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Scattering of surface waves by a semi-infinite floating elastic plate
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A new inner product is developed based on the Fourier analysis to study the scattering of surface
waves by a floating semi-infinite elastic plate in a two-dimensional water domain of finite depth.
The eigenfunctions for the plate-covered region are orthogonal with respect to this new inner
product. The problem is studied for various wave and geometrical conditions. Especially, the
influence of different edge conditions on the hydrodynamic behavior is investigated and compared.
The edge conditions considered in the present study inohaefree edge(ii) a simply supported

edge, andiii) a built-in edge. The hydrodynamic performance of an elastic plate is characterized for
various conditions in terms of wave reflection and transmission, plate deflection, and surface strain.
It is observed that the hydrodynamic behavior depends on the wave conditions, the geometrical
settings, and the edge conditions. The built-in edge condition induces the maximum wave reflection
and the minimum wave transmission. The free edge condition leads to the maximum plate
deflection. ©2001 American Institute of Physic§DOI: 10.1063/1.1408294

I. INTRODUCTION and gravity are treated separately. Based on the mode expan-
sions method, Bishop and Prfogave a comprehensive sum-

A great deal of effort is spent to effectively utilize the mary on the studies of hydroelasticity of ships, and Gran
ocean space for human activities and developments. Certagummed up the engineering applications of structural re-
huge platforms are constructed or extended from shoreline teponses of marine structures to waves. Kashiﬁ‘/vagiently
provide more dry space, while infrastructures like floatinggave a review of the developments on VLFS and reported
ports, mobile offshore bases, are built as working spaces. Ahat major work on VLFS is based on the mode expansions
recent times, several artificial floating islands are constructeghethod. It should be noted that the mode expansions method
off shoreline. Such huge floating structures are categorizeg only applicable to a finite plate. On the other hand, the
as Very Large Floating Structurd¥LFS). Before the con-  ejgenfunction expansions method is a more direct method, as
struction and positioning of any VLFS, careful and detailedit combines the kinematic and dynamic surface conditions,
studies are needed to investigate the hydrodynamic perfofyhich give the dispersion relation satisfied by the wave num-
mance and hydroelastic behavior of the system. Howevegers, Fox and Squiteused the eigenfunction expansions
due to the large size of the structure, the computational buimethod to study the interaction of surface waves with an
den becomes so large that it is often difficult to carry out thece-covered surface and obtained the solution by the conju-
analysis. In order to overcome this difficulty, the structure isgate gradient method. They observed that the eigenfunctions
often assumed to be semi-infinitely long in comparison withare not orthogonal with respect to the conventional inner
the wavelength of the incident wavagemotoet al). Un- product, though the eigenfunctions are complete. Squire
der most considerations, marine bodies are assumed rigid i 1% presented an invited review on the interaction of grav-
the presence of waves and their elastic deformations are Ny waves with an ice-covered surface. Meylaterived a
glected. However, the hydroelastic effect should be considyayiational equation to deal with the wave response of an
ered under certain wave conditions wherthe body itselfis  g|astic plate of shallow draft. Meyl&rused Rayleigh—Ritz
flexible, (i) the body is very thin compared to wave param-method to analyze the forced vibration of an arbitrary thin
eters, and(iii) the body is very long with respect to the piate floating on the surface of an infinite liquid. Recently,
incident wavelength. The former two cases should be quitgsaimforth and Crastérdeveloped a method based on the
obvious. However, in the latter case, localized deflection ofqrier transform and Wiener—Hopf technique to study the
vibration of a long structure becomes significant due 0 thecattering of gravity waves incident on an ice-covered ocean
continuous excitation of small amplitude waves, although theynq obtained asymptotic and approximate solutions to the

motion of the whole body is small as compared to its lengthyoplem. It may be noted that in the mathematical model, ice
In the theoretical study, there are two major approachess considered as a thin elastic plate.

