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On the propagation of a two-dimensional viscous density current
under surface waves
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~Received 24 July 2001; accepted 6 December 2001!

This study aims to develop an asymptotic theory for the slow spreading of a thin layer of viscous
immiscible dense liquid on the bottom of a waterway under the combined effects of surface waves
and density current. By virtue of the sharply different length and time scales~wave periodic
excitation being effective at fast scales, while gravity and streaming currents at slow scales!, a
multiple-scale perturbation analysis is conducted. Evolution equations are deduced for the local and
global profile distributions of the dense liquid layer as functions of the slow-time variables. When
reflected waves are present, the balance between gravity and streaming will result, on a time scale
one order of magnitude longer than the wave period, in an undulating water/liquid interface whose
displacement amplitude is much smaller than the thickness of the dense liquid layer. On the global
scale, the streaming current can predominate and drive the dense liquid to propagate with a distinct
pattern in the direction of the surface waves. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1448348#
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I. INTRODUCTION

Accidental spills of oil or hazardous liquid hydrocarbo
in near-shore regions are now common occurrences and
ten lead to long-term and extensive damage to the envi
ment. Dense oils or nonaqueous phase liquids~DNAPL! that
sink in water, when spilled into a body of water, will eve
tually reach the bottom of the water column, where they m
cause further pollution by interacting with the benthic en
ronment. Even a floating oil, when mixed with 2%–3%
sand, can make itself heavier than water and sink. The
tential threat to the environment posed by a hazardous liq
chemical on the bottom very often is as enormous as, if
more than, that caused by a floating oil on the water surfa
which is more visible to the public.

Chemicals spilled on the sea can be dissipated by na
causes such as physical mixing, chemical weathering,
biological degradation. Such causes, however, become
effective for liquid chemicals deposited on the sea botto
Unlike those floating on the surface, they are less subje
to dissipation due to volatilization and photo-degradati
The adverse environment on the bottom also limits the a
bic biodegradation. Turbulent mixing is suppressed if str
fication is stable. It is in general difficult to monitor th
spreading of a liquid phase chemical on the sea bottom
model very often is the only readily available tool by whic
one can estimate the extent of pollutant migration in
benthic environment.

Gravity or density current is the mechanism by which
viscous fluid spreads under a lighter fluid; it also refers to
flow along a boundary layer of one fluid intruding into a
other fluid as driven by gravitational or buoyancy force1

a!Author to whom correspondence should be addressed. Telephone:~852!
2859 2622; fax:~852! 2858 5415; electronic mail: cong@hku.hk
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Huppert and Simpson2 reasoned that a gravity current mig
evolve to go through three stages. The first one is the slu
ing phase, during which the current is retarded by the co
terflow in the fluid into which it is discharging. The next tw
stages are, respectively, the balance between buoyancy
and inertia force, and the balance between buoyancy fo
and viscous force. For spreading after a sufficiently lo
time, the third stage is expected to dominate. This flow
gime was studied experimentally by Didden and Maxworth3

and similarity solutions for two-dimensional and axisymm
ric viscous gravity currents were obtained by Huppert.4 More
recent studies on gravity current include Ungarish a
Huppert5 and Hogget al.6 However, in typical coastal situa
tions, the migration of a dense liquid in the bottom bounda
layer can be forced by gravity current as well as Euler
streaming current induced by surface waves. In those ab
mentioned works the effects of surface waves are gro
ignored.

For small-amplitude periodic surface water waves,
fluid particles near the bottom possess, apart from their
bital motion, a steady second-order drift velocity, which
usually termed the mass transport velocity or streaming.
theory of streaming by surface waves was studied in de
by Longuet-Higgins.7 Carteret al.8 studied the mass trans
port in a homogeneous fluid under incident and reflec
waves. Dalrymple and Liu9 developed a general theory fo
linear waves propagating in a two-layer system, with t
effects of all the boundary layers taken into account. Exte
ing this work to the second order, Sakakiyama and Bijke10

obtained the mass transport velocity in a viscous mud la
due to progressive waves. More recently, Ng11 deduced ana-
lytical solutions for an asymptotic case of Dalrymple a
Liu,9 namely when the lower layer of fluid is comparable
thickness with the Stokes boundary layer. Ng11 presented ex-
plicit expressions for the wave attenuation, mass trans
© 2002 American Institute of Physics
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971Phys. Fluids, Vol. 14, No. 3, March 2002 Viscous density current under surface waves
velocity, and mean discharge rate of mud. For the sprea
of a dense and immiscible fluid on the sea bottom, the
duced wave streaming can be as influential as the gra
current, if the fluid layer profile is slowly varying. It is o
fundamental interest to find out how the two driving forc
will interact or counteract with each other in controlling th
transport of matter in a wave boundary layer. It is the inte
tion of this paper to study the spreading of a submerged fl
under a balance between the viscous, gravity and oscilla
effects.

