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Inviscid two dimensional vortex dynamics and a soliton expansion
of the sinh-Poisson equation
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The dynamics of inviscid, steady, two dimensional flows is examined for the case of a hyperbolic
sine functional relation between the vorticity and the stream function. The 2-soliton solution of the
sinh-Poisson equation with complex wavenumbers will reproduce the Mallier-Maslowe pattern, a
row of counter-rotating vortices. A special 4-soliton solution is derived and the corresponding flow
configuration is studied. By choosing special wavenumbers complex flows bounded by two rigid
walls can result. A conjecture regarding the number of recirculation regions and the wavenumber of
the soliton expansion is offered. The validity of the new solution is verified independently by direct
differentiation with a computer algebra software. The circulation and the vorticity of these novel
flow patterns are finite and are expressed in terms of well defined integrals. The questions of the
linear stability and the nonlinear evolution of a finite amplitude disturbance of these steady vortices
are left for future studies. €1998 American Institute of Physids$1070-663(98)01805-4

I. INTRODUCTION patch rotating with a steady angular velocity. Moore and
Saffman further generalized the solution to a vortex patch in
a uniform straining field. Kida included the effect of time
dependence in the straining field. An extensive discussion of
the dynamics of these elliptical vortices is given by

The dynamics of vorticity plays an important role in
fluid mechanics by providing a convenient, efficient and in-
structive perspective of the floh? Recently there has been a
strong interest in studying two dimensionéD) vortex 5
structures under various conditions. Such problems are netaffmant
only of fundamental fluid dynamical interest but will also ~ The stability of these configurations is not a trivial mat-
provide relevant information on turbulent flows. Among the ter and has also received extensive treatrfiéithe proper-
various possible applications of such coherent vortices art€s and dynamics of a single, elliptical vortex patch have
geophysical flows, rotating and stratified fluidsand fluid  continued to attract attention recently. Indeed the Lagrangian
layers excited by electromagnetic forCes. trajectories around the vortex might become chdbtic.

For inviscid, steady 2D flows without body force, one Properties of two or an array of vortex patches are usu-
general solution of fluid motions i&v,i» being the vorticity — ally handled numerically. Critical questions include but are

and the stream function, respectively not limited to
o, [Py Py (i)  the shape of the patches as the size of each individual
—o=Vo= Evaal ay?] (). (1.1 unit increases from being very small through a finite

measure, and finally to the case of touching patches,

f needs to be differentiable but otherwise arbitrary. P0|ntpi) the stability of such arrangemerits.

vortices, vortex sheets and other singular distributions o
vorticity have been studied extensively in the literature. The  The case of lineaf has also received tremendous atten-
goal of the present work is to derive new, globally smooth,tion lately. A Lamb dipole is the simplest exampl&n ex-
exact solutions of (1.1) for the special casef() ternal irrotational flow with a suitably chosen free stream
= —sinh¢. Solutions forf being constant are discussed in speed encloses a fluid endowed with vorticity. The circular
standard referencé€. A vortex patch is a connected region boundary has a radius determined by the zero of a Bessel
of finite area containing uniform vorticity surrounded by an function. Chaplygin probably investigated a similar problem
irrotational fluid. The evolution of a vortex patch can be independently at about the same time as Lamb did, but he
treated by the methods of contour dynamics and Schwargonsidered the case where the interior flow is not symmetri-
functions. A simple example of a vortex patch is a Rankineca| as well’ Analogous calculations have been performed for
vortex, a circular region of vortical fluid of a fixed radius in e quasi-geostrophic system of equations. The resulting so-
an otherwise unbounded irrotational fluid. Kirchhoff ex-ytions, the modons, constitute an active field of resedrch.
tended the reasoning, and gave an expression for an elliptical Nonlinear cases documented in the literature include