The mode expansions method and the eigenfunction expan- 14 gnalyze the response of a thin horizontal elastic plate
sions method. In the mode expansions method, the body dgpating in waves, Ohkusu and NatBzombined the kine-
formation is represented by a series of natural modes. Thg,aiic and dynamic surface conditions to obtain the free sur-
kinematic and dynamic surface conditions due to elasticity,ce condition on the plate-covered surface and then solved
the problem by the boundary integral method. Stutbuaed
dFax: (+852 2858 5415. Electronic mail: atchwang@hkucc.hku.hk Fox and Squire%approach to study the oblique incidence of
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structed a complete set of orthogonal eigenfunctions satisfy-Elastic plate

ing the dispersion relations and then obtained the solution \
explicitly for predicting the hydroelastic behavior of a

shallow-draft VLFS. Nanba and Ohkusanalyzed the elas- *
tic response in waves of a large floating platform of thin

plate configuration in both shallow water and deep water. It

may be noted that the free surface condition gives an impor- @

tant information regarding the wave numbers.

In all these studies related to an elastic plate floating on
the water surface, the plate is assumed to have a free edge,
which suggests that the shear force and the bending moment
of the plate vanish at the edge. However, artificial structures
are usually kept fixed or moored at the edge by ropes, an- i _ i
chors, tension cables, or piles. In such cases, the free ed@ePdified the eigenfunctions of Fox and Sqa_'"m’ make
condition should be replaced by the simply supported edg&'em OTthogonaI with respect to the standard inner prO(_juct.
condition or the built-in edge condition as per the reality. It While, in the present study we have used the same eigen-
may be noted that for the simply supported edge conditionfunctions of Fox and Squ'?@”d used a more general inner
the deflection and the bending moment are assumed to vaRreduct such that the eigenfunctions are orthogonal with re-
ish, whereas for the built-in edge condition, the deflectionSPeCt to the modified inner product.
and the slope of deflection will vanish. In the mode expan-
sions method, Newmaf proposed to employ different or-
thogonal polynomials to represent the corresponding modtlal' MATHEMATICAL FORMULATION

expansions for different edge conditions, and claimed that  The problem under consideration is two-dimensional in
the application of natural modal functions should be limitednature. A semi-infinite elastic plate of thickness d floats on
to the free edge condition only. Newrf&moted that it is  the surface £0<x<0y=0) of a fluid which occupies the
very difficult to identify the fittest modal functions for vari- domain (-<x<w, —h<y<0) (see Fig. 1 Under the
ous edge conditions. Wet al** extended Newman'§ idea  assumption that the fluid is inviscid, incompressible and the
to analyze the wave-induced responses of an elastic floatingotion is irrotational, there exists a velocity potential

plate. There is still no criterion to detect the appropriated(x,y,t) which satisfies the Laplace equation
modal function for each edge condition.

In the present paper, we investigate the interaction of
surface waves with a semi-infinite elastic plate floating onin the fluid region for all timet. The bottom boundary con-
the free surface in finite water depth. The hydrodynamic bedition is given by
haviors due to three different types of edge conditions,

. L - P
namely (i) free edge,(ii) simply supported edge, ar(i) —=0, on y=-h, —o<x<ox, 2
built-in edge, are analyzed. Using a newly defined inner 9y
product along with the method of matched eigenfunction exynder the assumption of a linearized theory of surface

pansions, a full solution is obtained. The edge conditions argaves, the free surface condition in the absence of surface
directly incorporated while using the matching conditiontensjon in the open water region is given by

along with the orthogonality property. The defined inner

product is a generalization of the well-known gravity wave — #°®  d®
inner product developed by Havelotkwhich was general- ?+QW
ized by Rhodes-Robinsbh'®to deal with problems related _ _ _
to capillary gravity waves. Chakrabarti and Salfoapplied ~ Whereg is the acceleration due to gravity.

the mixed Fourier transform and the orthogonal inner prod- ASsuming that any particle which is once between the
uct of Rhodes-Robinsdf8to study the surface wave scat- glasnc. plate gnd the water ;urface_r_emams on it, the linear-
tering and generation by permeable vertical barriers in bot#z€d kinematic and dynamic conditions in the absence of
finite and infinite depths in the presence of surface tensiorsUrface tension are given by

In case of capillary gravity waves, the solution depends on 45, 3@

an edge condition, which is supposed to be prescribed at the —-= Gy on y=0, —%<x<0, (4)
solid—water interaction point. In the present study, the full

solution depends on the prescribed edge conditions, whicand

are obtained from the edge behavior of the elastic plate. The

inner product is defined by inspecting the corresponding WJF_JFQ?FO’ on y=0, —o<x<0, (5)
boundary value problem of infinite water depth. The beauty p

of the present method is that, it can deal with not only thewhere 7 is the transverse displacement of the elastic plate,
three kinds of edge conditions but also a plate of finite orthe fluid density, and® the surface pressure. It is assumed
infinite geometry. It may be noted that Kim and Ertékin that the plate is a thin homogeneous elastic material with

surface waves onto an elastic band. Kim and Ertékion- T y
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FIG. 1. Schematic diagram.