The aim of this study is to develop an asymptotic theo
for the spreading of a thin slowly varying layer of den
liquid on the bottom of a nearshore waterway under the
tion of small-amplitude surface gravity waves. In Sec. II t
problem is further defined and the assumptions are sta
The relative orders of magnitude of individual effects a
estimated in terms of the small parameter of wave steepn
which is the ratio of wave amplitude to wavelength. Multip
spatial and time scales exist in the problem, thereby req
ing the multiple-scale expansions of the governing equati
and boundary conditions. An asymptotic analysis is p
formed in Sec. III to obtain perturbation equations to t
second order. The flow structure at the leading order can
modeled by that of a two-layer Stokes boundary layer.11 The
second-order steady current, composed of Eulerian stream
and density current, is then found analytically. The probl
is closed when the evolution equations, on the local and
global scales, are determined from the depth-integrated
tinuity equation. Owing to reflected waves, the stream
current varies periodically in half a wavelength, leading
the development of an undulating interface between w
and the dense liquid on the local scale, whose analytical f
is presented in Sec. IV. It is shown that an undulation
developed such that its crest is typically under a node of
surface waves, and its amplitude is larger for a smaller d
sity contrast or a thinner layer of the dense liquid. The lo
streaming current structures are examined in detail in te
of the reflection coefficient and the development stage of
undulating interface. The spreading of the dense liquid a
takes place slowly on a global length scale. In Sec. V
global evolution equation, which encompasses both stre
ing and density currents, is solved numerically for t
spreading pattern as a function of time for a given init
profile. The pattern can be rather distinct and the entire fl
layer can migrate significantly in the direction of wav
propagation after a sufficiently long time. Results are exa
ined for various values of the fluid properties and wave ch
acteristics.

II. ASSUMPTIONS AND FORMULATION

Consider a two-dimensional thin layer of dense visco
and immiscible nonaqueous liquid~simply referred to as the
dense liquid hereafter! lying on the bottom of a water course
as shown in Fig. 1. Axesx and y are, respectively, in the
direction of the incident wave and vertically upward from t
mean water free surface. The densities of the dense liq
and water are, respectively, denoted byrm and rw , where
rm.rw . The flow of water near the bottom boundary
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essentially turbulent, but the dense liquid is so glutinous t
its viscous motion is still largely controlled by molecula
viscosity. It is assumed that stable density stratification p
vails, and therefore mixing across the water/liquid interfa
is suppressed. Such an assumption has been comm
adopted in studies of concentrated mud under surface w
~e.g., Mei and Liu12!. The eddy viscosity of water in the
boundary layer, denoted bynw , is for simplicity taken to be
a constant, which in coastal zones may have typical val
1–100 cm2 s21. The molecular viscosity coefficient of th
dense liquid, denoted bynm , also can be as much as the
values if the liquid is sufficiently viscous.

The dense liquid layer is of a thicknesshm(x,t), while
the depth of the overlying water layer ishw(x,t); both vary
slowly with the longitudinal coordinatex and time t. The
total depthh05hw1hm is assumed to be constant, andhm

!hw . The shallowness of the dense liquid layer allows t
application of the lubrication theory here.

