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On the propagation of a two-dimensional viscous density current
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This study aims to develop an asymptotic theory for the slow spreading of a thin layer of viscous
immiscible dense liquid on the bottom of a waterway under the combined effects of surface waves
and density current. By virtue of the sharply different length and time sdalese periodic
excitation being effective at fast scales, while gravity and streaming currents at slow),saales
multiple-scale perturbation analysis is conducted. Evolution equations are deduced for the local and
global profile distributions of the dense liquid layer as functions of the slow-time variables. When
reflected waves are present, the balance between gravity and streaming will result, on a time scale
one order of magnitude longer than the wave period, in an undulating water/liquid interface whose
displacement amplitude is much smaller than the thickness of the dense liquid layer. On the global
scale, the streaming current can predominate and drive the dense liquid to propagate with a distinct
pattern in the direction of the surface waves. 2002 American Institute of Physics.
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I. INTRODUCTION Huppert and Simpsdireasoned that a gravity current might
evolve to go through three stages. The first one is the slump-
Accidental spills of oil or hazardous liquid hydrocarbons ing phase, during which the current is retarded by the coun-
in near-shore regions are now common occurrences and oferflow in the fluid into which it is discharging. The next two
ten lead to long-term and extensive damage to the envirorstages are, respectively, the balance between buoyancy force
ment. Dense oils or nonaqueous phase liqURNAPL) that  and inertia force, and the balance between buoyancy force
sink in water, when spilled into a body of water, will even- and viscous force. For spreading after a sufficiently long
tually reach the bottom of the water column, where they maytime, the third stage is expected to dominate. This flow re-
cause further pollution by interacting with the benthic envi-gime was studied experimentally by Didden and Maxwotthy
ronment. Even a floating oil, when mixed with 2%—-3% of and similarity solutions for two-dimensional and axisymmet-
sand, can make itself heavier than water and sink. The paric viscous gravity currents were obtained by Hupfeviore
tential threat to the environment posed by a hazardous liquigecent studies on gravity current include Ungarish and
chemical on the bottom very often is as enormous as, if NnoHupperf and Hogget al® However, in typical coastal situa-
more than, that caused by a floating oil on the water surfaceions, the migration of a dense liquid in the bottom boundary
which is more visible to the public. layer can be forced by gravity current as well as Eulerian
Chemicals spilled on the sea can be dissipated by naturatreaming current induced by surface waves. In those above-
causes such as physical mixing, chemical weathering, anghentioned works the effects of surface waves are grossly
biological degradation. Such causes, however, become leggnored.
effective for liquid chemicals deposited on the sea bottom.  For small-amplitude periodic surface water waves, the
Unlike those floating on the surface, they are less subjectefiuid particles near the bottom possess, apart from their or-
to dissipation due to volatilization and photo-degradationbijtal motion, a steady second-order drift velocity, which is
The adverse environment on the bottom also limits the aerassually termed the mass transport velocity or streaming. The
bic biodegradation. Turbulent mixing is suppressed if stratitheory of streaming by surface waves was studied in detail
fication is stable. It is in general difficult to monitor the by Longuet-Higgins. Carteret al® studied the mass trans-
spreading of a liquid phase chemical on the sea bottom. Aort in a homogeneous fluid under incident and reflected
model very often is the only readily available tool by which waves. Dalrymple and Liudeveloped a general theory for
one can estimate the extent of pollutant migration in thainear waves propagating in a two-layer system, with the
benthic environment. effects of all the boundary layers taken into account. Extend-
Gravity or density current is the mechanism by which aing this work to the second order, Sakakiyama and Blfker
viscous fluid spreads under a lighter fluid; it also refers to theobtained the mass transport velocity in a viscous mud layer
flow along a boundary layer of one fluid intruding into an- due to progressive waves. More recently,*Ndeduced ana-
other fluid as driven by gravitational or buoyancy fofce. Iytical solutions for an asymptotic case of Dalrymple and
Liu,® namely when the lower layer of fluid is comparable in
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velocity, and mean discharge rate of mud. For the spreading
of a dense and immiscible fluid on the sea bottom, the in-
duced wave streaming can be as influential as the gravity
current, if the fluid layer profile is slowly varying. It is of
fundamental interest to find out how the two driving forces
will interact or counteract with each other in controlling the
transport of matter in a wave boundary layer. It is the inten-

yo oo
T incident wave

I——- n= a[ex(k.x-o't) + Rex(kx+o‘rj]

Nz —

reflected wave

water

tion of this paper to study the spreading of a submerged fluid fy &
under a balance between the viscous, gravity and oscillatory
effects. E= peEI L]y o
The aim of this study is to develop an asymptotic theory —
for the spreading of a thin slowly varying layer of dense Ay ? dense liquid ™

liquid on the bottom of a nearshore waterway under the ac-

tion of small-amplitude surface gravity waves. In Sec. Il the . ) i )
FIG. 1. Schematic diagram of the problem under consideration; a thin lens

problem IS further defined and the assumptions are stated; yiscous dense liquid spreading on the bottom of a waterway under surface
The relative orders of magnitude of individual effects arewaves.

estimated in terms of the small parameter of wave steepness,
which is the ratio of wave amplitude to wavelength. Multiple

spatial and time scales exist in the problem, thereby requiressentially turbulent, but the dense liquid is so glutinous that
ing the multiple-scale expansions of the governing equationggs viscous motion is still largely controlled by molecular
and boundary conditions. An asymptotic analysis is perviscosity. It is assumed that stable density stratification pre-
formed in Sec. Il to obtain perturbation equations to thevails, and therefore mixing across the water/liquid interface
second order. The flow structure at the leading order can bg suppressed. Such an assumption has been commonly
modeled by that of a two-layer Stokes boundary ldydihe  adopted in studies of concentrated mud under surface waves
second-order steady current, composed of Eulerian streaming.g., Mei and Lid?. The eddy viscosity of water in the
and density current, is then found analytically. The problemboundary layer, denoted by, , is for simplicity taken to be

is closed when the evolution equations, on the local and thg constant, which in coastal zones may have typical values
global scales, are determined from the depth-integrated con—100 cris . The molecular viscosity coefficient of the
tinuity equation. Owing to reflected waves, the streamingdense liquid, denoted by,,, also can be as much as these
current varies periodically in half a wavelength, leading tovalues if the liquid is sufficiently viscous.

the development of an undulating interface between water The dense liquid layer is of a thicknekg,(x,t), while

and the dense liquid on the local scale, whose analytical fornthe depth of the overlying water layer lig,(x,t); both vary

is presented in Sec. IV. It is shown that an undulation isslowly with the longitudinal coordinate and timet. The
developed such that its crest is typically under a node of theotal depthh,=h,,+h,, is assumed to be constant, ang
surface waves, and its amplitude is larger for a smaller den<h,,. The shallowness of the dense liquid layer allows the
sity contrast or a thinner layer of the dense liquid. The localpplication of the lubrication theory here.

