Numerical study of nonlinear shallow water waves produced
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Two-dimensional solitary waves generated by a submerged body moving near the critical speed in
a shallow water channel are studied numerically. The incompressible Navier—Stokes equations in a
curvilinear free-surface-fitted coordinate system are solved by the finite difference method. The
present numerical results are compared with the existing experimental data, and with the numerical
solutions of two inviscid-flow models, i.e. the general Boussinesq equation and the forced
Korteweg-de Vries equation. It is found that the viscous effect in the boundary layer around the body
and on the bottom of the channel plays an important role in the generation of solitary waves on the
free surface. Hence the Navier—Stokes solutions have a better agreement with the experimental data
than those obtained from two inviscid-flow models. The effect of the submergence depth of the body
on the waves generated is also investigated. It reveals that waves are insensitive to the submergence
depth of the body, except for a small region quite close to the bottom of the water chann&@960
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I. INTRODUCTION and Smyth'! These studies have also been extended to non-
linear waves in two horizontal dimensions by Mdiased on

A disturbance moving with a transcritical velocity in approximations for slender bodies in a shallow channel, by
shallow water can periodically generate a succession of solErtekinet al'® employing Green—Nagdi's theory, by Wu and
tary waves advancing upstream of the disturbance. Immedivul® based on the g-B model, and by Katsis and Ak¥las
ately behind the moving disturbance there trails an ever elondsing the Kadomtsev—Petviashvili model.
gating stretch of a uniformly depressed water surface Besides the simplified theoretical studies, many numeri-
followed by a train of cnoidal-like waves oscillating about cal schemes for two-dimensional potential flows with fully
the initial free-surface level, decreasing in amplitude withnonlinear boundary conditions on the free surface have been
distance and eventually vanishing in the farfield. The disturpresented. Longuet-Higgins and Cok&etapplied the
bance can be a surface pressure distribution, a submergbdundary element method based on the Green’s integral
body, or a bottom topography. Although the disturbancetheorem with the mixed Eulerian—Lagrangian scheme to the
moves at a constant speé&teady motiohn the flow gener- simulation of transient free-surface flows. Their work was
ated can be unsteady and periodic. The first recorded obsarodified by SuzuKi’ for the problem of a semicircular
vation of this phenomenon was reported, as a “great solitarynound in shallow water and by Coiffefor the shallow-
wave,” by John Scott Russell in 1834. A century later, thiswater swell. For problems of wave—body interactions, Yeung
phenomenon was observed by Thews and Landwehes et al’® developed a finite difference method to solve the
series of towing tank tests of ship models in shallow waterLaplace equation using a mixed Eulerian—Lagrangian formu-
Thereafter several systematic experimental investigationktion to satisfy the fully nonlinear free-surface conditions.
were reported* Cao and Bec¥ presented a simple numerical method using

This phenomenon was rediscovered, first numerically bythe complete Laplace equation and fully nonlinear free-
Wu and WG based on the generalized BoussinégeB) surface boundary conditions to include the higher-order ef-
model derived earlier by Wifor describing two-dimensional fect. The method was applied to calculate two-dimensional
long waves with moving surface pressure or bottom topogsolitary waves generated by a moving surface pressure dis-
raphy. A simplified forced Korteweg-de Vri¢fKdV) model turbance, a submerged circular cylinder, and a bottom bump.
derived from the Boussinesq equation was employed by WuFrom the numerical results, it was found that for strong dis-
to explore the basic mechanism underlying the phenomenoturbances, the fully nonlinear model predicted larger waves
Leeet al® carried out a combined numerical and experimen-than those predicted by the fKdV model. The fully nonlinear
tal study with a two-dimensional cambered bottom topogra<calculations showed that a free-surface pressure distribution
phy moving along the bottom of a water channel in order togenerated significantly larger waves than those due to a bot-
verify the numerical solutions of theoretical models, i.e., thetom topography.
g-B model and the fKdV model. A broad agreement between  The theoretical and numerical studies of this phenom-
the experimental data and solutions derived from two theoenon mentioned above are based on the potential-flow
retical models were found, in terms of both the amplitudetheory. The main limitation of these methods is that the vis-
and phase of the generated waves. cous effect cannot be accounted for, except in a very crude