(i) f()=exp(—2¢): the Liouville equatiort’ The Stu-
dCorresponding author. Electronic mail: kwchow@hkusua.hku.hk art vortices constitute a cat-eye pattern, and represent a con-
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tinuous family of solutions from a shear layer to a rectilinear 3
array of point vortices.
(i) f(y) = —sinh: known either as the sinh-Gordon or ok
the sinh-PoissofishP equation-?
Mallier and Maslowe showed that a row of counter ro- RS R
tating vortices constitutes a special solution of $hiPas- 1 R S T

manter examined certain aspects of the controversies sur- i ! PN
rounding the precise relationship between the vorticity and =0l :\' SREY @ ! ( SRERE
the stream function in decaying two dimensional RSN RN
turbulence’? He also gave special axisymmetric solutions of NP \j
shP in an unbounded fluid in terms of known differential N K \/
equations. The stability of the Mallier-Maslowe configura- -
tion was investigated by Dauxoét al3

(i) f(y)=ay+by®: There is a widely held belief in
the nonlinear science community that the two dimensional . . .
nonlinear Schrdinger equation, =) -2 -1 0 1 2 3

=2t

; 2 _
'At + Axx+ Ayyi AZA* = 0, FIG. 1. Streamlines for the Mallier-Maslowe pattéin6), 1+ K2=m/2.

is not integrable. 2-soliton solution does not exist. Conse-
quently a time harmonic solutionA(x,y,t)=u(x,y)
X exp(—iQt), 92

f2>, 0o= X 1) + eXP ),

y=4tanh?

Uy Uyy+ Quxu3=0, (1.4

should not possess any special property. Indeed the dipole fo=1+mexp( ¢+ 2),

solution must be computed numericalfiyNumerical inte- _ 2, j2_ _
=ppX+dmY, +q;=—-1, n=1.2,
gration of the Euler equations shows that the dipole is Po=PoX+dny. Pt dhn (1.5
unstable’* However, the relation between the integrability of (P1—Pa)2+ (01— Q)2
Uyxt byy=f(¥) and the stability of the associated vortical M= = S T2+ (a- +a.)2"
patterns is unlikely to be simple. (P1+P2)"+ (A1 +02)
Mathematically shP is closely related to the elliptic ver- By choosingp,=p3=i\1+k?, q;=q,=k, k real, one ob-

sion of the sine-GordofsG) equation tains a form equivalent to the Mallier-Maslowe vortices. In
] the present notations this expression is

Uyt hyy=sin . (1.2 .

. . . thyxt hyy=—sinh ¢,
Studies of shP and sG actually have a long history in the (1.6
literature of nonlinear waves. An expression for an arbitrary k cog v1+k?x)
number of solitons for sG is availabte Periodic solutions of p=4tanh Y| ————|.

V1+k? costiky)

sG in terms of Riemann theta functions and the scattering
transform can be fountf. Travelling waves for the (21) (2 For comparisons with the main results presented later Fig. 1
spatial and 1 temporatimensional sG can be described in shows the flow pattern associated with6).

terms of classical elliptic functions.Some of these can re- Due to the restrictiom?+ 2= — 1, eitherp, or g, must

duce to a steady state case and hence might correspondge complex. To ensure real solutions the wavenumbers
solutions in inviscid vortex dynamics. For shP a periodic(p_ q.,) must be taken in complex conjugate pairs. Hence
solution in terms of theta functions and the inverse methodgnly solitons of even orders are viable solutions of vortex
is obtained for a square with homogeneous boundargynamics. In contrast, the dispersion relation for the sine-
conditions:® Gordon equation ig2+qg2=+1, and thus multi-soliton of
Recently it has been shown that the Mallier-Masloweg|| orders are possible candidates. However, in view of the
vortices can be obtained as a 2-soliton solution of shP withmportance and relevance of shP in earlier experimental and
complex conjugate wavenumbefsA special solution from  computational works in fluid dynamics, we shall focus on

a 3-soliton expansion of sG and some improved doubly peshp in this paper. Although one can argue that solutions of
riodic solutions were also given. The goal of the presensG and shP are related by the mapping

work is to present a special 4-soliton expansion of shP and to _ . _
study the consequence in vortex dynamics. Ut Uyy=Sinu, vytvy,=sinhv, v=iu. (1.7
For completeness the calculations reported earlier in th