V2b=0 for —h<y<0, —o<x<w, (1)

=0, ony=0, 0<x<oo, 3)
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uniform mass density and thicknessl. With these assump- Under the assumption that the motion is simple harmonic in
tions, the displacemeny is related to the differential pres- time with angular frequencyw, we can rewrite® as
surePg by d(x,y,t) =Re{p(x,y)exp(—iwt)}. Then the spatial velocity
potential ¢(x,y) satisfies Eq(1) along with boundary con-

_ J*n n ditions (2), (8), and(9). From (3), the free surface boundary
Ps=El—+ms — +g], (6) L T
IX at condition in the open water region is given by
where EI=Ed®/[12(1— v?)] is the flexural rigidity of the d

02— _
plate,E is the effective Young’s modulus of the elastic plate, QW ®°$=0, on y=0, 0O<x<e. (10

v is Poisson’s ratioms=pJd is the density of the elastic
plate. When the surface pressién the linearized dynamic The water surface boundary condition beneath the elastic
condition(5) is equated to the sum &, we derive from4)  plate(7) is rewritten as

to (6), the condition ford(x,y,t) as .

J 2(9¢ 2 4 __
El—+mg—+pg| —+p—=0, ax= 1 7Y y
ax* at? ay at?
on y=0, —o<x<0.(11)
on y=0, —o<x<0.(7)

Further, it is assumed that at the edge, where the plate medts METHOD OF SOLUTION
the water surface, one of the following edge conditions are

satisfied a0—, 0) (Timoshenko and Woinowsky-Kriegét, The fluid domain is divided into two regions: The up-
p. 83: stream open regiorx(0,—h<y<0) and the plate-covered

(i) Free edge. In this case, there is zero bending momeﬁ?gion 0<<O,—dh<y<0_). The spatial velgcity potentials in
and zero shear force at the edge of the plate, which suggesq%e corresponding regions are expressed as
thata?»/9n? anda® 5/ on® are zero at0 —, 0) wheren is the ~ikox ikoX
! =(lge™ "o*+Rye'™0
normal in the outward direction. Using conditigd) and $1=(lo 0 o

eliminating » we derive that for a free edge plate, the edge - L
condition is +mE:l Rne ¢, for x>0, (1239
02(ac1>) 0 03(ac1>) 0, & (xy)=(00) v
| | = il | = il a- Xl = y . H
(3’X2 (9y (9X3 ﬁy y ¢2:Toe_lpoxfo+2 Tnepnxfn
n=I
(8a)
(i) Simply supported edge. At a simply supported edge = B
the displacement is zero and there is no bending moment, +n§1 Tne™fy, for x<0, (12b)
which suggests thah and 9% 5/9n? are zero at0—, 0). Us-
ing condition (4) and eliminatingn we derive that for a where
simply supported edge plate, the edge condition is
¢1 (x>0) (133
92 (acb) (acb) g, (x<0)
—[—]=0, |—]=0, at (xy)=(0,0. (8b 2
% 7y (xy)=(0,0. (8b)
coshko(h+y)
(iii ) Built-in edge. At a built-in edge, the displacement W m=0)
and the slope are zero at the edge of the plate, which sug- .= K (h , (13b
gests thaty andd/dn are zero atO—, 0). Using condition coskm(h+y) (m=123,..)