In addition to these studies there were papers reportingvay for the modeling of the bottom friction. To analyze the
calculations using the Korteweg-de VrigsdV) equation by  complexities of the phenomenon, including nonlinear effects,
Akylas® and Cole® and using the fKdV model by Grimshaw dispersion, and dissipation, a more general formulation is re-
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quired. Solutions of Navier—Stoke@\NS) equations with
consistent viscous boundary conditions offer an opportunity
to capture these complexities. The earliest and most famous
method for solving time-dependent viscous flows with a free ~ — ~

surface is the MAC method by Harlow and Wef¢hThis . ?

method has been improved and extended to many different P X;
versions, for instance the SUMAC method of Chan and

Street2,2 the TUMAC;A method of Miyataet al"23 and the FIG. 1. A submerged disturbance moving with a transcritical velocity in
method of Tanget al“” Because the MAC-type methods use ghajiow water.

a spatial fixed Cartesian coordinate system, they require spe-

cial treatment on the boundaries of arbitrary shape such as

the deformed free surface and body boundary. Thereforand the continuity equation. The dimensionless conservative
these methods are not particularly well suited for the freeform of the two-dimensional NS equations in this Cartesian
surface flow around a body with a complicated geometry. Orzoordinate system is

the other hand, a method based on a free-surface-fitted coor-

dinate system has been considered as an alternative approach @ + -
to solve the fully nonlinear free-surface problem. Methods of ~ t IX; dx;  Redx;
this type have been developed and applied to a variety 0fnd the continuity equation is
nonlinear wave problenfs=?8 Chang and Tarf§ studied

nonlinear water waves generated by a bottom bump, and %:0 )
found that the amplitudes of advancing solitary waves and  9dX; '

downstream train waves were a_tte%{ated by the viscous efynarey. is the velocity component along theaxis, p is the
fect at low Reynolds numbers. Hinatsinvestigated various pressure, antlis the time. The governing equations are nor-

nonlinear wave problems, including the wave generated by g,i;eq with the steady velocity of the disturbarioein the

moving topography. _ _ body frame, the uniform stream velogity, and the initial
In the present work, numerical solutions of the NS equay, Lisorm water deptth,. The Reynolds number and Froude

tions in primitive variables using a moving grid system fitted number are defined as Rephy/v andFn = ug/ /_gh re-

to the free surface are solved to simulate nonlinear solitar% ectively, where is the gravitational constant andis the
waves generated by a submerged body moving along th mematic’viscosity coefficient

horizontal bottom of a water channel. A finite difference For accurate computation of viscous flow with a free
methoci similar ttot.the sAcheme t(')f nga;@:s adopte(;i tfrc: r thet. urface, it is necessary to transform the governing equations
pr%sen Complu ? |g_n. sfmen|.|one ﬁtore, most theore Ith a time-dependent, curvilinear coordinate system fitted to
gn nurt:\enca jtl; ées 0 not? me(;;\r sc;k: ary \{vay(jesflger;ﬁra Cthe moving free surface as well as the body boundaries. A
y & submerged body were based on € INVISCIA-TIOW tEOTY 1 inear transformation from the physical coordinate sys-

Although a few gttempts were made in thege §tudles to COMem to the computational coordinate system is defined by
pare theories with experiments, only qualitative agreement

between them can be inferred. Leteal® made a quantitative g=¢(x,t) and r=1(t). ()
comparison between their experimental_data_and the_numeq’h the above transformatiom,is a function oft only, and in
cal results of the fKdV and g-B models, in which the viscous;;,o present paper it is assumed thatt. The Jacobian of the
effects were accounted for in a crude way, and found reason;,nsformation is
ably good agreement. The results of the present viscous flow Lo
analysis with consistent viscous boundary conditions are _ (& E)
compared with the experimental data and the numerical re- A(Xq,X2)
SU|t580f the gTB mOdEI and the fkdv model'obtalned by I‘eeEquations:(l) and (2) can be partially transformed to the
et al® for validating the present computational method. A . ' i
! . . computational coordinate systeré ) as
series of calculations are conducted for various submergence

auu) dp 1 9 (aui) 1 9x,

(9—Xj TEnZ ax (1)