streaming current structures are examined in detail in terms  The present theory applies to the case when a suffi-
of the reflection coefficient and the development stage of theiently long time has elapsed after the initial discharge of the
undulating interface. The spreading of the dense liquid alselense liquid. In other words, it has come to a stage in which
takes place slowly on a global length scale. In Sec. V thehe steady fluid motion in the boundary layer that is induced
global evolution equation, which encompasses both streanby surface waves is comparable in magnitude with that
ing and density currents, is solved numerically for thedriven by buoyancy. Therefore, as long as the surface waves
spreading pattern as a function of time for a given initialare small in amplitude, the inertia of the fluid will be negli-
profile. The pattern can be rather distinct and the entire fluigjible at the leading order, but gives rise to a steady streaming
layer can migrate significantly in the direction of wave at the next order. The steady streaming, which owes its ex-
propagation after a sufficiently long time. Results are examistence to viscosity, is then balanced by gravity current. Such
ined for various values of the fluid properties and wave chara buoyancy-viscous balance can also be argued in a more

acteristics. rigorous manner using the relations presented by Hugpert.
Now, a long-crested small-amplitude incident wave is
II. ASSUMPTIONS AND FORMULATION progressing on the water free surface in the positidirec-

tion. A reflective boundary may exist farther down the water

Consider a two-dimensional thin layer of dense viscousourse so that a standing wave can be formed from the su-
and immiscible nonaqueous liquidimply referred to as the perposition of incident and reflected waves of the same pe-
dense liquid hereaftetying on the bottom of a water course, riod. The free-surface displacement can be written as
as shown in Fig. 1. Axeg andy are, respectively, in the (KX— o | (kxt o
direction of the incident wave and vertically upward from the 7(x,1)=Rea{e! I+ R}, @
mean water free surface. The densities of the dense liquidthere Re denotes the real part of the expression follovang,
and water are, respectively, denoted &y and p,,, where is the amplitude of the incident waveisjs the imaginary
pm>pw- The flow of water near the bottom boundary is unit, k is the wave numbegr is the wave angular frequency,

Downloaded 06 Nov 2006 to 147.8.21.97. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



972 Phys. Fluids, Vol. 14, No. 3, March 2002 C.-O. Ng and S.-C. Fu

TABLE I. Orders of magnitude and normalized forrfusstinguished by a cargof the variables.

Physical variable Order of magnitude Normalized variable
X, X1 k=t (X,%X1) =kx

Xz (ek)? Xo=(k?a%/ 5,)x

N N o ek l=a~s, (AP Ain) = (0, i) 81
him ea Ry = /(ka?)

&b €ea (£,0)=(£&Db)/(ka15,,U,)
tty ot (t.i)=ot

t, (e)t t,= (ko st

t, (o)7L t,= (KBoa st

Pw Pm Y= Pu!Pm

Sw Om {=06m1dy, ~

U, Ug ca~U, (01,00) = (u,up) /U,

v, vo era~eU, (5,00)=(v,v0)/(kS,0,)

Up, U era~ €U, (0y,00) = (uy,u)/ (ke 10?)
v1, UL eoa~ e, (51.00)=(v1,00)/ (k2o 18,02
P/p k lo?a~ga |5=P/(pk’10'0|)

andR is the reflection coefficient. Without loss of generality, ferent orders. Such orders of the terms are obtainable upon
we may takea ando to be real. Our focus will only be on the nondimensionalizing the equations and boundary conditions
cases in which the coefficiem is real and in the range O using the normalized variables, which are introduced in
<R=<1. The wave is purely progressive wh&=0, and Table |. The parametet is then retained for identification
becomes purely standing wheR=1; a partial standing when reverting to the physical variables, thereby yielding the
wave results from an intermediate valueRf present equations and boundary conditions. SééfBufur-
The wave steepness=ka<1 is a small quantity, and ther detalils.
will be used as the ordering parameter. The motion of water The continuity and momentum equations read as fol-
is essentially inviscid and irrotational except in a thin layerlows, where the subscriftis replaced bym andw when the
near the bottom in which vorticity is appreciable. Under aequations are applied to the dense liquid and the near-bottom
periodic forcing given by Eq(l), the thin boundary layer is water, respectively:
a Stokes boundary layer, whose thickness is typically defined
Ju Jdv
as(e.g., Met?) el IRl (4)
ax  an '
5= (2vlo)Y2. (2
Momentum exchange renders the Stokes boundary layer 1‘&

extend across the interface between the near-bottom watett
and the dense liquid. Since,~v,,, the thickness of the

07Uf (?Uf
+ GUf_ﬁx + ev f_an

2
Stokes boundary layer in either fluid is comparable with each = — i (9_Pf + ,,fa_uzf_ Pi~ Pw g % +0(€?), (5)
other. In this study, we assume that the dense liquid layer pt IX an P oX
thicknessh,, and the Stokes boundary layer thickngsare  gng
of the same order of magnitude as the wave amplitade
They are supposed to be in the order of tens of centimeters, 1 dP 2
much shorter than the wavelength. Therefore, there isasharp = p; an +0(e%), ®)

contrast in the horizontal and vertical length scales: ] )
whereu(x,n,t) andv(x,n,t) are the horizontal and vertical

e=ka~khy,~ké<1. (3 components of the fluid velocity, anBl(x,n,t) is the dy-
Also, the entire dense liquid layer, as well as the near-bottorfl@Mic pressuré.e., the static pressure being subtracted from
water, is subject to viscous shear. Flows in this two-layethe total pressuje One may notice that in the horizontal
Stokes boundary layer are describable by the classicdhomentum equatiofb), the convective inertia are of an or-
boundary layer theory. For convenience, we introduce a locdier O(€) relative to the local acceleration, and the dense
vertical coordinate=y+ h,, which points upward from the liquid is subject to buoyancy force.
base of the dense liquid layéFig. 1). Note thatn, which has At the base of the dense liquid=0, the no-slip and
the same scale as,,, is an inner independent variable for No-leakage conditions apply:
the boundary layer solutions. In the equations and boundary U=p.=0 _

o T m=Um at n=0. (7
conditions presented below, the small parametsrinserted
merely to reflect the relative order of magnitude of the assoExcited by the surface waves, the interface between the
ciated term, and also that of the truncation error. Otherwisegense liquid and water displaces periodically in the same
the €s may be disregarded. The parameteppears only in  manner as the surface waves. The interface is given by
equations or boundary conditions which contain terms of dif+(x,n,t)=n—h,,— e£=0, where
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x,t)=Rg be/kx~ ot 4 p gl kxt o 8 au d
fxD=Rd R ] ®) Zro 927 10(e) aty=0. (18)
is the interfacial displacement with complex amplitudes ot X

andbg in response to the incident and reflected waves, re- The basic mathematical formulation is now complete.

spectively. As shown later, these amplitudes are one order Gf,o hroplem under consideration features several phenom-
magnitude smaller than the surface wave amplitude,b.e., o5 that are effective at different length and time scales. In
=0O(ea). The velocity and stress components are ContinuoUg e to prepare grounds for the ensuing asymptotic analysis,
at the interface- =0: we need to establish the relationships between these scales.
Uy=Um, Uw=Um, 7w VF=7,-VF atn=hg,+ €&, As discussed earlier, the basic horizontal length and time
9 scales are, respectively, the wavelength and wave period, or

rlr1:277k_l and T;=2mo 1. The corresponding variables
are the fast space and time variabkgs=-x andt;=t.