The present theory applies to the case when a su
ciently long time has elapsed after the initial discharge of
dense liquid. In other words, it has come to a stage in wh
the steady fluid motion in the boundary layer that is induc
by surface waves is comparable in magnitude with t
driven by buoyancy. Therefore, as long as the surface wa
are small in amplitude, the inertia of the fluid will be neg
gible at the leading order, but gives rise to a steady stream
at the next order. The steady streaming, which owes its
istence to viscosity, is then balanced by gravity current. S
a buoyancy-viscous balance can also be argued in a m
rigorous manner using the relations presented by Huppe4

Now, a long-crested small-amplitude incident wave
progressing on the water free surface in the positivex direc-
tion. A reflective boundary may exist farther down the wa
course so that a standing wave can be formed from the
perposition of incident and reflected waves of the same
riod. The free-surface displacement can be written as

h~x,t !5Re@a$ei ~kx2st !1Rei ~kx1st !%#, ~1!

where Re denotes the real part of the expression followina
is the amplitude of the incident waves,i is the imaginary
unit, k is the wave number,s is the wave angular frequency

FIG. 1. Schematic diagram of the problem under consideration; a thin
of viscous dense liquid spreading on the bottom of a waterway under sur
waves.
license or copyright, see http://pof.aip.org/pof/copyright.jsp
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TABLE I. Orders of magnitude and normalized forms~distinguished by a caret! of the variables.

Physical variable Order of magnitude Normalized variable

x, x1 k21 ( x̂,x̂1)5kx
x2 (ek)21 x̂25(k2a2/dm)x
n, hm , hm0 ek215a;dm (n̂,ĥm ,ĥm0)5(n,hm ,hm0)/dm

hm1 ea ĥm15hm1 /(ka2)
j, b ea ( ĵ,b̂)5(j,b)/(ks21dmŨI)
t, t1 s21 ( t̂, t̂1)5st
t2 (es)21 t̂25(ksdm)t
t4 (e3s)21 t̂45(k3sa4/dm)t
rw rm g5rw /rm

dw dm z5dm /dw

u, u0 sa;ŨI (û,û0)5(u,u0)/ŨI

v, v0 esa;eŨI ( v̂,v̂0)5(v,v0)/(kdmŨI)
u1 , uL esa;eŨI (û1 ,ûL)5(u1 ,uL)/(ks21ŨI

2)
v1 , vL e2sa;e2ŨI ( v̂1 ,v̂L)5(v1 ,vL)/(k2s21dmŨI

2)
P/r k21s2a;ga P̂5P/(rk21sŨI)
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andR is the reflection coefficient. Without loss of generali
we may takea ands to be real. Our focus will only be on th
cases in which the coefficientR is real and in the range 0
<R<1. The wave is purely progressive whenR50, and
becomes purely standing whenR51; a partial standing
wave results from an intermediate value ofR.

The wave steepnesse[ka!1 is a small quantity, and
will be used as the ordering parameter. The motion of wa
is essentially inviscid and irrotational except in a thin lay
near the bottom in which vorticity is appreciable. Under
periodic forcing given by Eq.~1!, the thin boundary layer is
a Stokes boundary layer, whose thickness is typically defi
as ~e.g., Mei13!

d5~2n/s!1/2. ~2!

Momentum exchange renders the Stokes boundary laye
extend across the interface between the near-bottom w
and the dense liquid. Sincenm;nw , the thickness of the
Stokes boundary layer in either fluid is comparable with e
other. In this study, we assume that the dense liquid la
thicknesshm and the Stokes boundary layer thicknessd are
of the same order of magnitude as the wave amplitudea.
They are supposed to be in the order of tens of centime
much shorter than the wavelength. Therefore, there is a s
contrast in the horizontal and vertical length scales:

e[ka;khm;kd!1. ~3!

Also, the entire dense liquid layer, as well as the near-bot
water, is subject to viscous shear. Flows in this two-la
Stokes boundary layer are describable by the class
boundary layer theory. For convenience, we introduce a lo
vertical coordinaten[y1h0 , which points upward from the
base of the dense liquid layer~Fig. 1!. Note thatn, which has
the same scale ashm , is an inner independent variable fo
the boundary layer solutions. In the equations and bound
conditions presented below, the small parametere is inserted
merely to reflect the relative order of magnitude of the as
ciated term, and also that of the truncation error. Otherw
the e’s may be disregarded. The parametere appears only in
equations or boundary conditions which contain terms of
ov 2006 to 147.8.21.97. Redistribution subject to AIP 
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ferent orders. Such orders of the terms are obtainable u
nondimensionalizing the equations and boundary conditi
using the normalized variables, which are introduced
Table I. The parametere is then retained for identification
when reverting to the physical variables, thereby yielding
present equations and boundary conditions. See Fu14 for fur-
ther details.

The continuity and momentum equations read as
lows, where the subscriptf is replaced bym andw when the
equations are applied to the dense liquid and the near-bo
water, respectively:

]uf

]x
1

]v f

]n
50, ~4!

