq. ~20! is not known and
must be determined by requiring the velocity fieldui

n11 to
satisfy the continuity equation. The divergence-free condi-
tion applied forui

n11 yields a Poisson equation fordf by
taking the divergence of Eq.~20!. Thus
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whereŨ i5(]j i /]xj )ũ j .
The unsteady problem is treated as a quasisteady one

between successive physical time steps. The known value of
a dependent variable at timet can be used as a guess for the
unknown value of that variable at timet1Dt for reasonably
small Dt. Since this is a relatively good guess, only a few
iterations are normally needed to obtain a converged solution
for time t1Dt. The grid is aligned to the free-surface bound-
ary, which moves in time. Therefore the grid is time depen-
dent in general. However, since Eq.~5! is integrated in time
by the explicit method, within each time step the grid is
independent of time~cf. Farmeret al.28!. Therefore the grid
point speed terms,]j j /]t, are dropped in Eqs.~18! and~19!.

In summary, if the location of the free surface and the
values of the velocity and pressure in the calculation domain
are known at time stepn, the solution procedure for the next
time stepn11 is as follows.

~1! Compute the intermediate velocityũi explicitly by
solving the momentum equation~18!, using the velocity and
pressure from time stepn.

~2! Determine the new location of the free surface at
time stepn11 by the kinematic free-surface boundary con-
dition, Eq. ~19!, and then regrid the flow domain to fit with
the new location of the free surface. Jacobian and metric
tensor are recalculated according to the new grid.

~3! Solve the Poisson equation~21! implicitly to com-
pute the pressure incrementdf between the time stepsn and
n11, then update the pressure byfn115fn1df.

~4! Correct the intermediate velocity fieldũi by Eq.~20!
using the pressure incrementdf estimated in step~3! to ob-
tain the velocity fieldui

n11 at time stepn11.
~5! Obtain the velocity componentu1 on the free sur-

face by extrapolation from the interior using the velocity
gradient ]u1/]j2 on the free surface obtained by solving
Eqs. ~10! and ~11! simultaneously. Calculateu2 on the free
surface from the continuity equation~2!.

~6! Return to step 1 for the next time step.

V. VALIDATION AND DISCUSSION

The viscous free-surface flow studied experimentally
and numerically by Leeet al.8 is used to validate the present
computational method. The experiments of Leeet al.8 were
conducted in an open flume of 7.5 m long, 0.75 m wide, and
0.6 m deep. The bottom unevenness was60.1 cm. A two-
dimensional body of the arched cross section with a chord of
4.9 cm, height of 0.65 cm at its midchord, and span of 72 cm
was used. It was positioned just above the floor of the flume
with a gap of 0.05 cm at the highest location of the floor.
Because of the unevenness of the floor, the gap between the
base of the body and the floor of the tank varied from
0.0125h0 to 0.0625h0 , with an average value of 0.0375h0 .
Two water depths, i.e., 4.0 and 5.33 cm, were used for mea-
surements over a range of Froude number from 0.7 to 1.1. To
eliminate any sidewall effects the wave elevations were mea-
sured at points as close as possible to the longitudinal cen-
terplane of the tank. Leeet al.8 estimated the effects of vis-
cosity for the attenuation of a solitary wave in a channel with
smooth sidewalls using the empirical formula suggested by
Daily and Stephan. The estimation indicated that a soliton
would attenuate less than 5% at the end of the experiments.
Thus, the experiments could be considered as two dimen-
sional and the effects of viscosity on wave propagation from
smooth sidewalls were not corrected for in the comparison
between experimental data and numerical results from two-
dimensional computations given below.

A. Numerical simulation

The exact geometry of the body used in the experiments
with an average gap of 0.0375h0 between the base of the
body and the channel bottom is used for the present numeri-
cal simulation. The length of the fluid domain is taken as 100
units, and the depth of water is set to be unity. 232 grid
points are used in the horizontal direction, and 31 grid points
are given in the vertical direction. The grids are constructed
in such a way that thej15const grid lines are all vertical,
i.e., j1 is a function ofx1 only. The grid lines are concen-
trated around the body, near free surface, and the floor of the
tank. A partial view of the initial grids for numerical compu-
tation is shown in Fig. 2. The grid system is rearranged at
each time step to fit the deformed free surface.

The time step is set to beDt50.01. The computation is
started at the initial condition of zero velocity and pressure
everywhere and a flat free surface (h51.0). A constant ac-
celeration of 0.25, or 0.25g in the dimensional space, is im-
posed on the entire domain until the inflow velocity reaches
unity. For the time step ofDt50.01, 400 time steps are
needed to accelerate the flow from zero velocity until the
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upstream inflow velocity reaches unity. Since the accelera-
tion in the experiments was uncertain, the acceleration for
the present numerical computation is determined by numeri-
cal tests. The calculation is carried out for two water depths,
i.e., h054.0 cm andh055.33 cm, and at three Froude num-
bers, i.e. subcritical, transcritical, and supercritical, for each
water depth corresponding to those in the experiments. All
other parameters in the calculation are the same as those in
the experiments in order to make a meaningful comparison.
In the experiments, wave gauges were fixed in the channel
and located at 70 and 68.1 units upstream of the body for the
water depthh054.0 cm andh055.33 cm, respectively. In
the calculation with a body frame reference, a numerical
wave gauge is initially located at the same distance upstream
of the body as it was in the experiments, and then moves
steadily with the free-stream velocity.