The dense liquid layer has a thin and slowly varying
iprofile on thex—n plane. More specifically, it is assumed
that

where 7 is the stress tensor. Using Taylor series expansio
about the mean position=h,,, and substituting the usual
linear constitutive law fors, these conditions for the conti-
nuity of velocity and stress at the interface can be approx
mated as

au au dhp,
Uy + Ega_r\]N:um‘l' Gfé,—r:nﬂLO(eZ) at n=h,, (10 .~ Olekhn), (19

My m . which implies that the entire span of the dense liquid layer is
vwted—==uvptef—=+0(e) atn=hy, (1) much longer than the wavelength. This necessitates the in-
troduction of a long spatial scale,= e *L;~(k?a) !, or a
AUy, 3?Uy m U, slow space variablg,= ex. The thickness, the leading
Pw”w(ﬁ+ fgw) :Pme(W”L 39 anz ) order value ofh,,, will appear constant over a wavelength
and steady over a wave period, and therefore does not de-

+0(€e”) atn=hy, (12)  pend on the fast space and time variables:
and hmo  Ihmo 0 20
= P X, oty 20
Pyte ga_n_ngg =Pnte ga_n_ngg

Hence in Eqs(5) and (14), the termsdh,,/dx and dh,/dt
+0(€?) atn=hy,. (13)  will have no contribution untilO(€). The short and long
length scalesl(,,L,) will also be referred to as the local and
global scales.
Eulerian streaming under a standing wave varies periodi-
d d cally in half of a wavelength, and as a result the dense liquid
S (hmt €&)+ el (Nyted)=evy at n=hy+eg, layer profile may vary over this short length scale as well
(14)  (see Sec. IY. This local variation in profile, in the form of
eriodic undulation, however, becomes effective only on a
this point onger time scale and it_s magnittude is expecteq to be much
j smaller than the layer thickness itself. On balancing the grav-

Farther up f“’m the boundary 'ayef but still close to theity effect with the vertical momentum diffusion by viscosity,
bottom, the velocity and pressure will tend to the near-

) NS ie.,
bottom values given by the inviscid theory

ah Ju,
(uy,Pw)— (U, ,P) l—Z—W)g &szlwymTrznl’ (21
m

Also, the kinematic boundary condition on the interface
is given bydF/dt=0, which can be expressed as

which for later deduction is not Taylor-series expanded a

at outer edge of the boundary laye(l5) o

. . where h,,; is the amplitude of an undulation andl,;
WhereU,. andP, are, respeqtlvely, the honzonta} cgmponentzo(akaz) is the second-order steady streaming velocity,
of velocity and the dynamlg pressure Qf the InVISCI.d flowOne may show that;~ eh,. It is then clear from the con-
near the bottom. The inviscid flow at this boundary is 9OV-garvation of mass

erned by
dh J _
(9U| 0U| 1 3P| _ml~_ u dn (22)
-+ . . ml
oo TeVis o X near the bottom. (16) ot IXq

On the free surface, the inviscid flow is subject to thethat the time scale for the undulation development is one
usual kinematic and dynamic boundary conditions for sur°rder of magnitude longer than the wave period. The undu-

face waves, which in the linearized forms are lations are therefore formed ifi,=e™"T,, and the corre-
sponding slower time variable t5= et.
an The second-order streaming velocity is also responsible
—=v,+ = : S o
gt o O(e) aty=0, @7 for the spreading and migration of the dense ligigde Sec.
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V). Therefore, the time scale for migration of the liquid layer (Us,010,U10,6) =R (Us , 0 ,D| b)el(kxa-oty)
to be effective over a distance comparable with the length of o _
the layer itself will be +R(—-Uf ,vf ,— U} ,b*)

Ta~Ly/upm~(ok3a®) " 1=0(e °T)), (23) xe(atot] for f=mw, (29

i.e., three orders of magnitude longer than the wave period/vhereR is the reflection coefficient and the asterisk denotes
The slowest pertinent time variable is therefoye €3t. The thg complex conjuga't('a. Therefqre, as ghown above, the am-
intermediate time variablé;= €%t is later shown to be a plitudes of the quantities associated with the reflected wave

trivial variable for the present problem, but is included for are related to their counterparts associated with the incident
the time being for completeness ' wave, and it suffices to present below the solutions for pure

; ; 1
We summarize in Table | the scalings of all the variablegP'09reSSIVE waves, which have been developed by'Ng.

that are introduced above or later, and also their normalized In 0<n<h,,

forms, which are dlstlngwghed by a caret. Now, the mult_lplg— Tp(n)=[y— ¥ coshi ,n+ E sinhx ,n]U, (30)
scale perturbation analysis can be started upon substituting

into the governing equations and boundary conditions thénd

following expansions: T(N) = —iKA [ Y(A = SinhX )
A—Ag+ €Ay + e2Ap+- -, (24) +E(coshhyn—1)]0, . (31)
whereA stands fou,,, vy, Uy, Um, Uy, Py, Py, andP;. In hpy=n<oo,
The leading order quantities are further assumed to be ina _ n(n—h )T
first-harmonic periodic form Uy(n)=[1+De "W m]U, (32)
and

Ag=REA(Xy,15,t5,t5,n)e a0t

~ . Ew(n):5m|n:h —i[k(n=hy)

+AR(x2,tz,t3,t4,n)e'(kxl+"t1>]. (25) m 3
_ _ _ —KkDA, H(e M hm — 1)U, (33

The phases are functions of the fast variables, while the am-

plitudes depend on the slow variables only. The second ternihe constant®D and E (constant with respect to the fast

in Eq. (25) vanishes in the case of pure progressive wavesvariables are given by Eqs(A3) and(A4) in the Appendix.

The spatial and temporal derivatives are accordingly ex!n these equations,

panded into the multiple-scale rates of change:

Y=pwlpm<1 (39
J Jd J i i i i
—— N e 26) is the density ratio of the fluids,
! 2 {=0ml 6y=( Vm/Vw)l/2 (39
d d d , 0 3 0 is the ratio of the Stokes boundary layer thicknesses, and
EHW-FEI'FG(S’T‘FEI. (27
1 2 3 4 Ne=(1—-0)/& for f=mw (36)

The dense layer thickness is expanded, as discussed abowega complex parameter, in which
into
8i=2vslo)¥? for f=m,w (37)

_ 2
him=Nmo(X2,t2,t3, L) + €Nma (X1, 2) +O(€7). @8 s the Stokes boundary layer thickness for the respective

Therefore, whileh,, varies slowly in both space and time at fluid. ) ) ) N

the leading order, it depends on the fast-space but slow-time At O(1), theinterface kinematic boundary condition Eq.
variables at the next order. It will be further shown later that(14) reads

hmo IS independent of, andt; (Sec. Il ©, andh,,; can be g

a periodic function o, with a zero spatial meafBec. I\); 2t =Umo atn=hp, (38
h.,; also vanishes identically wheR=0 (i.e., pure progres- !
sive waves which with Eq.(8) gives a relation for the amplitude of the
interfacial waves
b:ia'ilz;m|n=hm- (39

I1l. ASYMPTOTIC ANALYSIS
It is clear from this relation that the interfacial wave ampli-

tude is indeed one order of magnitude smaller than that of
By linearity, the leading order solutions are a sum ofthe surface waves.