]uf

]t
1euf

]uf

]x
1ev f

]uf

]n

52
1

r f

]Pf

]x
1n f

]2uf

]n2 2
r f2rw

r f
g

]hm

]x
1O~e2!, ~5!

and

052
1

r f

]Pf

]n
1O~e2!, ~6!

whereu(x,n,t) andv(x,n,t) are the horizontal and vertica
components of the fluid velocity, andP(x,n,t) is the dy-
namic pressure~i.e., the static pressure being subtracted fro
the total pressure!. One may notice that in the horizonta
momentum equation~5!, the convective inertia are of an o
der O(e) relative to the local acceleration, and the den
liquid is subject to buoyancy force.

At the base of the dense liquidn50, the no-slip and
no-leakage conditions apply:

um5vm50 at n50. ~7!

Excited by the surface waves, the interface between
dense liquid and water displaces periodically in the sa
manner as the surface waves. The interface is given
F(x,n,t)[n2hm2ej50, where
license or copyright, see http://pof.aip.org/pof/copyright.jsp
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973Phys. Fluids, Vol. 14, No. 3, March 2002 Viscous density current under surface waves
j~x,t !5Re@bei ~kx2st !1bRei ~kx1st !# ~8!

is the interfacial displacement with complex amplitudesb
and bR in response to the incident and reflected waves,
spectively. As shown later, these amplitudes are one orde
magnitude smaller than the surface wave amplitude, i.eb
5O(ea). The velocity and stress components are continu
at the interfaceF50:

uw5um , vw5vm , tw•¹F5tm•¹F at n5hm1ej,
~9!

wheret is the stress tensor. Using Taylor series expans
about the mean positionn5hm , and substituting the usua
linear constitutive law fort, these conditions for the conti
nuity of velocity and stress at the interface can be appro
mated as

uw1ej
]uw

]n
5um1ej

]um

]n
1O~e2! at n5hm , ~10!

vw1ej
]vw

]n
5vm1ej

]vm

]n
1O~e2! at n5hm , ~11!

rwnwS ]uw

]n
1ej

]2uw

]n2 D5rmnmS ]um

]n
1ej

]2um

]n2 D
1O~e2! at n5hm , ~12!

and

Pw1eS j
]Pw

]n
2rwgj D5Pm1eS j

]Pm

]n
2rmgj D

1O~e2! at n5hm . ~13!

Also, the kinematic boundary condition on the interfa
is given bydF/dt50, which can be expressed as

]

]t
~hm1ej!1eum

]

]x
~hm1ej!5evm at n5hm1ej,

~14!

which for later deduction is not Taylor-series expanded
this point.

Farther up from the boundary layer but still close to t
bottom, the velocity and pressure will tend to the ne
bottom values given by the inviscid theory

~uw ,Pw!→~UI ,PI !

at outer edge of the boundary layer,~15!

whereUI andPI are, respectively, the horizontal compone
of velocity and the dynamic pressure of the inviscid flo
near the bottom. The inviscid flow at this boundary is go
erned by

]UI

]t
1eUI

]UI

]x
52

1

rw

]PI

]x
near the bottom. ~16!

On the free surface, the inviscid flow is subject to t
usual kinematic and dynamic boundary conditions for s
face waves, which in the linearized forms are

]h

]t
5vw1O~e! at y50, ~17!
Downloaded 06 Nov 2006 to 147.8.21.97. Redistribution subject to AIP 
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]uw

]t
52g

]h

]x
1O~e! at y50. ~18!

The basic mathematical formulation is now comple
The problem under consideration features several phen
ena that are effective at different length and time scales
order to prepare grounds for the ensuing asymptotic analy
we need to establish the relationships between these sc
As discussed earlier, the basic horizontal length and t
scales are, respectively, the wavelength and wave period
L152pk21 and T152ps21. The corresponding variable
are the fast space and time variablesx15x and t15t.

The dense liquid layer has a thin and slowly varyi
profile on thex2n plane. More specifically, it is assume
that

]hm

]x
5O~ekhm!, ~19!

which implies that the entire span of the dense liquid laye
much longer than the wavelength. This necessitates the
troduction of a long spatial scaleL25e21L1;(k2a)21, or a
slow space variablex25ex. The thicknesshm0 , the leading
order value ofhm , will appear constant over a waveleng
and steady over a wave period, and therefore does not
pend on the fast space and time variables:

]hm0

]x1
5

]hm0

]t1
50. ~20!