(4) and eliminatingn we derive that for a built-in edge plate, coskyph
the edge condition is

coshpg(h+y)
d [ oD b coshpgh (n=0)
ax\ay =0, Ty =0, at (xy)=(0,0. (80 = . (139
w (n=L11L11,1Iv,1,2,3,...)
As the velocity and pressure are continuous across the cosp,h S e
boundary between the plate-covered region and the open wa-
ter region(see Fig. 1, the full solution is obtained by match- igH,
ing the velocity and pressure at the boundary which gives 0T T o (130

dP(0—,y,t) dP(0+,y,t)
X B X

with Hy being the incident wave height. The constakyis
satisfy the dispersion relations

for —h<y<Qo, (99
®(0—,y,t)=®(0+,y,t), for —h<y<O. (9b) w?=gkytanhkoh= — gk, tank,h  (n=1,2,3,..), (14
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with [(n—1)w/h<k,<nw/h] (n=1,2,3,..). The eigen-

functions ¢, (m=0,1,2,...) are orthogonal and complete in

the usual sense. On the other hapgls satisfy the dispersion
relations

K =po(1+Lp§)tanhpoh

=—py(1+ Lpﬁ)tanpnh (n=1LILI1,Iv,1,2,3,...), (15

with L=El/(pg—mew?) and K=pw?/(pg—mw?). It
should be noted thai, andp,, are complex conjugates with
positive real partsp,, andp,, are complex conjugates with
negative real partsp,’s are positive and real(n—21)m/
h<p,<nw/h] (n=1,2,3,...), andr,,, T, (n=0,LILIILIV,

1,2,3,...) are unknown constants to be determined to obtain
the velocity potentials completely. The assumption that the

velocity potentials are bounded at infinity suggests that

Tu=Ty=0. (16)
Define the inner products as
0 L | ofy o3, &3y, of,
(fm,f ):J fofdy+—1 — +——
myin _h min K| ay z9y3 z9y3 ay y=o
(m,n=0,LI1LIII,IV,1,2,3, .. .). a7
Then, it is easy to derive that
(fm,fo)=0, for m#n (mn=0,LILIIV,123,...),
(18)
2poh(1+Lpd)+(1+5Lp§)sinh 2pgh
<f0,fo>: 2 y (19)
4po(1+Lpg)
0o 2pah(1+Lpd)+(1+5Lpp)sin 2p,h
nr 4pn(1+Lpy)
(n=LILI,IV,1,2,3,...), (20
which suggests that the set of function$f,;n
=0,LILI1,IV,1,2,...} are orthogonal with respect to the inner

product as defined by relatidd7). However, the eigenfunc-

tions in the plate-covered region are not standard ones as the Ki= E

Sahoo, Yip, and Chwang
—ipoTo(fo.fo)

' 0 ” 0
“iko(Ro—1o) [ dofoty= S knRn | dmfady

L
+ E[¢2xy(oyo)f6’(o)+ (ﬁgxyy)(0,0)fé(O)], (22)

pnTn<fn 1fn>

0 ” 0
“iko(Ro=10) | ofuty— 3, k| tinfady

L
+ R[ ¢2xy(0-o) fﬁ’(O) + ¢2xyyy(010)fr,1(0)]

(n=1,1,1,2,3,..).
Similarly, from Egs.(9b) and(17), we have

(23

0 * 0
Tn<fn ifn>:(RO+IO) f_hwofndy"— mzl ij_h‘pmfndy

L
+ [ #2y(0,0)f(0) + B2yyy(0,00f1(0)]

(n=0,1,1,1,2,3,..). (24)

Truncating the systems of EqR2)—(24) after N terms, we
obtain a system of (4+6) equations for (RI+6) un-
knowns R, and T, (m=0,1,2,.N,N+1N+2; n
=0,1,11,1,2,3,...N). It may be noted that the edge conditions
are applied based on the relation that¢,/ox?
=—3d%¢,/dy?. The solutions in the three different cases are
obtained by using the appropriate edge conditions.

IV. DISCUSSION ON NUMERICAL RESULTS

The interaction of surface waves with a semi-infinite
elastic plate is characterized by the reflection and transmis-

sion coefficients defined as
Ro poTotanhpgh

kol g tanhkgh

I t—

. (25

operator involved is not self-adjoint. In the present analysis

we assume that the above sequence of functiégisform a

complete set for functions satisfying the same boundar)E

value problemse.g., Fox and SquiPe The detailed proof of

completeness needs special attention as a new class of prc}S-r p,

lems and is not of concern in the present context.
Using the inner product defined {i7) and the continu-
ity of velocity (9a), we have