A. First-order solutions

components due to the incident and reflected waue<Eq. The near-bottom horizontal velociﬂh and the disper-
(25)]. One can readily show that, for a free-surface displacesion relation, at the leading order, are obtainable from the
ment given by Eq(1), inviscid theory:
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oa oa

Ui=Ginhknh, ~ sinhkhg

(40)

and
o?=gktanhkh,,~gktanhkhy. (41)

Sinceo anda are given real constants ahg=nhy+ O(e€) is

a constant at the leading order, then the near-bottom velocity
U, and the wave numbek are also real constants at the

Viscous density current under surface waves 975
J— ~ ~ ~ An ~
Vyi(N)=— k25m0'1U|2[ 2Rcos 2(1( f Uyadn
fm
Ahn N .
+ Unadn|—(1—1y)sinh 2kh,
0

w2 2\ (46

(92F1m1 hivo ( A Flmo)
X7 3/

leading order. See N§for a further discussion on the kine- Recall thaty=p,/pp, and the normalized quantiti¢distin-

matics in a two-layer Stokes boundary layer, including thedUished by a cargthave been defined in Table I. In the
wave attenuation rate and properties of the interfacial wave§duations above, the functiofts,p(n), Uma(n), Uwo(n),

B. Second-order steady currents

With some algebra, one may obtain from E§) the

andU,,,(n) are nondimensional functions of the slow vari-
ables and their full-blown expressions are given in the Ap-
pendix.

The steady current in either layer of fluid is composed of

O(e) horizontal momentum equations, from which one maygjerian streaming and the density current; the former is due
infer that theO(e) velocities contain steady and temporal tg yjiscosity in the boundary layer, while the latter results
oscillating components. Taking a fast-time average of th§rom a mild gradient of the water/liquid interface. The
velocities will remove the temporal oscillating components,streaming itself comprises a uniform current, and an alternat-
and leave two steady components, one uniform and the oth%g current with a period of half-wavelength. For a dense
spatially periodic. Let us use an overbar to denote the timﬁquid layer with a uniform thickness, the density current

averaging over a wave periof,=2mo "%, i.e., for any
function A(t,),
— 1 1 +Ty
A=— Adt;. (42
TiJy

vanishes and the steady motion will solely be induced by
streaming. The streaming current will be purely unidirec-
tional whenR=0, or purely alternating wheR=1.

By integrating the horizontal velocity over the dense lig-
uid layer followed by time averaging, we can get the net

Taking the time averaging of the momentum equations fol_disch.arge rate of the dense liquid per unit width of wave

lowed by some mathematical manipulation then yields the

following solutions:
In 0<n<h,,,

Uy (N)= ka-lﬂf[ (1—R?*)U ,p(N) + R sin 2X,U,A(N)

. &ﬁmo aﬁml
+(1—y)smh2kh0( P o
(N .
xn E_hmo (43
and
oAy — 2 -1772 . (M -
Uma(N) k“no U7 2Rcos X, | Upadn
0
_ Phpy A2 (A .
+(1—y)S|nhZ<h0TXi? §_hm0 .
(44)

In h,<n<oe,

Uy (R)= ka—lﬁﬁ[ (1—R?)U,,p(R) + R sin 2%,U,,(R)

. f9F‘mo aﬁml I:\lzmo
_(1—’)/)S|nh Z<hO<TX2+TX1 T (45)

and

est:
hm+eé
sz Upndn
0

h _ X
=€ 0 umldn+6§um0|n:hm+o(f)

= kamolﬁﬁ[ (1-R?»)Qp+Rsin2x,Q,

1 inh &h Iy
(1= ysinh Xho—=| 22 =+ 22

hivo f9F‘mo
3

+0(6)],
(47)

whereQp andQ, are nondimensional functions of the slow
variables given by

SUnim| (48)
A=h,

QD=J'thdeAn—Im
0
and

Qu= [ MUadis RS Fii i, 49
The full-blown expressions fdQp andQ, are also given in

the Appendix. The integral in the first step of Eg.7) has
been expanded in a Taylor series, thereby yielding the inter-
face term. Note that has been inserted in the first two lines
of Eqg. (47), confirming that the net discharge is &)
quantity. The steady wave streaming produces a uniform dis-
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charge that is in the direction of the incident wave and an 1 (L
alternating discharge that reverses in direction in half of a (hm1>EEf hmi dx =0, t>0. (54
A . . 0
wavelength. The discharge due to gravity current, which oc-
curs at the same time on the global and local scales, is in th8ngle brackets are used to denote a local spatial average
direction of decreasing profile thickness on the correspondever one wavelength. Applying this average to Esp), the

ing scale. equation reduces to
.Th.e mass transport vglocny, a!so called Lagra|7’1__g|an drift, HQ)  dhng o 9hmo
which is the sum of Eulerian velocity and Stokes dfrii, the + +e +e€ +0(e3)=0. (55

time-averaged velocity of a fluid particle. The horizontal and %2 Itz It Ity

vertical components of the mass transport velocity,, (), On collecting terms of the same order from E¢&3) and

can be found as follows: (55), one can arrive at the following equations:
o~ L~ 109 ~=» &hmo_&hmo_
ununzunun+ka1uﬂ—«1—R%m{§gﬁwﬂg) i, ot =0, (56)
N 0 ~ a aQ ahml .
+Rsin 2%, Re{%(vfu?) } (50) %, + o, =0, (57)
Al — oA ~, R =~ A and
vi (M) =v¢1(N)— k25,0 TUF{2R cos &, R vUF ]}, 5Q)  ohg
(5D —=L T, (58)
Xy oty

where Osn<h for f=m, andh m<=n<oe for f=w. Further

discussion on the mass transport velocity is presented in Seléquatlons(57) and(58) are the two desired evolution equa-
V. tions that govern the profile change on the scalesxoftf)

and (x,,t,), respectively. It is now apparent that the local
displacements are purely spatially periodic and become zero
when averaged on the global scale. On the global evolution,

Thus far, the solutions have been given in terms of they ; does not depend an andts, and it takes a much longer
depth of the dense layéx,, which varies slowly in timdt,  time T,~ ¢ 3T, for an appreciable change in the dense lig-
or longe) on the local k;) and global &,) length scales. In  yid profile to result from the slow spatial variation of the
order to close the problem, we need to develop evolutionjischarge rate. If the wave period is in the order of seconds,
equations foh, in terms of these variables. By a local scale,the spreading or migration of the bottom liquid may take
we mean a scale that is of the order of a wavelength, ogays for significant changes.
physically, tens of meters. The global scale refers to the hori-  When R=1 (i.e., pure standing wavgsthe wave
zontal extent of the dense liquid layer, which is much longerstreaming will not contribute to the global spreading of the
than a wavelength and can be in the order of hundreds dfense liquid. On the other hand, whBs=0 (i.e., pure pro-
meters. gressive waves local features will not evolve. For an inter-