literaturé® are reproduced here. The sinh-Poisson equationﬁlhe purely imaginary nature of this transformation does not

allow any known solution of sG to translate directly into

yxt byy=—sinh ¢ (1.3  flow patterns. A Baklund transformation exists between real
solutions of sG and shB.However, it is a highly nontrivial
has a 2-soliton solution task to generate solutions of shP from the known multi-
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soliton solutions of sG through this transformation. Consedation (1.5 dictates that complex conjugate wavenumbers

guently, one might have to start from first principles in de-must eventually be used, one searches only for this special

riving solutions for shP. style of 4-soliton expansion. The appropriate expansion for
Besides vortex dynamics a very important application ofshP (2.1)—(2.3) that will form the central theme of the

shP is the theory of 2D turbulence. The dynamics of twopresent work is

dimensional line vortices can be treated by the methods of .

statistical mechanics. The sinh Poisson equation is satisfied F=1+ My eXplby+ do) +Mys X b1+ ¢3)

by the most probable state of a system of point vortices in + My, expl 1+ ¢g) + Moz XA o+ @3)
thermal equilibrium. Hencél.3) will provide relevant infor-
mation on the relaxed state of 2D, high Reynolds number + My eXP( o+ hg) + Mag XA 3+ hy)
0
turbulence’ + MMy 3M1 MMMy EXPl P+ o+ Pt ),

The picture now is that the lowest permissible member
of the shP hierarchy, the 2-soliton, reproduces the Mallier-
Maslowe pattern. We shall derive a special 4-soliton expan-  g=exp( ¢;) + exp( ¢,) + expl ¢3) + exp ¢,)

sion in Sec. Il and study the associated flow patterns in Sec.
1l T X1 EXP( Pt P3t Pa) + x2 EXP D1+ 3t ba)

+ X3 eXP( P17+ Pt Pa) + xa EXP D1+ Dot d3).
2.7

Phase factors must occur in complex conjugate pairs

(2.6

Il. A SPECIAL 4-SOLITON EXPANSION

The search for multi-soliton of nonlinear evolution equa-
tions is by now a well established disciplifie.For the
present purpose we shall employ the Hirota bilinear operator ¢, = ¢p=p,;x+q1y, ¢3=0¢",

DyD{g.f= J_7 )m(i—i)n o= =X+ Ay, Gs=y".
X " ’ ’
X ox a By repeated use of the identit@.5 our contribution is to
XX, ) F (X1 [y 1t - (2.2 prove that the expansidR2.6), (2.7) will actually truncate at

this level at least for the special case @f=« (real), g,

ShP(1.3) can now be rewritten in the bilinear format: =g (real). Through these intermediate calculations the re-

H 1(9) o (f+g) 2.2 maining parameters can now be determined:
f =g PRtan=-1 n=12, p=ivlte’, m=a, o
2. 12 _ 2. N2\ F _ . '
(Dx+Dy)(g.g+f.f )=0, (D;+Dy)g.f=—gf. 03 p,=iV1t B2 g,=3,
. . 41
The identit _Sitl =D +a:d:
y - Mi=g, 1 SiTPPiTa, 29

F.

2(log F)xx:T (2.9 X1= X3= N =MpMygMyy,  X2= X4= N2 = M1M3My3.

Straightforward algebra now reveals a concrete final answer

has been used is a linear operator. Appropriate functional ef0f the stream function and the vorticity:

forms for the expansion of this type of bilinear equations ar
knownZ® The key to the search is to ensure that the expan-
sion actually truncates at one particular level, e(@.4),
(1.5 satisfy(2.3) through the identity

g=2{ exp ay)cos y1+ a’x)+exp By)cod V1+ B2X)