4

depths of the body in order to investigate the effect of thed [u; d (ue& j
submergence depth of the body on the generated waves. gt (j) + FERWE H”L J U )
g (¢og) 1 4 (1 oy
-3 | T 5] merm (39" 5] ©
Il. GOVERNING EQUATIONS
and
The nonlinear wave problem considered in the present g (Ui
paper is shown in Fig. 1. A Cartesian coordinate system fixed (_) =0, (6)
with respect to the body is chosen with theaxis along the 9&" | J
bottom of the channel ang, axis pointing upward. In this ith
body frame, the body is fixed in a uniform stream of velocity i il
Uy with unperturbed water depth,. The motion of an in- szﬁ U, é=p+ X2 g“:ﬁﬁ @)
compressible viscous fluid is governed by the NS equations M Fn?’ Xy IXy”
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Wherer is the contravariant velocity component along thewhereas the bottom of the channel moves with uniform ve-
& direction,g'I is the metric tensorp is the redefined pres- locity uy. Therefore the free-slip boundary condition is used
sure term, and&!/ ot associated with the grid movement is on the bottom. These conditions are stated mathematically as
the grid point speed. The following metric identities are used

for the transformation: Up=Uo, Uz=0, on the bottom, (15
0 (108 g1 0 (108 u;=0, u,=0, on the body surface. (16
Ezl (j a_)(l) Y (j) + Frl (j E) =0. (®  For the case where the body touches the bottom, Neumann
(zero gradientboundary conditiongu,/9£?=0, is specified
lIl. BOUNDARY CONDITIONS on the bottom of the channel to avoid the singularity. Far

upstream, flow is uniform and the free surface is undisturbed.
The free-surface boundary is not knowanpriori. The  Thus

location of the free surface is part of the solution in the
problem and is determined from the free-surface boundary
conditions. The free-surface boundary conditions consist of he open boundary conditions for free-surface problems are
one kinematic condition and two dynamic conditions. Thetreated by various method$?® To prevent the reflection of
kinematic condition states that the fluid particles of the freevaves into the solution domain the open boundary condi-
surface stay on the free surface at any timéa(i, ,t) is the  tions must be carefully implemented. In the present work, the

u;=up, UZZO, as X;— —x, (17)

free-surface elevation, this condition is so-called added dissipation zone method of Chiba and Ku-
wahara(cf. Hinatsi#’) is used. In this method the computa-
ah oh . I . . o
- i = tional domain is extended with a coarse grid, which induces
up Uz, at xp=h(xy,t). ) : 2 ST )
ot 281 a numerical dissipation effect, and waves are damped by this

The dynamic conditions represent the continuity ofSOrt of numerical damping. A Neumann-type boundary con-
stresses on the free surface. Neglecting the surface tension gHion is imposed on the outmost boundary. The coarse grid

the free surface, the dynamic conditions are is _obtained by increa_sing the grid _size tov_va_rql open bou_nd-
aries with a geometrical progression. A fictitious damping
nio;jn;=0 (10 force was included in the¢® direction in the added dissipa-
and tion zone by Hinats@’ but it is found unnecessary in the
present work.
tiojjn;=0, atx,=h(xy,t), (12) The initial velocity field is taken to be that of the static

wheren; is the unit normal vector and is the unit tangential ~ (Quiescentfluid case, that isy;=u,=0, and a constant ac-
vector to the free surface. The stress tensor for an inconfeleration is imposed in the entire domain until the inflow

pressible Newtonian fluid can be expressed as velocity attains one.
1 (9UJ ﬂui
o=~ péij + R_e (?_X &7 , (12 IV. DISCRETIZATION AND SOLUTION PROCEDURE
i j

A regular grid is used in the present method for discreti-

where §;; is the Kronecker delta. Equatio®) and(12) can . .
1 . . ; zation. The velocity and pressure are evaluated at computa-
be partially transformed into the curvilinear coordinate sys-. . L
tional cell centers. The advantage of this stencil is that the

i
tem (£.1) as‘ ‘ conservation of mass and momentum are exactly satisfied,
oh (o€ 9&"\ ah even in the discretized formulation. Spatial differentials are
at EJr“l Xy @2“2 (13 giscretized using the second-order central difference, and the
QUICK scheme of Leonard is used for discretization of
and convection terms. Time marching is carried out using a time-
. 1 (au; ¢ . au; 9 ” splitting fractional-step methoq. It is a two-step pred_ictor—
Tij= P T 54 98 a% | af ox;)” (14)  corrector scheme. In the predictor step, an intermediate ve-

locity field U, is computed explicitly by integrating E¢p) in

The velocity componenti; on the free surface is ex- time using the velocity and pressure from previous time step
trapolated from the interior in such a way that the dynamicn,
free-surface boundary conditions are satisfied on the free sur- .