Substituting Eq(26) into the continuity equatiofd) for  mediate 6<R<1, local structures are formed on the time
f=m, which is then depth-integrated over the layes are  scale of T,, while being conveyed by the global current
again inserted for identification of order of magnitbxde which propagates on the time SC&'eTQf. These phenomena

h et are further investigated in the next sections.
)

Applying Leibnitz’s rule and then the fast-time averaging, ~ Substituting Eq(47) into Eq. (57), we get a linear dif-
while using the boundary condition@) and (14) and the ferential equation
expansiong24)—(28), will give ﬂﬁml 2(1- 7)hm0 J hml Reses 20,4
aQ_+ aQ ahm0+_ 5hm1+_ 8hmo+ L Mg gt,  3tanhkhy, ox? Isint? khy'’
€ ox, Eaxz i, S, ot ¢ at, (59
L O(3=0 53 where Q4 is given by Eq.(49) and fully detailed in the
(e9=0, (53 Appendix, and the normalized variables defined in Table |
where the net discharge rafe anO(€) quantity, is given by have been used. With the initial conditidw,|;,—o=0, Eq.
Eq. (47). (59 can readily be solved to give
We further suppose that the water/liquid interface is ini- NP ¢ e o
tially flat on the local scaléi.e., h,,;=0 att=0). The only Pima(X1,t2) =H cos 2[ 1 —exp(—aty)], (60
excitation on this scale is sinusoidally periodic, and in re-where
sponse the evolution offi,,; should also follow the same 3RQ
A

periodic dependence axy with a zero spatial mean at all H=— (61)
times: 2(1—y)h3, sinh kh,

C. Profile evolution

My dUp, aum
e+ dn=0. (52)
X1 X IV. UNDULATING INTERFACE ON THE LOCAL SCALE
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FIG. 3. Effects of the density ratig and the thickness of the dense liquid
layer h,o on the undulation amplitudel, where{=kh,=R=1.0.

the alternating component of the discharge converges toward
the nodes X, = m/2,37/2,...), and diverges away at the anti-
nodes &,=0,7,2m,...). Astime increases, this alternating
component of discharge will eventually die out when the
undulation on the interface becomes fully developed, as
FIG. 2. Local longitudinal profiles ofa) initial discharge@(f(l), and (b) given by Eq.(63) and ,Shown in Fig. @). The crests and
equilibrium undulating interfacéml(il), as functions of the reflection co- troughs of the undulation are formed under the nodes and
efficient R, wherey=0.5, and¢=khy=hy,o=1.0. antinodes of the surface waves, respectively.
The undulation amplitudél under a pure standing wave
(R=1) is examined in Fig. 3 as a function gfandh,. It
and is clear from this figure that the amplitude increases dramati-
8(1— y)ﬁ3 cally with a decreasing thickness of the dense liquid layer.
- 7 mo (62) Mathematically one can verify from E@61) that for R>0,
3 tanhkhg H tends to blow up ab approaches zero. It is because the
Clearly, at a sufficiently largé,, the following equilibrium  gravity current decreases thmo, while the alternating
form of undulation will be developed on the local scale as-streaming curren@, decreases only with? mo- The thinner
ymptotically: the layer, the less static pressure the fluid can offer to resist
A . - mobilization due to streaming. A steeper interface gradient is
hm—Hcos 2, as t>1. (63 therefore required for a thinner layer in order to produce a
Therefore,H is the amplitude of a fully developed undulat- gravity current that is strong enough to balance the streaming
ing water/liquid interface, and specifies the rate at which current. The time to reach such an equilibrium stage will also
this asymptotic state can be approached. Typically, the undue longer. The present theory of course breaks down when
lations are fully developed virtually withit,~5. On reach- hmo becomes too small, or wheth becomes too large.
ing this stage, the components of discharge on the local scale The undulation becomes more marked wheis closer
due to wave streaming and gravity will exactly balance eacho unity, or the density contragind hence the effective grav-
other; hence the stage can be called a local equilibrium stagy) is smaller. It is remarkable that when the wave is purely
One should not be confused with this interface undulatiorstanding and the density contrast is sufficiently srag#0.9
hmi(X;1,t;) and the oscillatory interface displacementin the present cagethere exists a critical thickness of the
&(xq,ty); the former is a nonpropagating structure that re-dense liquid layer for whiclki =0, or the undulation will not
sults from mass transport and becomes permaasntiewed  be developed at all. This happens only in the particular case
on the local scale, and a time scale no longer fhagnwhen  that the streaming current forms closed circulating cells
fully developed, while the latter consists of propagatingwithin the dense liquid layer even when the interface is flat.
modes that oscillate with time on the fast scales without neWhen this critical thickness is exceeded, the amplititle

mass transport. R _ will change in sign. By then, the crests of the undulation will
_ The initial discharge Q()”(l)EQ/(kémaflulz) when  be formed at the antinodes instead.
hm1=0 is shown in Fig. 2a) as a function of the reflection Let us examine in further detail the flow structures in the

coefficientR for y=0.5 andh,,=¢{=khy=1. In this case, boundary layer. Also foy=0.5 andﬁm0:§=kho=1, Fig. 4
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FIG. 5. Two-dimensional plots of mass transport velocity vectors and
streamlines for théa) initial stage, andb) equilibrium stage, corresponding

to the case of pure standing waRe=1.0 presented in Fig. 4. The dashed
FIG. 4. Local vertical profiles of mass transport velodity(n) in a two- line atn=1.0 denotes the water/liquid interface.
fluid Stokes boundary layer, as a function of the reflection coeffidieat
the positions(@ X, =0, (b) X, = /4, and(c) X,=3w/4, wherey=0.5, and
{=khg=hmno=1.0. Solid lines are the initial profiles %E=0A, while squares  of circulating cells. Such features are important for the sus-
denote the‘ eq_uil_ibrium profiles ag>1. The dashed line at=1.0 denotes pension and accumulation of particles in the benthic bound-
the water/liquid interface.

ary layer.