2
"D} ap
DYDJ explax+ry).expbx+sy) + oz+,8) exp(a+B)y)
=(a—b)"(r—s)" exd (a+b)x+(r+s)y]. (2.5 1
. , . - - X|| 14+ —5 | exp(By)cog 1+ a?X)
Tedious and oppressive algebra is usually involved in a B2
higher order search, but that difficulty is largely mitigated
currently by the widespread use of commercial computer al- i T2
gebra software, e.gMATHEMATICA . Since the dispersion re- 1 a? explay)cos V1+ A7) | 1, (210

1 1 B—1+a?\1+p%+1
P=1+| 1% Lz |exp2ay)+| 1+ 57 [exp(2By) +2 ZB_ \/1+Zz\/l+’82_1 expl(a+ B)y)cos (VI+a?+ 1+ B2)x)
aB+1+a?\1+p2+1 1 —B\4
wBt it ViT -1 expl((at B)y)cod (V1+a® =1+ g5 +| 1+ — 1+ z2|| o) w2ay+28y).
.19
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l//(X.y,a.B)=4tanh1(%>,

' (2.12 5l

yxt byy=—w=—sinh .
(2.10, (2.11) constitute the main result of the present work. 1t

Note that(2.10), (2.11) reduce ta(1.6) for the special case of
a= 3, provided that a simple translation

~ 0
"+ ! I a (2.13
— — log| — .
=y o g 21+ a? 1t
is made(and primes are droppgd
Furthermoreg(2.10), (2.11) possess a number of symme- —2r
tries:
w(xayiaaﬁ): w(xiylﬁia)! (214) _3’3
youy,aB)=9(x,—y,~a. = B), (219 FIG. 2. Streamlines fof2.10, (2.11) for V1+a2=m/2, 1+ B2=3m/2,
¢(X!y1a!ﬁ): lﬂ(_xiy,a’,ﬁ)- (216) B>0.

(2.149 implies that it is sufficient to conside8>« in the
subsequent discussion. Apart from illustrating the reflection

properties of(2.10, (2.11), (2.15, (2.16 can be used to cos{mx)zl P+E ’ P=exp(i\/mx),

classify the(a,8) parameter plane. More precisel§g.15 2 P

implies that one only needs to consider two cases:0,8 (2.18

>0 anda>0,8<0. The variation of the flow patterns with 1 1

respect to changes i is documented in Sec. lll. sin( \/1+,87x)= o7 (Q— 6) Q=expi \/1+,87x),
Confirmation Exact solutions are generally rare in fluid (2.19

mechanics, and2.10, (2.11) are certainly not intuitively

obvious solutions of the equations of motion. Hence it is _ — 1 /P Q

worthwhile to confirm the validity of(2.10, (2.11) by an Sif(V1+a® =1+ B%)x]= 2i (6_ B)' (2.20

independent procedure. We shall in fact prove {2at2) is no
satisfied by direct differentiation. Such lengthy calculationsThere are about twenty terms of the fofaf'v" with coef-

. ficients as lengthy, but well defined, algebraic function® of
are handled by the softwarATHEMATICA . We shall veri : : . .
y bt and Q. We verify that identical powers from both sides

that ) .
match exactly. About ten calculations require somewhere
(9 (9 4fg(f?+g?) from 10 to 20 min of computer time. The validity ¢2.10),
4tanh s £ +|4tanht o] =— (2= g?)? (2.11) is thus confirmed.