n
face. The velocity gradiensu,/a¢” on the free surface, L_(ﬂ) :At[__a, (i Uj)__a, (fa_gj)
which is needed for the extrapolation, are obtained by solv- N &\ J A&\ J ax
ing Egs.(10) and (11) simultaneously. The velocity compo- 1 9 (1 . au\l"
nentu, on the free surface is calculated from the continuity + R_e@ (3 gl a_gr) , (18

equation(2). The normal dynamic free-surface condition, Eq.

(10), is used to specify the pressure on the free surface. Andihere At is the time increment and the superscriptaind

the kinematic boundary condition, E(R), is used to deter- n+ 1 denote the previous and the present time steps, respec-

mine the location of the free surface. tively. After the predictor step, the location of the free sur-
The no-slip boundary condition is imposed on the bodyface at time stem+1 is evaluated by integrating E¢L3)

boundary surface. In the body frame, the body is fixedexplicitly,
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9€ oh\" (4) Correct the intermediate velocity field by Eq.(20)
h"ti1=h"+ At ) ,

U= Uy =~ Frl (19 using the pressure incremefi estimated in steg3) to ob-

! tain the velocity fieldu!"?* at time stepn+1.

and the grid of the flow domain is regenerated to fit the  (5) Obtain the velocity component; on the free sur-

newly estimated free surface. The Jacobian and the metrilace by extrapolation from the interior using the velocity

tensor are recalculated according to the new grid. gradient du,/9&? on the free surface obtained by solving
At the second steq; is corrected by the pressure incre- Egs. (10) and (11) simultaneously. Calculate, on the free

ment §¢=¢""1— ¢" between the present time step-1  surface from the continuity equatidg).

and the previous time stapto obtain the velocity fieldi"** (6) Return to step 1 for the next time step.

at the present time stapt+ 1,

V. VALIDATION AND DISCUSSION

u; n+1 Cli J ¢) [?gj n+1
(j) —W:—At a—gj (j 0_X.) The viscous free-surface flow studied experimentally
. and numerically by Leet al® is used to validate the present

At 9 (f ﬁ_éﬂ) " computational method. The experiments of leteal® were
&\ J ax; conducted in an open flume of 7.5 m long, 0.75 m wide, and

I 0.6 m deep. The bottom unevenness wak1l cm. A two-
= _A _‘9_ (% ﬁ) (20) dimensional body of the arched cross section with a chord of
&\ J ax 4.9 cm, height of 0.65 cm at its midchord, and span of 72 cm