The two-dimensional flow patterns fdR=1 and R

=0.7 are detailed in Figs. 5 and 6, which show the mass
shows the horizontal mass transport velocity compoment transport velocity vectorsi( ,0,) and the streamlines over a
EuL/(ka‘luf) at three positionsfa) x;=0, (b) X;,=x/4, period equal to half-wavelength. Note that the vertical veloc-
and(c) X, =3/4, before(solid lineg and after(squaresthe ity component and the vertical coordinate have been
undulating interface is developed. The undulation, whosestretched by the same factokd,,) ~*, relative to their hori-
amplitude is one order of magnitude smaller than the layerontal counterparts. Under a pure standing wdig. 5), the
thickness itself, is, however, not shown along the interfacemass transport in the top part of the water boundary layer
which is simply denoted by a horizontal dashed linenat (say,n>3) is qualitatively the same as that in a single-fluid
=1. Recall that above and below the interface are water an8tokes boundary layer. Namely, the fluid converges toward
the dense liquid, respectively. The gravity current in thethe antinodes, and diverges away from the nddestially
dense liquid layer is zero initially when the interface is flat, when the interface is flat, there are closed circulating cells in
and flows from a creste.g.,x,=/2) to a trough(e.g.,X; water above the interface, while the streaming current in the
=0, m) when the undulating interface is being developed. Itdense liquid always converges toward the nddeg. 5a)].
is clear from Fig. 4 that Lagrangian drift of either fluid is Such motion of the fluids leads to the formation of undula-
essentially unidirectiondi.e., along the incident wayén all  tion crests at the nodes and troughs at the antinodes, as seen
stages when the reflection coefficient is relatively sni@ll  in Fig. 2. When the undulating interface is fully developed
=0, 0.49. The flow structure becomes more complicated[Fig. 5b)], closed circulating cells of a rather weak current
when the wave reflection turns out to be more substantiaghre then developed in the dense liquid layer, consistent with
(R=0.7, 1.0. The profile ofu, then depends oR, X;, as the fact that the net discharge in the layer is now zero. Mean-
well as the stage of the undulation development. Of particuwhile on the water side, those original closed circulating
lar interest are the points where the mass transport velocitgells above the interface are now completely suppressed, and
reverses in direction, as they may correspond to the centees a result, the mass transport velocity farther up gains
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Mey 1-y Phpg  1-R? Qo
gty 6tanhkhy, o%5  sintfkhy X,

(64)

where Qp is given by Eq.(48) and fully detailed in the
Appendix, and the normalized tintg is defined in Table I.
The forcing term is proportional to the gradient of the unidi-
rectional discharge rat®p , which is a function of the slow
variables via dependence ¢n,,. This term represents the
net spreading effect due to streaming induced by surface
waves.

The right-hand side of Eq64) vanishes if the surface
wave is absent@p=0), or is a pure standing waveR(
=1). In such cases, the spreading of the dense liquid will be
driven solely by the gravity current. In dimensional form,
Eq. (64) without the streaming term reduces to that obtained
by Huppert[Ref. 4, Eq.(2.9)] for the propagation of a two-
dimensional viscous gravity current:

ah_m_ (1_7)9 i h3 ahm
at vy, x|\ ™ ax

(b °

=0. (65)

As reasoned earlier, our theory covers flow under a

buoyancy-viscous balance, and serves as an extension of
. Hupperf when the wave-induced streaming becomes as sig-
e e nificant as the buoyancy in driving the flow.

e = - e = Eoam B O s If the total volume of the viscous fluid is finite and

O Ll — %7 1 invariant with time and the spreading profile is symmetrical
2 m aboutx=0, an analytical similarity solution to Ed65) is
! ; 15
available as follow$:

FIG. 6. Two-dimensional plots of mass transport velocity vectors and

streamlines for th¢a) initial stage, andb) equilibrium stage, corresponding _ 3q2Vm s 2\1/3
to the case of partial standing wake=0.7 presented in Fig. 4. The dashed hn(x,1)=0.84 1— t (1-Y9)
0 fhe ca e (1-v49
line atn=1.0 denotes the water/liquid interface.
) ) _ o for —xys<x<xy, (66)
strength and is greater in magnitude than it is initially. Water
simply sinks at the nodes and escapes upward at the antithere
nodes. The corresponding pictures are qualitatively different (1-y)gqgt] 5
for a partial reflectionR=0.7 (Fig. 6). Owing to net steady Y(X,t)=0-705{T X, (67)
m

currents, closed circulating cells do not exist in either fluid in

either the initial or equilibrium stages. The initial flow nev- andxy(t), which is the position of the leading front of the

ertheless reverses in direction in a region centered,at current, is given byY(xy,t)=1. For comparison with the

= 7/4 in the top part of the water boundary layer, as well agoresent work, the solution above may be expressed in dimen-

in a region centered &, = 37/4 in the dense liquid layer. As  sionless form as follows, which is the solution to E64)

the equilibrium stage is approached, the flow reversal in wawithout the forcing term:

ter is enhanced and intensified, thereby leading to a reduced X 3§72 tanhk hy

net mass flux of water longitudinally. On the other hand, the hm(§<2,t4)=0.842{—_»—

flow reversal in the dense liquid disappears entirely, resulting 2(1=7ty

in a uniform steady discharge along the layer. for —Xy<X,<Xy, (68)
Fu* has further studied other effects on the mass trans-

port due to the local development of undulation. By and"/"®'

1/5
:| ( 1— YZ) 1/3

e

large, one may conclude from the present findings that the . 2(1— )05, Y.

gravity current can be instrumental in regulating the local  Y(X2,t4)=0.70 Stantkhy 2 (69)
flow structures, and therefore the mass transport in a two-

fluid Stokes boundary layer can be materially different fromand

that of a single fluid. g=q(ka/s,)? (70)

V. SPREADING ON THE GLOBAL SCALE is the normalized total volume of the dense liquid.

Let us now shift our focus to the global-scale balance  Equation(64) is a nonlinear partial differential equation.
between gravity and viscosity. Substituting E4j7) into Eq.  Given an initial profilehm(iz,O), one may solve numerically
(58), we may get a dimensionless governing equation fothe equation foh,, as a function of space and time. Figures
himo(X2,t4): 7-10 show the results for pure progressive wagies, R
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FIG. 7. Comparison between the longitudinal global profiles of the densd |G- 9. Effects of the Stokes boundary layer thickness rata the global
liquid h,(X,,1s) spreading with and without surface wavesigt10.0, ~ SPreading profile of the dense liquit, (%, i) at{,=10.0, wherer=0,
whereR=0, y=0.5, and¢=khy=1.0. The dashed line is the initial profile ~¥=0-5, andkhy=1.0. The dashed line is the initial profile.

obtained from Eq(68) by settingg= 1.0 andi,=20.0.

fore front, but counteracts the gravity current in the rear
=0) that have been generated with a second-order explicfront. As a result, the entire dense liquid migrates in the
scheme of forward-time, centered-space finite-difference apdirection of wave propagation; the center of mass of the pro-
proximation of Eq.(64). file is shifting forward gradually. While profile&) and (b)

The initial profile in Fig. 7 is obtained from EJ68) have approximately the same maximum height, the latter is
with g=khy=1, y=0.5, andt,=20. The effects of surface clearly asymmetrical about its center of distribution; the
waves are seen by comparing the profil@swithout waves front is steeper at the fore than the aft.
and (b) with waves({=1.0), after a subsequent time interval Effects of the ratios of density and viscosity and the
of t,=10. Profile(a) is also obtainable from the analytical water depth are shown in Figs. 8—10. In these cases, the
solution Eq.(68), and has been checked in agreement withinitial profile is of a lens shape geometrically given by a
that obtained independently by the numerical method. Withsegment of a circle. As shown in Ngthe discharge rate due
out surface waves, the dense liquid continues to spread otn streaming decreases wighbecause a denser fluid tends to
symmetrically about the center=0, while the maximum be more sluggish under wave forcing. This accounts for the
height of the layer keeps on decreasing. In the presence dfifferent speeds of migration of the dense liquid for different
surface waves, the streaming current enhances the flow in thalues of the density ratio, shown in Fig. 8. The fore front,

where the streaming and gravity currents add up positively,
propagates the fastest and is therefore the steepest in the case