XX Yy

o3

We first perform the differentiation on the left symbolically To perform a comprehensive search on the properties of
usingg, 9x, 9y, Oxx. Oyyand the counterparts fér The  (2.10—(2.12 in the (e,p) plane will be a difficult exercise.
common denominatorfé—g?)? is then removed. The pre- An additional constraint is that real, physical solutions are
cise forms for the derivatives df andg are now computed obtained only forg|<|f| due to the inverse hyperbolic tan-
in terms of exponential functions iy and trigonometric  gent. We focus on several extensions of known solutions.
functions inx. The computations are again performed byA Vortices in a channel
MATHEMATICA utilizing (2.10, (2.11). These well defined "~
expressions are then substituted into the numerators of both (1) V1+a?=m/2 (a=1.21136), V1+B%=37/2 (B
sides of(2.17). =4.60506). The vertical lines=N, N=an odd integer, are
Finally, we expand each side in terms of the powersstreamlines, as there is no horizontabrma) component of
U™" whereU=exp(y), V=exp(@y), m,n integers. How velocity along such lines. Hence they can be replaced by
an arbitrary piece of commercial software will deal with rigid walls if necessary. Only pictures for the streamlines
complex trigonometric formulas in general is uncertain, andwill be shown, as diagrams for the vorticity contours are
unwise applications of the compound angle formulas maybasically identical. Note that fluids carrying vorticity of dif-
actually increase the execution time of the program. Hence iferent signs protrude into the original Mallier-Maslowe pat-
might be advisable to reduce all intermediate calculations tdern (Fig. 2).
a purely algebraic nature by using well known expressions, This might be one form of the phenomenon of ‘filamen-
e.g., tation’ studied earlief,but now the intruding fluids assume

)' (217 lll. RESULTS
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0.5f

1 4 -0.5 0 0.5 1
X

FIG. 3. Streamlines fof2.10, (2.11) for 1+ =72, \/l+,82=57r/2, FIG. 4. Streamlines fof2.10, (2.1 for y1+ a’=l2, \/1+,82=77'r/2,
B>0. B>0.

an oval shape rather than an elongated finger. Furthermorglonotonic increasingor decreasingy as the area enclosed

fluids on both sides of the boundary are endowed with vorby the streamlines shrinks to zero. _

ticity. Consider Fig. 3 as an example. The eddy in the center
The relationship between the number of solitons and thélualifies as a fundamental recirculation region, sigce-

external appearance of the flow is subtle, and pictures frorfreases strictly from about 3 as each streamline decreases in

the low wavenumbers regime can be deceptive. In théize. The family of streamlines enclosing all five eddies, e.g.,

Mallier-Maslowe solution there are two types of closedthe =1 to ¢)=2 sequence close to the walls- =1, must

streamlinegone with >0, one withy<0) before the pat- be rejected. The reason is that both regions of increasing and

tern repeats itsel{fFig. 1). In the present case there are decr(_aasing values qﬁare enclosed, and hence the variation

clearly four kinds of recirculation regions in Fig.(®y the  ©Of ¥ is not monotonic. _ . . .

shape and sign of the streamline®ne is tempted to link the We now offer the following conjecture which consists of

number of families of closed streamlines with the order ofSeveral parts:

the soliton expansion. That such a correlation might not existj) The special 4-soliton solution of the sinh Poisson

(or at least, not a simple opés illustrated next. e ; ; ;
quation, (2.10, (2.11), will contain for y1+ a?
(2) V1ta®=ml2 (a=1.21136), V1+p°=5n/2 (B =M/2 and 1+ B2=Nmn/2, N>M>1 being posi-

=7.79006). The linesx=N (N=odd integer are again
streamlines. However, there are now five recirculating re-
gions inside a lemon shaped streamlifé. 3).

(3) V1+a?=Mml2, y1+B%=Nm/2, M,N odd inte-

tive odd integersM + N fundamental recirculation re-
gions between the streamlings- + 1.

gers. As pointed out earlier it is now sufficient to consider 1
M<N. For comparison we present

(i) M=1,N=7 (Fig. 4),

(i) M=1,N=9 (Fig. 5,

(i) M=3,N=5 (Fig. 6),

(iv) M=3,N=7 (Fig. 7),

(v) M=5,N=7 (Fig. 8,

(vi) M=5,N=9 (Fig. 9.

By examining these figures we suggest a rule which
might govern the dynamics.

A mathematical conjectureThe linesx==*=1 remain
streamlines for the choiceVi+a?=M=/2, 1+ 2
=N/2, M,N odd integers. Obviously the flow patterns will
get increasingly complex a8 andN become larger(2.14)
implies that it is sufficient to considév<N. For the pur-
pose of the present discussion we define a fundamental re-

circulation region(FRR) in the following manner. A FRR [, 5. streamlines fof2.10, (2.1 for VIt a2=m/2, J1+ B2=9m/2,
consists of a sequence of closed streamlines with strictly>o.