Hence in Eqs.~5! and ~14!, the terms]hm /]x and ]hm /]t
will have no contribution untilO(e). The short and long
length scales (L1 ,L2) will also be referred to as the local an
global scales.

Eulerian streaming under a standing wave varies perio
cally in half of a wavelength, and as a result the dense liq
layer profile may vary over this short length scale as w
~see Sec. IV!. This local variation in profile, in the form o
periodic undulation, however, becomes effective only on
longer time scale and its magnitude is expected to be m
smaller than the layer thickness itself. On balancing the gr
ity effect with the vertical momentum diffusion by viscosit
i.e.,

S 12
rw

rm
Dg

]hm1

]x1
;nm

]2ūm1

]n2 , ~21!

where hm1 is the amplitude of an undulation andūm1

5O(ska2) is the second-order steady streaming veloc
one may show thathm1;ehm . It is then clear from the con-
servation of mass

]hm1

]t
;

]

]x1
E ūm1 dn ~22!

that the time scale for the undulation development is o
order of magnitude longer than the wave period. The un
lations are therefore formed inT25e21T1 , and the corre-
sponding slower time variable ist25et.

The second-order streaming velocity is also respons
for the spreading and migration of the dense liquid~see Sec.
license or copyright, see http://pof.aip.org/pof/copyright.jsp
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V!. Therefore, the time scale for migration of the liquid lay
to be effective over a distance comparable with the length
the layer itself will be

T4;L2 /ūm1;~sk3a3!215O~e23T1!, ~23!

i.e., three orders of magnitude longer than the wave per
The slowest pertinent time variable is thereforet45e3t. The
intermediate time variablet35e2t is later shown to be a
trivial variable for the present problem, but is included f
the time being for completeness.

We summarize in Table I the scalings of all the variab
that are introduced above or later, and also their normali
forms, which are distinguished by a caret. Now, the multip
scale perturbation analysis can be started upon substitu
into the governing equations and boundary conditions
following expansions:

A→A01eA11e2A21¯, ~24!

whereA stands foruw , vw , um , vm , UI , Pw , Pm , andPI .
The leading order quantities are further assumed to be
first-harmonic periodic form

A05Re@Ã~x2 ,t2 ,t3 ,t4 ,n!ei ~kx12st1!

1ÃR~x2 ,t2 ,t3 ,t4 ,n!ei ~kx11st1!#. ~25!

The phases are functions of the fast variables, while the
plitudes depend on the slow variables only. The second t
in Eq. ~25! vanishes in the case of pure progressive wav
The spatial and temporal derivatives are accordingly
panded into the multiple-scale rates of change:

]

]x
→ ]

]x1
1e

]

]x2
, ~26!

]

]t
→ ]

]t1
1e

]

]t2
1e2

]

]t3
1e3

]

]t4
. ~27!

The dense layer thickness is expanded, as discussed a
into

hm5hm0~x2 ,t2 ,t3 ,t4!1ehm1~x1 ,t2!1O~e2!. ~28!

Therefore, whilehm varies slowly in both space and time
the leading order, it depends on the fast-space but slow-
variables at the next order. It will be further shown later th
hm0 is independent oft2 and t3 ~Sec. III C!, andhm1 can be
a periodic function ofx1 with a zero spatial mean~Sec. IV!;
hm1 also vanishes identically whenR50 ~i.e., pure progres-
sive waves!.

III. ASYMPTOTIC ANALYSIS

A. First-order solutions

By linearity, the leading order solutions are a sum
components due to the incident and reflected waves@cf. Eq.
~25!#. One can readily show that, for a free-surface displa
ment given by Eq.~1!,
Downloaded 06 Nov 2006 to 147.8.21.97. Redistribution subject to AIP 
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~uf 0 ,v f 0 ,UI0 ,j!5Re@~ ũf ,ṽ f ,ŨI ,b!ei ~kx12st1!

1R~2ũf* ,ṽ f* ,2ŨI* ,b* !