0 L
(dax.Tn)= f_h¢2xfndy+ R{¢2xy(oyo)fﬁ,(o)
+ ¢2xyy)(oao)fr,1(o)}
0 L "
= f_hqslendy'l' R{QSny(O-O)fn (0)

+ ¢2xyy%0ao)fr,1(0)} (n:0,|,||,1,2,3,..).
From (21), (123 and(12b), we obtain

(21)

The three dimensionless parameters &g, d/h and
I/pgh*, while Hy/h=0.01, ps/p=1 are kept throughout
the computation. Because parameters like the density of wa-
density of the platg, and Poisson’s rati@ are lim-
ited to a small range of possible physical values, changing
those parameters has negligible effect on wave profiles.
When an incident wave encounters a horizontal elastic
plate floating on the free surface, part of the wave energy is
reflected back to the upstream open region, while another
part of the energy is transmitted into the plate-covered re-
gion. Under the elastic plate, there are two restoring forces
acting on water, the elastic force due to the bending of the
plate and the gravitational force. As a result, there are three
kinds of waves acting below the platg&} an undamped pro-
gressive wave(ji) evanescent wave modes, diid) a decay-
ing progressive wavéNadham$!). The undamped progres-
sive wave is associated with eigenvalpg in (15). This
wave is due to the flexural vibration of the plate and the
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gravity effect on waves in the covered region, which is called
the flexural gravity wave. The evanescent wave modes exist
because of the change of flow field. These evanescent wave
modes are associated with eigenvalygs(n=1,2,3,...) in

(15 with monotonic, exponentially decaying amplitudes.
The decaying progressive wave is associated with eigenval-
uesp, andp, in (15). This wave can be better explained for
the deep water case with simple algebra. peta+ib and
p,=a—ib, wherea andb are positive real numbers. From
(12b) and(130), the spatial velocity potential associated with
p, andp, for deep water lf— ) is

T e(atib)xgb=ialy T, e(a=ib)xg(b+ia)y

=[2T,cogbx—ay)+ (T, —T)e ' Px-an]g@xtby),
(26)

The first term in(26) is a standing wave or an evanescent
wave with an oscillatory, exponentially decaying amplitude.
The second term is a decaying progressive wave with a
propagation vectok=(—b,a), since the velocity potential

is ®=Re{¢p(x,y)exp(—iwt)}. Physically, this represents a
decaying progressive wave that propagates diagonally up-
wards and transfers energy from the open region/plate-
covered region boundary plane=0) to the floating elastic
plate as increased kinetic energy near the plate edge
(Wadhamé! p. 886.

A. Loci of roots

Figure 2 shows the loci of dimensionless wave number
p;h in a complex domain with varyingoh and El/pgh®.
From the expression el +iB)x]=exd ax](cospx
+isinpx) (x<0), wherep,=a+ip, itis clear that the real

Scattering of surface waves by a floating elastic plate
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(b) El/pgh* varies from 0.001 to 0.100

FIG. 2. Loci of p;h with d/h=0.01.

part of pjh denotes the decaying factor while the imaginarywave numbers, most of the wave energy is concentrated near
part of pjh represents the wave number of progressivenhe free surface. Thus, a large proportion of the wave energy
waves. Far away from the edge of the plate, the decaying reflected back by the plate and a small amount of wave
progressive wave becomes negligible. Whgh increases, energy is transmitted. The rapid change of coefficiefits

the real part ofp,h increases, and its imaginary part de- andK, is observed for moderatgh. GenerallyK, increases
creases general[fFig. 2@)]. For largekoh (or short incident  andK, decreases as;h increases. Thus, incident waves of
waves, the decaying progressive wave becomes sfsontll  |onger wavelength penetrate farther into the plate-covered
pB) and decays fastargea). As El/pgh* increases, both real region. For differenEl/pgh?, each curve oK, andK, has

and imaginary parts op,h decreases generallffig. 2b)].  the same basic structure B$/pgh? varies. AsEIl/pgh? in-
Therefore, the decaying progressive wave propagates further

(small @) as the plate becomes more rigid.