0.5 1
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0.5f

——o

-1 -0.5 0 0.5 1 4
P

0.5 1

FIG. 6. Streamlines fof2.10, (2.11) for V1+a?=3w/2, 1+ B%=5m/2, FIG. 8. Streamlines fof2.10), (2.11) for 1+ a?=5x/2, 1+ B2=T7n/2,
B>0. B>0.

(i) If M=1 andN>1, the number of fundamental recir- ]
culation regions is reduced ™ for @>0,8>0, or We are not able to prove these statements rigorously but

one unit less than the case fiok> 1. the figures clearly support our claim.
(iii) If M=1 andN>1, the number of fundamental recir-
culation regions remaind+1 for «>0,8<0, due to
the appearance of a new unit below the main sequencg /o ices in an unbounded fluid
of vortices(Figs. 10, 11
(iv) The Mallier-Maslowe pattern corresponds to the de- Whena,g are arbitrary real numberg=N (N odd in-
generate casdl=1, N=1, a=8>0, and there is tegel is no longer automatically a dividing streamline. Since
then exactly one family of closed streamlines betweerPne recovers the Mallier-Maslowe vortices for the case of
x=+1. a= B, one uses the method of continuation. For a small dif-
. ) ference, say 1%, betweenand 3, one might have a second
Furthermore, there will be one single vortex attached Q. of counter rotating vortices. For a still larger difference
the walls) x==1 (or isolated from the main body of the panyveeny and 8 more complicated patterns will appear. We
flow by a dividing streamlingif (N—M)/2 is odd. If N jjystrate this trend fore=1, 8=1.6 in Fig. 12. We expect

—M)/2 is even, the number of these isolated vortices may b, the flow patterns will become increasingly complex as
zero, two, or possibly a higher even integer. This appears tQ,a continue to increasg.

be true for both3>0 and <0 (for a>0).

0.5

-1 ! * -1

-1 -0.5 0 0.5 1 -1 )(3 0.5 1

FIG. 7. Streamlines fo(2.10, (2.11) for 1+ a?=37/2, \/1+,82=77r/2, FIG. 9. Streamlines fo2.10), (2.11) for 1+ a?=5%/2, \/1+B2=97'r/2,
B>0. B>0.
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-2

-1 0

FIG. 10. Streamlines fof2.10), (2.11) for 1+ a?=m/2, \/1+B2:37-r/2,

B<O0.

C. Circulation and vorticity

Many physical properties of these systems of vortices
are of fluid dynamical interest. We shall again restrict the
attention to the case whexe= =1 are streamlines. The total
x andy components of momentum of these vortices in a

channel are zero:

%) 1 =<} 1

The kinetic energy is also bounded since the velocities decay
exponentially for largey. Hence such configurations can
theoretically be generated impulsively from a fluid at rest.

The total vorticity, however, is nonzero:

ff wdxdy=—JJ(¢xx+t//yy)dxdy

= % by dx— ¢ dy= %udxﬂ)dy.

In fact, one can consider a large rectangle with vertices
(£1,£R) and letR—«. The contributions from the hori-
zontal sides are neglected due to the exponential decay in the

far field. A simple calculation now shows that

(1) for the Mallier-Maslowe patterrf(1.6) for \/1+k?

=17/2)

ff wdxdyzzf v|y=1dy=8k

(2) for (2.10, (2.1)

[ [ owar—2[[%]

(3.9

dy _g
_. coshky °™
(3.2
d wa 41
y= S>—-ay,
x=1 —a 23
(3.3

Chow et al. 1117

-2
-1

1

FIG. 11. Streamlines fof2.10, (2.11) for 1+ a?=m/2, y1+ ,82=97'r/2,
B<0.