Note that the difference of the pressure differential bet\Neer\1N.as used. It was positioned Just_above the floor of the flume
) o . . with a gap of 0.05 cm at the highest location of the floor.
n+1 andn time steps is simply approximated by the differ-
) . . Because of the unevenness of the floor, the gap between the
ential of the pressure increment at the 1 time step. How- )
. . . base of the body and the floor of the tank varied from
ever, the pressure incremef in Eq. (20) is not known and .
. o o 1 0.012%, to 0.062%,, with an average value of 0.0375.
must be determined by requiring the velocity field™* to .
; I . . . Two water depths, i.e., 4.0 and 5.33 cm, were used for mea-
satisfy the continuity equation. The divergence-free condi-
. . N+l . . surements over a range of Froude number from 0.7 to 1.1. To
tion applied foru'™* yields a Poisson equation faig by . . .
. . eliminate any sidewall effects the wave elevations were mea-
taking the divergence of Eq20). Thus . . R
sured at points as close as possible to the longitudinal cen-
g [0+t o [o& o (64 ag\]|™ terplane of the tank. Leet al® estimated the effects of vis-
|7 =AY x| o T8 | T , cosity for the attenuation of a solitary wave in a channel with
&f J &f &Xk ag J &Xi . . ..
smooth sidewalls using the empirical formula suggested by
_ . B Daily and Stephan. The estimation indicated that a soliton
whereU'=(d&'/9x;)U; . would attenuate less than 5% at the end of the experiments.
The unsteady problem is treated as a quasisteady orEhus, the experiments could be considered as two dimen-
between successive physical time steps. The known value gfonal and the effects of viscosity on wave propagation from
a dependent variable at tintecan be used as a guess for the smooth sidewalls were not corrected for in the comparison
unknown value of that variable at tinie- At for reasonably between experimental data and numerical results from two-
small At. Since this is a relatively good guess, only a fewdimensional computations given below.
iterations are normally needed to obtain a converged squtioR Numerical simulation
for timet+ At. The grid is aligned to the free-surface bound-"" umen imuia
ary, which moves in time. Therefore the grid is time depen-  The exact geometry of the body used in the experiments
dent in general. However, since E®) is integrated in time  with an average gap of 0.03[% between the base of the
by the explicit method, within each time step the grid isbody and the channel bottom is used for the present numeri-
independent of timgcf. Farmeret al?®). Therefore the grid cal simulation. The length of the fluid domain is taken as 100
point speed terms)&!/ot, are dropped in Eq$18) and(19). units, and the depth of water is set to be unity. 232 grid
In summary, if the location of the free surface and thepoints are used in the horizontal direction, and 31 grid points
values of the velocity and pressure in the calculation domairare given in the vertical direction. The grids are constructed
are known at time step, the solution procedure for the next in such a way that thé'=const grid lines are all vertical,
time stepn+1 is as follows. i.e., & is a function ofx, only. The grid lines are concen-
(1) Compute the intermediate velocity explicitly by  trated around the body, near free surface, and the floor of the
solving the momentum equati¢a8), using the velocity and tank. A partial view of the initial grids for numerical compu-
pressure from time steip. tation is shown in Fig. 2. The grid system is rearranged at
(2) Determine the new location of the free surface ateach time step to fit the deformed free surface.
time stepn+1 by the kinematic free-surface boundary con- The time step is set to h&t=0.01. The computation is
dition, Eq.(19), and then regrid the flow domain to fit with started at the initial condition of zero velocity and pressure
the new location of the free surface. Jacobian and metrieverywhere and a flat free surfade={1.0). A constant ac-
tensor are recalculated according to the new grid. celeration of 0.25, or 0.2pin the dimensional space, is im-
(3) Solve the Poisson equatig2l) implicitly to com-  posed on the entire domain until the inflow velocity reaches
pute the pressure incremes between the time stepsand  unity. For the time step ofAt=0.01, 400 time steps are
n+1, then update the pressure B)*1=¢"+ 5. needed to accelerate the flow from zero velocity until the
150 Phys. Fluids, Vol. 8, No. 1, January 1996 D. Zhang and A. T. Chwang
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FIG. 2. A partial view of the numerical grids.

upstream inflow velocity reaches unity. Since the acceleraebserved during the experiments. Since the kinematic condi-
tion in the experiments was uncertain, the acceleration fotion is implemented by the Eulerian method in the present
the present numerical computation is determined by numerinumerical scheme, it only permits solutions in which the
cal tests. The calculation is carried out for two water depthsfree-surface locatiorh is single valued. Consequently, it
i.e.,hg=4.0 cm andhy=5.33 cm, and at three Froude num- does not allow for the breaking of waves.
bers, i.e. subcritical, transcritical, and supercritical, for each
water depth corresponding to those in the experiments. AIC. Comparison with the fKdV and the g-B models
other parameters in the calculation are the same as those in 8 . .

: . ) ; Lee et al® presented numerical results corresponding to
the experiments in order to make a meaningful comparison . " . S

; . . e experimental conditions using two inviscid-flow models,

In the experiments, wave gauges were fixed in the channe

. i.e., the fKdV model and the g-B model. In an attempt to
and located at 70 and 68.1 units upstream of the body for thgccount for the bottom unever?ness the bottom-bumppclear-
water depthhy=4.0 cm andhy=5.33 cm, respectively. In '

: . . __ance, and the presence of a viscous boundary layer along the
the calculation with a body frame reference, a numencafi P yay g

S . channel floor and on the body surface, an effective bump
wave gauge is initially located at the same distance upstreaW .