3ei ~kx11st1!# for f 5m,w, ~29!

whereR is the reflection coefficient and the asterisk deno
the complex conjugate. Therefore, as shown above, the
plitudes of the quantities associated with the reflected w
are related to their counterparts associated with the incid
wave, and it suffices to present below the solutions for p
progressive waves, which have been developed by Ng.11

In 0<n<hm ,

ũm~n!5@g2g coshlmn1E sinhlmn#ŨI ~30!

and

ṽm~n!52 iklm
21@g~lmn2sinhlmn!

1E~coshlmn21!#ŨI . ~31!

In hm<n,`,

ũw~n!5@11De2lw~n2hm!#ŨI ~32!

and

ṽw~n!5 ṽmun5hm
2 i @k~n2hm!

2kDlw
21~e2lw~n2hm!21!#ŨI . ~33!

The constantsD and E ~constant with respect to the fas
variables! are given by Eqs.~A3! and~A4! in the Appendix.
In these equations,

g5rw /rm,1 ~34!

is the density ratio of the fluids,

z5dm /dw5~nm /nw!1/2 ~35!

is the ratio of the Stokes boundary layer thicknesses, an

l f5~12 i !/d f for f 5m,w ~36!

is a complex parameter, in which

d f5~2n f /s!1/2 for f 5m,w ~37!

is the Stokes boundary layer thickness for the respec
fluid.

At O(1), theinterface kinematic boundary condition Eq
~14! reads

]j

]t1
5vm0 at n5hm , ~38!

which with Eq.~8! gives a relation for the amplitude of th
interfacial waves

b5 is21ṽmun5hm
. ~39!

It is clear from this relation that the interfacial wave amp
tude is indeed one order of magnitude smaller than tha
the surface waves.

The near-bottom horizontal velocityŨI and the disper-
sion relation, at the leading order, are obtainable from
inviscid theory:
license or copyright, see http://pof.aip.org/pof/copyright.jsp
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ŨI5
sa

sinhkhw
;

sa

sinhkh0
~40!

and

s25gk tanhkhw;gk tanhkh0 . ~41!

Sinces anda are given real constants andhw5h01O(e) is
a constant at the leading order, then the near-bottom velo
ŨI and the wave numberk are also real constants at th
leading order. See Ng11 for a further discussion on the kine
matics in a two-layer Stokes boundary layer, including
wave attenuation rate and properties of the interfacial wa

B. Second-order steady currents

With some algebra, one may obtain from Eq.~5! the
O(e) horizontal momentum equations, from which one m
infer that theO(e) velocities contain steady and tempor
oscillating components. Taking a fast-time average of
velocities will remove the temporal oscillating componen
and leave two steady components, one uniform and the o
spatially periodic. Let us use an overbar to denote the t
averaging over a wave periodT152ps21, i.e., for any
function A(t1),

Ā[
1

T1
E

t1

t11T1
A dt1 . ~42!

Taking the time averaging of the momentum equations
lowed by some mathematical manipulation then yields
following solutions:

In 0<n̂<ĥm ,

ūm1~ n̂!5ks21ŨI
2F ~12R2!UmD~ n̂!1R sin 2x̂1UmA~ n̂!

1~12g!sinh 2kh0S ]ĥm0

] x̂2
1

]ĥm1

] x̂1
D

3n̂S n̂

2
2ĥm0D G ~43!

and

v̄m1~ n̂!52k2dms21ŨI
2F2R cos 2x̂1E

0

n̂
UmA dn̂

1~12g!sinh 2kh0

]2ĥm1

] x̂1
2

n̂2

2 S n̂

3
2ĥm0D G .

~44!

In ĥm<n̂,`,

ūw1~ n̂!5ks21ŨI
2F ~12R2!UwD~ n̂!1R sin 2x̂1UwA~ n̂!

2~12g!sinh 2kh0S ]ĥm0

] x̂2
1

]ĥm1

] x̂1
D ĥm0

2

2 G ~45!

and
Downloaded 06 Nov 2006 to 147.8.21.97. Redistribution subject to AIP 
ity

e
s.

y

e
,
er
e

l-
e

v̄w1~ n̂!52k2dms21ŨI
2H 2R cos 2x̂1S E

ĥm

n̂
UwA dn̂

1E
0

ĥmUmA dn̂D 2~12g!sinh 2kh0

3
]2ĥm1

] x̂1
2

ĥm0
2

2 S n̂2
ĥm0

3 D J . ~46!

Recall thatg5rw /rm , and the normalized quantities~distin-
guished by a caret! have been defined in Table I. In th
equations above, the functionsUmD(n̂), UmA(n̂), UwD(n̂),
andUwA(n̂) are nondimensional functions of the slow va
ables and their full-blown expressions are given in the A
pendix.