Z,= 7-r| M explay)(—1)M~ D2+ N exp By)

i, (4B
X (—1)(N-Dizy m expl(a+pB)y)
X 1+% M exp(By)(—1)M- V"2
+ 1+% N exp(ay)(—l)(Nl)IZH’ (34
1
Zo=1+| 1+ — |exp(2ay) + 1+'? exp(28y)
aﬂ—m\/l‘l'—ﬁz"'l
2
+ eXQ(aJrB)y](a,B—\/WJH—BZ—l
X (—1)M*N21L 2 exd (a+ B)y]
aB+1+a?\1+B%+1 _
" —)M-N2
af+ \/m\/l"'—,gz_l
1\[a—pB 2
+ 1+a7 1+?)(m exd (2a+2p)y],
(3.9
M 77 N
1+ 2= - /1+IBZZ - (3.6

This integral is convergent, and can be evaluated numerically
if M,N are known odd integers. Given the hyperbolic sine
relationshipw can range over four or five orders of magni-
tude asy changes from 1 to say 10. Note that there can be
regions of large positive and negative valuesvof3.3) only
places a constraint on the integral of the vorticity.
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for arbitraryM,N are not addressed here and will be left for
future studies. Computational works will likely be required
for consideration of linear stability. At least some members
of (2.10, (2.11) will probably be unstable. One potential
cause is the presence of ‘shielded monopoles’, a monopole
core shielded by vorticity of the opposite sigfig. 3.1 On

the analytical aspect tools from statistical mechanics might
be exploited. Progress can be made regarding the stability of
the solutions of

exp(A 6)

B~

(]

feee]

Ot Oyy= 1+u expro)’
0 and
FIG. 12. Streamlines fof2.10, (2.11) for a=1, 3=1.6. Oyt Oyy= —EXPIN ).

Similar calculations for the shP have not yet been worked
out?®In the unstable regings) there would be a competition
between 2D and 3D instabilities, and surprises await future
A higher order soliton expansion has been employed ténvestigators.
generate new and novel solutions of two dimensional invis- Besides vortex dynamics another very critical area
cid vortex dynamics. The sinh-Poisson equation is chosen aghere the present work might make an impact is the regime
an example but the approach should theoretically be applief chaotic flows. Persistent and robust 2D vortices have been
cable to all such Klein Gordon equations. One appealingbserved in many computational and experimental studies.
feature of the present procedure is that exceedingly comple&lthough the subject of two dimensional turbulence has been
flow patterns between two rigid walls can be generated anaand likely will remain controversial, the hyperbolic sine re-
lytically. Several extensions of the present work are possibleationship between the vorticity and the stream function does
(1) A 6-soliton solution, if it exists, can be constructed at have supporting evidence in computations of turbulent, de-
the expense of more algebra. One can anticipate the form @fying 2D Navier-Stokes flow. Hence the results of the
the expansionx==*1 will remain streamlines for special present work are not only of interest as special elegant solu-
choices of wavenumbers. The number of recirculation retions of vortex dynamics, but will have great practical sig-
gions per unit the flow will contain will be an interesting nificance as a source of relevant information for asymptotic

IV. DISCUSSIONS AND CONCLUSIONS

guestion. states in complex flows. Many solutions of shP are yet to be
(2) A similar study can be pursued for the sine Gordondiscovered, and the present route should be a fruitful path for
equation. further research.
(3) A corresponding project for the Liouville equatidn Finally multi-pole vortices can actually be observed in
is much more difficult since the expression for the multi- parallel shear flows between rigid waffs.Whether the
soliton is not available. present work will be applicable to these is left for future

The present formulation derives a result which forms astudies. As a conclusion the precise relationship between the
generalization of the Mallier-Maslowe vortices. As such thislong time outcome of complex chaotic flows and these exact
work should provide motivation for further theoretical work solutions from soliton theory will require further theoretical,
in vortex dynamics. Two important fluid mechanical aspectscomputational and experimental efforts.
of (2.10, (2.11) are not discussed in the text and a remark is
in order. The effect of viscosity is completely ignored due topockKNOWLEDGMENTS
the intrinsic limitations in the formulation. Viscous effects
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