L L L B L L B LB B of y=0.9 when the liquid is only slightly heavier than water.
C ] The buoyancy force, which is relatively large fg=0.3,
12+ —
1L ] 0.14
L ] F 7 ki, Lgm
L ] 012} AN v S
F 0.7 23.6 26
o8- ] : R R H
A - ] o1 t=0!’ ! 20 36 120
T o6~ 7 0.08 po
L 1 h (m) F ! |
L 4 m o
04 - 006t bl
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X{(m)
FIG. 8. Effects of the density ratig on the global spreading profile of the FIG. 10. Effects of the water deptly on the global spreading profile of the

dense liquidhn(X,.,1,) at i,=10.0, whereR=0, and {=kh,=1.0. The  dense liquidh,(x,t) att=0.5 day, whereR=0, y=0.5, {=1.0, T,=5+s,
dashed line is the initial profile. anda= §,,=0.1 m. The dashed line is the initial profile.
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turns out to be subdominant in driving the propagation of the/l. CONCLUDING REMARKS
fore front. This is reasonable because the density current is , ,
An asymptotic theory is developed for the slow spread-

g:gpgr;:r}i}: t\?vitt:?h;hggnggvﬁez% I[;:f.erE;.ic(:rTgs’sW?:: rea;ng of a thin layer of highly viscous immiscible dense liquid
bs rapidly q Y ) the bottom of a near-shore waterway under the combined

. ) n
front, where the gravity and streaming currents negate eac%ﬁects of surface waves and gravity current. The flow, ex-

other, however, remains virtually stationary with time in cited by surface waves and driven by gravity, features several

most cases, although the_profile gradient at this front iSphenomena that become appreciable at different length and
steeper for a smaller density ratigreater buoyandy The e scales.

front even spreads rearward when the fluid is dense enough The primary oscillatory motion occurs over a wave pe-

(y=0.1). As a result of the features occurring at the tWorjod, which is too short to see any net mass transport. For a
fronts, the spreading profiles for=0.5 are highly skewed syfficiently long time and in the presence of reflected waves,
toward their fore frontghence their peaks are sharper andthe alternating component of the streaming current can in-
closely behind the abrupt fore frontsvhile those fory=0.1,  duce the development of an undulating interface between the
0.3 have more rounded and symmetrical distributions abouiear-bottom water and the dense liquid. Despite the small
their peaks. The gravity current may outweigh the streamingimplitude, the undulation in its course of formation can dra-
current at the rear front for a sufficiently dense liquid. matically change the local structure of the mass transport
The viscosity ratiaZ plays a similar role ag in control-  velocity of the near-bottom water. The position and number
ling the spreading pattern of the dense liquid layer. Theof circulating cells above and below the interface are found
streaming velocity is larger for a smallér resulting from a  to be dependent on the thickness of the dense liquid layer. A
higher rate of momentum transfer across the water boundarstratified wave boundary layer differs in nontrivial manners
layerl® The streaming effect is reflected in Fig. 9, again,from a homogeneous one. It is worthwhile as a future exten-
from the movement speed of the fore front, which clearly ission of the present work looking into the much thicker sec-
higher for a smallet. Also, while the fore front moves for- ondary wave boundary layer, which is induced by convective
ward with time, the rear front hardly moves in most casesinertia, when subject to the presence of a thin layer of dense
The profiles forf=5 and 10, however, do not differ from Viscous fluid on the bottom. o
each other appreciably. This is expected because, for one The global spreading of the dense liquid takes place on
thing, the density current does not depend on this parametdgN9th and time scales longer than the wavelength and wave
and the other, the wave streaming becomes rather insensiti§/10d- The streaming induced by progressive surface waves
to the viscosity ratio when the latter is larger than uftty. drives the dense liquid to migrate with a distinct pattern in

As reasoned above, the migration of the dense liquid caﬂqe direction of wave propagation. The Iayer prc_>fi|e s alvyay_s
be much controlled by the streaming current, which in tumsteeper at the fore than the aft, approaching a jump profile in

depends on the influence of surface waves on the bottoﬁt(;nhne Koigtr\grzlﬁllzgl\gnt%; nggvcgceatstt:]eza?r?k ias S t;rp[il?lgﬁs
boundary layer. Figure 10 shows the effects of the water . gisp y

denthhe. via the dimensionless parametdi. on the mi influential under a relatively shallow water environment.
P No. P 0 Therefore the present theory is relevant to the transport of

Benthic matter in a long shallow nearshore waterway or navi-
for the variables depend dawhich in turn varies withhg, gation channel g y

the present comparison is meaningful only in terms of the” i \yii pe desirable if experimental verification of the
physical variables. In this plot, we consider a typical Wlnd-presem theory, particularly E¢64), can be carried out. We,
wave periodl; =5 s, and an equal value for wave amplitude ho\yever, stress that our work has focused on the combined
and Stokes boundary layer thickness 6, =0.1m, and the  effects of two well-known mechanisms: streaming induced
spreading has lasted for a periodtef0.5 day. Other inputs  py surface waves and gravity current, which individually
areR=0, y=0.5, and{=1.0. The values of wavelengtly  have been well backed by experiments. Therefore, the
and water deptiin, corresponding to eackhy are given in - present work should offer a sound basis for a quantitative
the figure. It is very clear that in shallow watekl;,=0.7)  understanding of a streaming-buoyancy combined action on
the wave streaming dominates over the buoyancy, while inhe propagation of a viscous current.

deep water Khy=2.0) the opposite is true. The streaming Of course, a more comprehensive model may be re-
velocity is proportional to the square of the near-bottom in-quired in order to take into account other factors such as the
viscid velocity le, given by Eq.(40), and therefore de- bottom topography and tidal currents that are also influential
creases dramatically dsh, increases. In the case &, in reality. Extensions of the present theory will be pursued in
=0.7, the span of the layer has stretched from 10 m to mor¢he future. A study on the spreading of a non-Newtonian
than 60 m in half a day, and the profile has turned to a highlylense fluid is underway and will be reported soon.

skewed distribution, as seen in previous plots. We may infer

from this plot that for typical wind-wave period$ s and a

wave amplitudea=0(0.1m), a water depth of approxi- AcKNOWLEDGMENTS
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APPENDIX: EXPRESSIONS FOR FUNCTIONS AND
CONSTANTS IN THE STREAMING VELOCITIES
AND DISCHARGE RATE

Let us recall the streaming velocities, which are given by
Egs. (43) and (45). They are composed of direct and alter-
nating currents that can be written in terms of functions and
constants to be presented below: and

UmD(ﬁ):FmD(ﬁ)+CmDﬁv
A - ~ Al

Unna(R) = Fona(R) + Con, (AD

UWD(ﬁ):FWD(ﬁ)+CWDv UWA(ﬁ):FWA(ﬁ)+CWAY

(A2)

where the subscript® and A denote the direct and alternat-
ing currents, respectively. Also recall that Re and Im denote,
respectively, taking the real and imaginary paitds the
imaginary unit and the asterisk represents the complex con-
jugate.