The steady current in either layer of fluid is composed
Eulerian streaming and the density current; the former is
to viscosity in the boundary layer, while the latter resu
from a mild gradient of the water/liquid interface. Th
streaming itself comprises a uniform current, and an altern
ing current with a period of half-wavelength. For a den
liquid layer with a uniform thickness, the density curre
vanishes and the steady motion will solely be induced
streaming. The streaming current will be purely unidire
tional whenR50, or purely alternating whenR51.

By integrating the horizontal velocity over the dense li
uid layer followed by time averaging, we can get the n
discharge rate of the dense liquid per unit width of wa
crest:

Q5E
0

hm1ej

um dn

5eE
0

hm
ūm1 dn1ejum0un5hm

1O~e2!

5kdms21ŨI
2H ~12R2!QD1R sin 2x̂1QA

2~12g!sinh 2kh0

ĥm0
3

3 S ]ĥm0

] x̂2
1

]ĥm1

] x̂1
D 1O~e!J ,

~47!

whereQD andQA are nondimensional functions of the slo
variables given by

QD5E
0

ĥmUmD dn̂2ImF1

2
v̂̃mû̃m* G

n̂5ĥm

~48!

and

QA5E
0

ĥmUmA dn̂1Re@ v̂̃mû̃m* # n̂5ĥm
. ~49!

The full-blown expressions forQD andQA are also given in
the Appendix. The integral in the first step of Eq.~47! has
been expanded in a Taylor series, thereby yielding the in
face term. Note thate has been inserted in the first two line
of Eq. ~47!, confirming that the net discharge is anO(e)
quantity. The steady wave streaming produces a uniform
license or copyright, see http://pof.aip.org/pof/copyright.jsp
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charge that is in the direction of the incident wave and
alternating discharge that reverses in direction in half o
wavelength. The discharge due to gravity current, which
curs at the same time on the global and local scales, is in
direction of decreasing profile thickness on the correspo
ing scale.

The mass transport velocity, also called Lagrangian d
which is the sum of Eulerian velocity and Stokes drift,7 is the
time-averaged velocity of a fluid particle. The horizontal a
vertical components of the mass transport velocity, (uL ,vL),
can be found as follows:

uf L~ n̂!5ūf 1~ n̂!1ks21ŨI
2H 2~12R2!ImF1

2

]

]n̂
~ v̂̃ f û̃ f* !G

1R sin 2x̂1 ReF ]

]n̂
~ v̂̃ f û̃ f* !G J , ~50!

v f L~ n̂!5 v̄ f 1~ n̂!2k2dms21ŨI
2$2R cos 2x̂1 Re@ v̂̃ f û̃ f* #%,

~51!

where 0<n̂<ĥm for f 5m, andĥm<n̂,` for f 5w. Further
discussion on the mass transport velocity is presented in
IV.

C. Profile evolution

Thus far, the solutions have been given in terms of
depth of the dense layerhm , which varies slowly in time~t2

or longer! on the local (x1) and global (x2) length scales. In
order to close the problem, we need to develop evolut
equations forhm in terms of these variables. By a local sca
we mean a scale that is of the order of a wavelength
physically, tens of meters. The global scale refers to the h
zontal extent of the dense liquid layer, which is much long
than a wavelength and can be in the order of hundred
meters.

Substituting Eq.~26! into the continuity equation~4! for
f 5m, which is then depth-integrated over the layer~e’s are
again inserted for identification of order of magnitude!:

E
0

hm1ejF]um

]x1
1e

]um

]x2
1

]vm

]n Gdn50. ~52!

Applying Leibnitz’s rule and then the fast-time averagin
while using the boundary conditions~7! and ~14! and the
expansions~24!–~28!, will give

e
]Q

]x1
1e2

]Q

]x2
1

]hm0

]t2
1e

]hm1

]t2
1e

]hm0

]t3
1e2

]hm0

]t4

1O~e3!50, ~53!

where the net discharge rateQ, anO(e) quantity, is given by
Eq. ~47!.