. . . eight of 0.8 cm was assumed by Leeal® instead of the
of the body as it was in the experiments, and then moves : .
. . . actual bump height of 0.65 cm. The numerical results of the
steadily with the free-stream velocity.

fKdV and g-B models are also shown in Fig. 3 and Fig. 4 for
comparison. It can be seen from the figures that the fKdV
model predicts a phase lead of the upstream-advancing soli-
The results of the present calculation along with the extary waves for the strong disturban@f®,=4.0 cm case at
perimental data and the numerical solutions predicted usingubcritical and critical speeds, and underpredicts the
the g-B model and the fKdV model by Lez al® are shown upstream-advancing waves at all three Froude numbers for
in Fig. 3 forhy=4.0 cm atFn=0.89, 1.01, 1.12, and in Fig. the weak disturbancéh,=5.33 cm case. For the trailing
4 for hy;=5.33 cm atFn=0.90, 1.01, 1.11, respectively. The waves the fKdV model overpredicts the amplitude. The g-B
plots at the top of Fig. 3 and Fig. 4 are from the presenimodel predicts a phase lag of the upstream-advancing soli-
numerical results, which show the surface elevatioas a tary waves and a phase lead of the trailing waves for all the
function ofx; (x,=x) andt atF,=1.01 forhy=4.0 cmand cases, and underpredicts the amplitude and number of the
hy=5.33 cm, respectively. As can be seen from the plots, thepstream-advancing waves for the weak disturbance case.
present NS solutions predict all the main features of the pheBoth fKdV and g-B models fail to predict the trailing waves
nomena indicated earlier, namely the upstream-advancinfpr the relatively strong disturbanog,=4.0 cm case at
solitary waves, the prolonging depressed region immediatelgubcritical speedi-n=0.89, where wave breaking was ob-
behind the disturbance, and the train of trailing waves. Thesserved in the experiments.
features were observed in the experiments. Throughout these comparisons it reveals that the present
Detailed comparisons for the free-surface elevation as &S method performs better than the two simplified inviscid-
function of time recorded by wave gauge are made in the redtow models. The improved agreement with experiments by
of the plots in Fig. 3 and Fig. 4. Overall, it is seen that thethe NS solution may be due to the following reasons. First,
present NS solutions give excellent agreement with the exthe fKdV and g-B models cannot simulate the detailed flows
periments. The amplitude, phase, and number of solitararound a submerged body because they are depth-averaged
waves are very well predicted for all three Froude numbersnodels, whereas the NS equations do not have such restric-
in both water depths. For the trailing waves the agreemerions. Second, the geometry of the body used in the numeri-
between the present NS solutions and the experiments is conal solutions of the fKdV and the g-B models is different
sidered to be good, except for the case of the relativeljrom that in the experiments by an effective bump height
strong disturbancéh,=4.0 cm at subcritical speedFn  instead of the actual bump height. Third, the presence of a
=0.89 (Fig. 3), where variance between the numerical andviscous boundary layer around the body may be thought to
experimental data is most pronounced. According to Leéncrease the effective disturbance caused by the body. And
et al.B it is precisely in this case that the wave breaking wasfurthermore, a Couette flow develops in the gap region be-

B. Comparison with experimental data
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FIG. 3. Comparison between experimental data and numerical results for waterhgepttd cm at various Froude numbers.

tween the body and the channel bottom, which in turn in-body and Couette flow in the small gap can be accurately
duces some back-pressure gradient and impedance to teenulated by the NS equations. In order to investigate the
flow through the clearance. In the calculation of the inviscideffect of the viscous boundary layer within the gap on the
fKdV and g-B models, these viscous effects are simply acfree-surface waves, a calculation of the NS equations for a
counted for by increasing the bump height, i.e., increasingase in which the body touches the bottom of the channel
the strength of the disturbance. On the other hand, in théwithout a gap is conducted. The results reveal that the
solutions of the NS equations, viscosity is included in thewaves generated on the free surface without a(gdyere the
modeling. Therefore, the viscous boundary layer around thbody touches the bottom of the channete quite different
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FIG. 4. Comparison between experimental data and numerical results for watetgdeft83 cm at various Froude numbers.