1.0
B. Reflection and transmission i\ N
In Fig. 3 the variation of reflection coefficiemt, and 08 B "-5\\% K, //,/////’;//’/'
transmission coefficier, versuskgh is plotted for various 0.6 -] 3 s s ;‘f'/.; =
values of El/pgh? for a free-edge plate. For long waves KK 1 A 2\ ,91/'/-;/ i
corresponding to a small wave numbeh, the flow is uni- T N o Elpeght=0201
form along the horizontal direction. As a result, there is little \/\% 0.010 —-—
wave reflection by the horizontal plate for long waves. The 02 3 //>/ AN 8?38 i
plate appears to be transparent to the incident wave and the ] /;/ T \\\j:\:\‘\_i‘ —
wave reflection disappears. In such a cdgetends to zero 0.0 duit ,K‘t _ *‘T‘:::*—:
andK; approaches one &gh vanishes, which means that a 0 10 20 30

major part of the wave energy for long waves is transmitted
into the covered region. On the other hand, for large wave
numbersK; increases an¥; decreasgs to zero. This is due fig, 3. variation ofK, and K, vs dimensionless wave numbkgh for
to the fact that for short waves, which correspond to largeiifferent values o 1/pgh* for a free-edge plate with d#0.01.

koh
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1.0 7 0.0005
] B T 1 Elpgh*=0.001 ——
1 e ] 0.005 ——~—
084 % T~ 0.0004 - 0.010 ——
. a\ e K ] 0.050 ——
T R\ r - 0160 -
064 N/ 0.0003 0.100
I<r’ Kt : >< |8| ]
0.4 — / \ —— Free 0.0002 o
] / — — Simply-supported .
024 ¢ N K, Built-in 0.000] FF———— -
1 Sy 2 T
B TR e ] (RSN
0.0 ~f~"rr T T T 0.0000 +———"—F———T =
0 10 20 30 -2.0 -1.5 -1.0 -0.5 0.0
koh x/h
FIG. 4. Variation ofK, and K, vs dimensionless wave numbigh for FIG. 6. Variation of straire| versusx/h for different values oEl/pgh? for
different edge conditions with d#0.01 andEI/pgh*=0.005. a free-edge plate with d#0.01 andkph=4.

creases, the plate becomes rigid and most of the waves whidfigher order terms do not contribute much to the solution
concentrate near the free surface are reflected back and in thigich is similar to that of Kim and Ertekit? The present
process less wave energy is transmitted below the plate. result and the result of Kim and Ertekinare in sharp con-
Figure 4 illustrates the effect of different edge condi-trast to the observations of Fox and Squfr@he slow con-
tions, namely, free edge, simply supported edge and built-igergence may be due to the wrong choice of Lagrange mul-
edge on the scattering of surface waves. The reflection Coefi-pﬁers in the conjugate gradient method. Fox and Sauire
ficient K, and transmission coefficieit; are plotted versus generalized the work of Fox and Squfreand reported a
the dimensionless wave number for different types of edgenore sophisticated scheme which operates in a subspace sat-
conditions. It is observed that a free-edge plate exhibitssfying certain necessary conditions. More thought was also
lower K, and higherK;, which indicates that a free-edge given to deep water. However, Fox and Squirave not

plate allows more incident wave energy to transmit belowmentioned anything regarding the number of evanescent
the plate and in turn the reflection becomes less. For a natynodes used in their manuscript.

ral cover like ice, the wave transmission below the ice-

covered region helps in breaking ice in cold countries. InC. Deflection and strain

such a case, reflection is less compared to the plates having a . .

built-in edge or a simply-supported edge. On the other hand The defleptlon of the plate and the strair: at the plate
askgh increases, the variations among wave reflection by théurface are given by

three types of edge condition diminish. The edge conditions 199
are not only localized effects but also affect the wave scat- 7~ 3y ' (27)
terin y=0

g.

In Fig. 5, the variation of reflection and transmission da?y d P

coefficients is plotted versukyh for various values ofN e=5 o =l5 .
(number of terms in the evanescent wave modes for gth X IxX=ay y=0
and ¢,). As N increases beyond 20, no significant change in ~ Figure 6 shows the variation of strafiej versusx/h for

the reflection and transmission coefficients takes place as tigifferent values ofEl/pgh? for a free-edge plate. It is ob-

(28)