We first define two constant3 andE as follows:

—y{—(1—y){cosh\,hy,

C.-O. Ng and S.-C. Fu

Fma(N)=y(y—1)"?+2 Rdiy?cosh1+i)n

2
+iyE sinh(1—i)A]+ yz(cosh $i— cos )
| 2

+ T(cosh H+cos D)

—%Re[E(sinh 2+ sinh 2A)] (A7)

Frp(N)=7?[(1+i)nsinh(1+i)A—2 coskil+i)n]

—E*9y[(1+i)ncosi1l+i)n—2 sinh(1+i)n]
,}/2
+ Z(cosh 4+cosh 2n)

2
[E| (cosh

7E (sinh 2A—sinh 2A) +
—T(sm —sinh2in) I

*

— cosh2A)— —- (sinh 20+ sinh 2A)

—iEysinh(1+i)n+i|E|?cosi1+i)n. (A8)

= . : (A3)
g cosh\ yhy+ y sinhh ,h, The real constant€,,p and C,,», Which are constant with
and respect to the fast coordinates, are expressible as
(1= y)+ y? coshh s+ yZ Sinh\ phyy, Fmpb Y &wa)
= . C =R —_——t - — —-C A9
E £ cosh\ ;h+ y sinh hy, (Ad) mb—2 on % on Aho 2a| (A9
For the current in the dense liquid, the real functionsand
Fmp andF A are expressible as follows:
Fimp(1)= 3 RE Fryy(M) ~ F(0)] (A5) Fma, ¥ Fua
on 22 on ). -
and n=hmo
Fna(N) =Fna(N) = Fma(0) + IM[F5(A) — Fy(0) ], oF IF
mal( mal mal [Fmif mb( ](AG) Siml | = Tb+12 le —Coal, (A10)
on ie on SR
—'mo

whereF,,(n) is a real function andr,,(n) is a complex
function given by

in which the derivatives of the functions are given by

JF . . - 2 - -
&ﬁma=2y(7f—1)hm0+2Re{(—1+i)yzsinf’(1+i)hm0+(1+i)yEcosf(l—i)hmo]+%(sinhthoanintho)
E? - o . -
+ T(smh 20— Sin 2h0) — v R E(cosh 2o +i coshdh )], (A11)
Fmb o n e . o e Y e
i =y12ihycosi1l+i)hy,o]—E* y[2ihygSinh(1+1)ho] + 7(smh21mo+|smh2hm0)
vE . ~ E? - - E*y . ~
- 7(cosh A o—icosh2hg)+ T(smh No—i sinh 2ihg) — 5 (cosh g +i cosh 2h o)
+(1-i)Eycostl+i)hme—(1—i)|E[ZsiNN(1+i)hmo— Y2 (1+i)Sin(1+i)hmo+ E* ¥(1+i)cosi1+i)hmp,
(A12)
‘?Fwa_ . 2
= =2Rd4—(1+0)D¢]-[DI*¢, (A13)
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and

IF wp

an

=(1-1)2D*{y[(1~i)hmo—sinh(1—i)h o]

+E[cosi1—i)hmo— 11} — (1+1)ZD* [Nnol (1
+i)+1]+i£(2{D*hye—|D|?), (A14)
and the complex constaf,, is
Coa=(1+1){Y[(1+i)Nmo—i SIN(L1—i)Npo]
+iE[cosf(1—i)ﬁm0—1]}
x[—ycost(1+i)ﬁm0+ E* sinr(1+i)ﬁm0—yD*].
(A15)

Similarly, for the current in water, the real functions
F.o(n) andF,A(N) can be expressed as

Fwp(N)=3ReFy(N)] (Al16)
and
Fuwa(N)=Fya(N)+IM[Fu(N)], (A17)

where the real functiorF,,(n) and the complex function
Fuwb(N) are given by

A . PPN |D|2 - L
Fwa(nN)=2RdiDe (1= hmo)]+_2 e 2{(h=hmo)

(A18)
and
Fun(M) =1 Z{y[(1=1)Apo—sinh( 1= i)y ]
+E[cosh1—i)ho—1]}D* o~ (1+1)(A=hpg)
+ D*[(1+i)gﬁ+2]e*<1+i>§<ﬁfﬁmo)

—(1+i)Zh oD% e~ (eGP

|D|2 2£(n A . H A h
+Te7 g(nfhmo)_f_l|D|ze*(l+|)§(n7hm0)'

(A19)

The real constant€,,p andC,, 5 are

Cwo=(Fmp=Fwp)a=h_,* Crnphmo+ $RECye]
and

Cwa=(Fma—=Fuwa)a-n_,* Crnallmo+ IM[C1,],
in which the complex constaii,, is
C1a={¥[(1+) o1 SINN(1~1)Ang]

+iE[cost{1—i)hyo—1]}

X[ =y sinh(1+i)hmo+E* cosi{1+i)hmo+D*].
(A20)

(47), also comprises of direct and alternating components:
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Qo=HREIF yp(hmo) 1~ REIF 1(0)]
— REFmp(0) INmo+ CphZ2+ REFinl},  (A21)
Qa={IF ma(hmo) + IM[IF (Nio) 1 = {IF 1(0)
+IM[IF 1 0) T} = {F ma(0) + IM[F 11 0) T Nimg
+Cah2g/2+ IM[Fin], (A22)

where
IFma(ﬁ)=yRe{(l—i)ysink{l—i)ﬁ—(l—i)

. E . .
xEcosK1—|)n—Z(cosh2ﬁ—|cosm)

ﬁ3 2

Fy(y=1) 5+ %(sinh 2 — sin 27)

|El?

+ T(sinh 2N +sin 2n), (A23)

. . 1= .
ncoshil+i)n———sinh(1+i)n

IFmb(ﬁ):yz 2

—(1—=i)sinh(1+i)n|—E*y[nsinh(1+i)n

— %coshlﬂ)ﬁ—(l—i)cosr(1+i)ﬁ

2
. . E
+ %(sinh N +sin2n)— %(cosh 4

. |E]? . .
+icosh)+ |T(sinh 2n—sin2n)
E* . o 14
i (coshm—lcosm)—TyE

o LA . o
X cosi{1+i)n+ T|E|25|nr(1+|)n,
(A24)
and the complex interface term is expressed as
1+i A ] .
Fin:T{')’[(l_|)hm0_smr(1_|)hm0]

+E[cosi1—i)hmo—1]}
X[ y— v cosi1+i)hyo+E* sinh(1+i)ho].
(A25)
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