from those with a gap, and the former does not agree witliKdV and g-B models, are independent of the gap size and
the experimental datésee Fig. 5. Small-amplitude advanc- their accuracy depends, to a great extent, on the accuracy of
ing solitary waves with low phase velocity are observed forestimating the viscous effect around the body and on the
the case where the body touches the channel bottom. Thihannel floor, and on the way of approximately accounting
indicates that the viscous effect in the boundary layer arountébr it.

the body and on the floor of the tank plays an important role  The Reynolds numbers used for the present NS solutions
in the generation of solitary waves. It is interesting to noteare the same as those in the experiments ofdtes.® which

that the results given by the inviscid-flow models, such as thare of the order of 10 At sufficiently high Reynolds num-
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FIG. 5. Wave profiles for different clearancalf) between the base of a submerged body and the channel bottom.

bers, the vorticity is confined to a thin boundary layer alongbe used to calculate the waves generated by either a bottom
the free surface. The source of vorticity at the bottom of thetopography, a submerged body, or a free-surface disturbance.
channel and on the boundary of a submerged body is much A series of calculation is conducted with the present NS
stronger than that on the free surfagd. Tang et al?%. method for the vertical position of a body, varying from the
Therefore the improved agreement with experiments by théottom of the channel to the middle of the water depth. Fig-
NS solutions is primarily due to the fact that the viscousure 6 shows the variation of the amplitude of the first
effect in the boundary layer around the body and on the flooupstream-advancing solitary wave, with the clearance be-
of the channel can be correctly simulated in the NS equatween the base of a submerged body and the channel bottom.
tions. Unfortunately no equivalent calculation of full Laplace It can be seen that the wave amplitude has a steep increase
equation is available for comparison with the experiments olersus the clearance from zero to a very small vdaout
Lee et al® and with the present NS solutions. However, ac-0.0075%,). It then slowly increases with the clearance until
cording to Cao and Bec¥, the numerical results from the the clearance is about 0185 beyond that the wave ampli-
fully nonlinear modelwith the complete Laplace field equa- tude remains almost unchanged.
tion and fully nonlinear free surface boundary conditjons The big difference of the wave amplitude between zero
agree with the results of the fKdV model for a weak surfaceclearance and a small clearance is due to the viscous flow
pressure disturbance, while the fKdV equation predicts nanduced in the gap region, which causes a sudden increase in
difference in waves generated by two different types of disthe wave amplitude. The presence of a viscous boundary
turbances of the same distribution, i.e. the bottom topogralayer on the base of the body and on the channel floor in the
phy and the surface pressure. gap region may be thought to increase the effective strength
of the body. The viscous effect increases slowly with increas-
ing clearance as the extension of the viscous boundary layer
VL. VARIATION OF THE SUBMERGENCE DEPTH in the gap region. Up to a certain sta¢fbe clearance is
In the experiments of Leet al.? a series of tests were about 0.08, in the present cagethe viscous flow is fully
conducted to determine if the vertical position of the body indeveloped in the gap. A further increase in clearance would
a water column would influence the resultant wave developDOt increase the viscous effect. This supports the theory and
ment. It was reported that the waves generated were quifedrees with the observation of experiments that the wave
independent of the disturbance position. generated by a submerged body would not depend on its
Both the fKdV model and the g-B model admit forcing Submergence depth, except for a very small region close to
functions in the form of a surface pressure distribution or ahe bottom of the channel.
bottom topography. For the fKdV model, these two forcing
functions are entirely equivalent, whereas for the g-B model
there exists a very mild difference between them. This sug-
gests that a surface pressure would produce a quite similar
solution in comparison to a bottom topography of the same
distribution. Both models were derived by assuming that the
x-component velocity of the fluid was a water-layer depth-
averaged velocity, and its dependence on the vertical dimen- 1 . ‘ L
sion was removed. In practical applications, this means that ~ ° o 005 01 015 Q2 025 03 035 04
the resultant motion induced by a horizontally moving thin
body would not depend on its submergence depth. Thus, bomG. 6. Variation of the amplitude of the first upstream-advancing solitary
models cannot be used to calculate waves generated by @fve with the clearance between the base of a submerged body and the
arbitrarily submerged body. However, the NS equations camhannel bottom.

0.6
0.4

wave amplitude
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