] A 0.0005
J - ] Free edge
] - - 1 ——— Simply-supported edge
0.8 = — = 0.0004 ~ Built-in edge
1 K 7 el ]
1 o =T ]
0.6 7 P N=0 —— 0.0003
KoK g 10 ——— ]
0.4 ~ 15 —— e ]
7 20 —— 0.0002 -
1 21 ]
0.2 7 K, 00001 4 ________ e
i \\~ T T T T e e T x
4 == 1 N
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FIG. 5. Variation ofK, and K; vs dimensionless wave numblkgh for FIG. 7. Variation of strainle| vs x/h for different edge conditions with
different number of termal with d/h=0.01 andE1/pgh*=0.005. d/h=0.01,koh=4, andEI/pgh*=0.005.
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FIG. 8. Variation of dimensionless plate deflection Re{y) for different FIG. 10. Variation of dimensionless plate deflection #i{y) for different
values ofE1/pgh* for a free-edge plate with d#10.01 andkoh=4. edge conditions witlE1l/pgh*=0.005, d/k=0.01, andkoh=4.

served that straife| and its gradient vanish at the edge as theis important for breaking ice covers. But it may not be de-
bending moment and shear force vanish there as prescribesirable for manmade structures. It can be observed that for
The strain on the plate highly depends on the flexural rigiditysimply supported or built-in structures, the strain deviation is
El/pgh®. Near the free edge, the plate excitation is verynot much except near the edge. In this case, the effect is very
high for a flexible plate, which attains a steady state as thenuch localized.
plate length increases. With the increase of plate length, the In Fig. 8, the plate deflection RefH,) is plotted versus
evanescent wave modes vanish and the plate oscillates duestth for various values oEl/pgh? for a free-edge plate. It is
the progressive wave. On the other hand,Edépgh® in-  observed that around the edge, there exists a decaying pro-
creases, the plate becomes more rigid and thus the stragmessive wave and infinite number of evanescent wave
decreases. modes apart from the flexural gravity wave. Away from the
Figure 7 shows the variation of surface straifiversus  edge, all the energy associated with the decaying progressive
x/h for different edge conditions. For a plate having a freewave and the infinite sum of evanescent wave modes has
edge or a simply supported edge, the strain vanishes at theeen attenuated sufficiently and they offer negligible contri-
edge, as the moment is prescribed to be zero there, while thrition compared to the progressive wave. In other words,
plate with a built-in edge has finite nonzero strain near théboth the decaying progressive wave and evanescent wave
edge. However, plates having different edge conditions shownodes are forms of localized energy. Large wave transmis-
similar surface strain behavior away from the edge. As dission always leads to a large plate deflection. From the figure,
cussed before, the transmission coefficient is maximum for i is observed that the plate deflection is less for higher val-
free-edge plate. As more wave energy is transmitted belowes of the flexural rigidityE I/ pgh?, as a rigid plate does not
the plate, it excites the plate deflection regardless of edgdeform very much. There is also a phase shift of the wave
conditions. On the other hand, it has a serious structural eklevation for the change in flexural rigidifgl/pgh?* of the
fect as the strain is maximum for a free-edge plate. For alate.
free-edge plate, the deflection of the plate remains high near Figures 9 and 10 show the variation of the real and
the edge because the decaying progressive wave and evangsaginary parts of plate deflection/H, versusx/h for dif-
cent wave modes play a significant role there. Such behaviderent kinds of edge conditions. The asymptotic trend of so-
lutions (129 and (12b) is a progressive wave, with the real
and imaginary components having the same magnitude and
shifted in phase by a quarter-wavelength, as shown in Figs. 9

1-—- gir;epfyd-iipponed edge and 10. For a free-edge platg/H, is maximum at the edge
057 Built-in edge and then attends a periodic steady state as the distance from
] the edge increases, while for a simply supported plate or a
§ built-in edge platey/H, increases from zero at the edge to a
Re(m/Hg) 0.0 — L
BN periodic steady state as the waves progress below the plate.
] The values ofy/H,, for different edge conditions are similar
-0.5 - away from the edge. In general, the plate deflection is maxi-
mum for the free edge and minimum for the built-in edge.
e There is also a phase shift as the edge condition changes.
8 7 6 -5 4 3 2 4 0
oh V. CONCLUSIONS
FIG. 9. Variation of dimensionless plate deflection Re{,) for different The hydroelastic interaction of surface waves with a
edge conditions wittE1/pgh*=0.005, d/k=0.01, andksh=4. semi-infinite horizontal elastic plate floating on the free sur-
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