B. Comparison with experimental data

The results of the present calculation along with the ex-
perimental data and the numerical solutions predicted using
the g-B model and the fKdV model by Leeet al.8 are shown
in Fig. 3 forh054.0 cm atFn50.89, 1.01, 1.12, and in Fig.
4 for h055.33 cm atFn50.90, 1.01, 1.11, respectively. The
plots at the top of Fig. 3 and Fig. 4 are from the present
numerical results, which show the surface elevationh as a
function ofx1 (x15x) andt atFn51.01 forh054.0 cm and
h055.33 cm, respectively. As can be seen from the plots, the
present NS solutions predict all the main features of the phe-
nomena indicated earlier, namely the upstream-advancing
solitary waves, the prolonging depressed region immediately
behind the disturbance, and the train of trailing waves. These
features were observed in the experiments.

Detailed comparisons for the free-surface elevation as a
function of time recorded by wave gauge are made in the rest
of the plots in Fig. 3 and Fig. 4. Overall, it is seen that the
present NS solutions give excellent agreement with the ex-
periments. The amplitude, phase, and number of solitary
waves are very well predicted for all three Froude numbers
in both water depths. For the trailing waves the agreement
between the present NS solutions and the experiments is con-
sidered to be good, except for the case of the relatively
strong disturbance~h054.0 cm! at subcritical speed,Fn
50.89 ~Fig. 3!, where variance between the numerical and
experimental data is most pronounced. According to Lee
et al.,8 it is precisely in this case that the wave breaking was

observed during the experiments. Since the kinematic condi-
tion is implemented by the Eulerian method in the present
numerical scheme, it only permits solutions in which the
free-surface locationh is single valued. Consequently, it
does not allow for the breaking of waves.

C. Comparison with the fKdV and the g-B models

Lee et al.8 presented numerical results corresponding to
the experimental conditions using two inviscid-flow models,
i.e., the fKdV model and the g-B model. In an attempt to
account for the bottom unevenness, the bottom-bump clear-
ance, and the presence of a viscous boundary layer along the
channel floor and on the body surface, an effective bump
height of 0.8 cm was assumed by Leeet al.8 instead of the
actual bump height of 0.65 cm. The numerical results of the
fKdV and g-B models are also shown in Fig. 3 and Fig. 4 for
comparison. It can be seen from the figures that the fKdV
model predicts a phase lead of the upstream-advancing soli-
tary waves for the strong disturbance~h054.0 cm! case at
subcritical and critical speeds, and underpredicts the
upstream-advancing waves at all three Froude numbers for
the weak disturbance~h055.33 cm! case. For the trailing
waves the fKdV model overpredicts the amplitude. The g-B
model predicts a phase lag of the upstream-advancing soli-
tary waves and a phase lead of the trailing waves for all the
cases, and underpredicts the amplitude and number of the
upstream-advancing waves for the weak disturbance case.
Both fKdV and g-B models fail to predict the trailing waves
for the relatively strong disturbance~h054.0 cm! case at
subcritical speed,Fn50.89, where wave breaking was ob-
served in the experiments.

Throughout these comparisons it reveals that the present
NS method performs better than the two simplified inviscid-
flow models. The improved agreement with experiments by
the NS solution may be due to the following reasons. First,
the fKdV and g-B models cannot simulate the detailed flows
around a submerged body because they are depth-averaged
models, whereas the NS equations do not have such restric-
tions. Second, the geometry of the body used in the numeri-
cal solutions of the fKdV and the g-B models is different
from that in the experiments by an effective bump height
instead of the actual bump height. Third, the presence of a
viscous boundary layer around the body may be thought to
increase the effective disturbance caused by the body. And
furthermore, a Couette flow develops in the gap region be-

FIG. 2. A partial view of the numerical grids.
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tween the body and the channel bottom, which in turn in-
duces some back-pressure gradient and impedance to the
flow through the clearance. In the calculation of the inviscid
fKdV and g-B models, these viscous effects are simply ac-
counted for by increasing the bump height, i.e., increasing
the strength of the disturbance. On the other hand, in the
solutions of the NS equations, viscosity is included in the
modeling. Therefore, the viscous boundary layer around the

body and Couette flow in the small gap can be accurately
simulated by the NS equations. In order to investigate the
effect of the viscous boundary layer within the gap on the
free-surface waves, a calculation of the NS equations for a
case in which the body touches the bottom of the channel
~without a gap! is conducted. The results reveal that the
waves generated on the free surface without a gap~where the
body touches the bottom of the channel! are quite different

FIG. 3. Comparison between experimental data and numerical results for water depthh054.0 cm at various Froude numbers.
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from those with a gap, and the former does not agree with
the experimental data~see Fig. 5!. Small-amplitude advanc-
ing solitary waves with low phase velocity are observed for
the case where the body touches the channel bottom. This
indicates that the viscous effect in the boundary layer around
the body and on the floor of the tank plays an important role
in the generation of solitary waves. It is interesting to note
that the results given by the inviscid-flow models, such as the

fKdV and g-B models, are independent of the gap size and
their accuracy depends, to a great extent, on the accuracy of
estimating the viscous effect around the body and on the
channel floor, and on the way of approximately accounting
for it.

The Reynolds numbers used for the present NS solutions
are the same as those in the experiments of Leeet al.,8 which
are of the order of 105. At sufficiently high Reynolds num-

FIG. 4. Comparison between experimental data and numerical results for water depthh055.33 cm at various Froude numbers.
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bers, the vorticity is confined to a thin boundary layer along
the free surface. The source of vorticity at the bottom of the
channel and on the boundary of a submerged body is much
stronger than that on the free surface~cf. Tang et al.24!.
Therefore the improved agreement with experiments by the
NS solutions is primarily due to the fact that the viscous
effect in the boundary layer around the body and on the floor
of the channel can be correctly simulated in the NS equa-
tions. Unfortunately no equivalent calculation of full Laplace
equation is available for comparison with the experiments of
Lee et al.8 and with the present NS solutions. However, ac-
cording to Cao and Beck,20 the numerical results from the
fully nonlinear model~with the complete Laplace field equa-
tion and fully nonlinear free surface boundary conditions!
agree with the results of the fKdV model for a weak surface
pressure disturbance, while the fKdV equation predicts no
difference in waves generated by two different types of dis-
turbances of the same distribution, i.e. the bottom topogra-
phy and the surface pressure.

VI. VARIATION OF THE SUBMERGENCE DEPTH

In the experiments of Leeet al.,8 a series of tests were
conducted to determine if the vertical position of the body in
a water column would influence the resultant wave develop-
ment. It was reported that the waves generated were quite
independent of the disturbance position.

Both the fKdV model and the g-B model admit forcing
functions in the form of a surface pressure distribution or a
bottom topography. For the fKdV model, these two forcing
functions are entirely equivalent, whereas for the g-B model
there exists a very mild difference between them. This sug-
gests that a surface pressure would produce a quite similar
solution in comparison to a bottom topography of the same
distribution. Both models were derived by assuming that the
x-component velocity of the fluid was a water-layer depth-
averaged velocity, and its dependence on the vertical dimen-
sion was removed. In practical applications, this means that
the resultant motion induced by a horizontally moving thin
body would not depend on its submergence depth. Thus, both
models cannot be used to calculate waves generated by an
arbitrarily submerged body. However, the NS equations can

be used to calculate the waves generated by either a bottom
topography, a submerged body, or a free-surface disturbance.

A series of calculation is conducted with the present NS
method for the vertical position of a body, varying from the
bottom of the channel to the middle of the water depth. Fig-
ure 6 shows the variation of the amplitude of the first
upstream-advancing solitary wave, with the clearance be-
tween the base of a submerged body and the channel bottom.
It can be seen that the wave amplitude has a steep increase
versus the clearance from zero to a very small value~about
0.0075h0!. It then slowly increases with the clearance until
the clearance is about 0.05h0 , beyond that the wave ampli-
tude remains almost unchanged.

The big difference of the wave amplitude between zero
clearance and a small clearance is due to the viscous flow
induced in the gap region, which causes a sudden increase in
the wave amplitude. The presence of a viscous boundary
layer on the base of the body and on the channel floor in the
gap region may be thought to increase the effective strength
of the body. The viscous effect increases slowly with increas-
ing clearance as the extension of the viscous boundary layer
in the gap region. Up to a certain stage~the clearance is
about 0.05h0 in the present case!, the viscous flow is fully
developed in the gap. A further increase in clearance would
not increase the viscous effect. This supports the theory and
agrees with the observation of experiments that the wave
generated by a submerged body would not depend on its
submergence depth, except for a very small region close to
the bottom of the channel.

FIG. 5. Wave profiles for different clearance (Dh) between the base of a submerged body and the channel bottom.

FIG. 6. Variation of the amplitude of the first upstream-advancing solitary
wave with the clearance between the base of a submerged body and the
channel bottom.
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VII. CONCLUSIONS

The present numerical method of solving the unsteady,
two-dimensional, Navier–Stokes equations for free-surface
flows predicts the main features of the solitary waves gener-
ated by a submerged disturbance moving steadily at a speed
near the critical velocity in a shallow water channel. The
numerical results from the present method agree very well
with the experimental data, and the present method performs
better than the simplified potential-flow models, i.e., the g-B
model and the fKdV model. The improved agreement with
experiments by the present method is primarily due to the
fact that the viscous effect in the boundary layer around the
body and on the channel floor can be correctly simulated in
the computation of the NS equations. The present numerical
calculation shows that the vertical position of a submerged
body would not influence the resultant wave development,
except for a very small region close to the bottom of the
channel.
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