We further suppose that the water/liquid interface is i
tially flat on the local scale~i.e., hm150 at t50!. The only
excitation on this scale is sinusoidally periodic, and in
sponse the evolution ofhm1 should also follow the same
periodic dependence onx1 with a zero spatial mean at a
times:
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^hm1&[
1

L E
0

L

hm1 dx150, t.0. ~54!

Angle brackets are used to denote a local spatial ave
over one wavelength. Applying this average to Eq.~53!, the
equation reduces to

e2
]^Q&
]x2

1
]hm0

]t2
1e

]hm0

]t3
1e2

]hm0

]t4
1O~e3!50. ~55!

On collecting terms of the same order from Eqs.~53! and
~55!, one can arrive at the following equations:

]hm0

]t2
5

]hm0

]t3
50, ~56!

]Q

]x1
1

]hm1

]t2
50, ~57!

and

]^Q&
]x2

1
]hm0

]t4
50. ~58!

Equations~57! and ~58! are the two desired evolution equa
tions that govern the profile change on the scales of (x1 ,t2)
and (x2 ,t4), respectively. It is now apparent that the loc
displacements are purely spatially periodic and become z
when averaged on the global scale. On the global evolut
hm0 does not depend ont2 andt3 , and it takes a much longe
time T4;e23T1 for an appreciable change in the dense l
uid profile to result from the slow spatial variation of th
discharge rate. If the wave period is in the order of secon
the spreading or migration of the bottom liquid may ta
days for significant changes.

When R51 ~i.e., pure standing waves!, the wave
streaming will not contribute to the global spreading of t
dense liquid. On the other hand, whenR50 ~i.e., pure pro-
gressive waves!, local features will not evolve. For an inter
mediate 0,R,1, local structures are formed on the tim
scale of T2 , while being conveyed by the global curre
which propagates on the time scale ofT4 . These phenomena
are further investigated in the next sections.

IV. UNDULATING INTERFACE ON THE LOCAL SCALE

Substituting Eq.~47! into Eq. ~57!, we get a linear dif-
ferential equation

]ĥm1

] t̂2
2

2~12g!ĥm0
3

3 tanhkh0

]2ĥm1

] x̂1
2 52R cos 2x̂1

2QA

sinh2 kh0
,

~59!

where QA is given by Eq.~49! and fully detailed in the
Appendix, and the normalized variables defined in Tabl
have been used. With the initial conditionĥm1u t̂25050, Eq.
~59! can readily be solved to give

ĥm1~ x̂1 , t̂2!5H cos 2x̂1@12exp~2a t̂2!#, ~60!

where

H52
3RQA

2~12g!ĥm0
3 sinh 2kh0

~61!
license or copyright, see http://pof.aip.org/pof/copyright.jsp
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and

a5
8~12g!ĥm0

3

3 tanhkh0
. ~62!

Clearly, at a sufficiently larget̂2 , the following equilibrium
form of undulation will be developed on the local scale a
ymptotically:

ĥm1→H cos 2x̂1 as t̂2@1. ~63!

Therefore,H is the amplitude of a fully developed undula
ing water/liquid interface, anda specifies the rate at whic
this asymptotic state can be approached. Typically, the un
lations are fully developed virtually withint̂2;5. On reach-
ing this stage, the components of discharge on the local s
due to wave streaming and gravity will exactly balance e
other; hence the stage can be called a local equilibrium st
One should not be confused with this interface undulat
hm1(x1 ,t2) and the oscillatory interface displaceme
j(x1 ,t1); the former is a nonpropagating structure that
sults from mass transport and becomes permanent~as viewed
on the local scale, and a time scale no longer thanT2! when
fully developed, while the latter consists of propagati
modes that oscillate with time on the fast scales without
mass transport.

The initial discharge Q̂( x̂1)[Q/(kdms21ŨI
2) when

ĥm150 is shown in Fig. 2~a! as a function of the reflection
coefficientR for g50.5 andhm05z5kh051. In this case,

FIG. 2. Local longitudinal profiles of~a! initial dischargeQ̂( x̂1), and ~b!

equilibrium undulating interfaceĥm1( x̂1), as functions of the reflection co
efficient R, whereg50.5, andz5kh05ĥm051.0.
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the alternating component of the discharge converges tow
the nodes (x̂15p/2,3p/2,...), and diverges away at the an
nodes (x̂150,p,2p,...). As time increases, this alternatin
component of discharge will eventually die out when t
undulation on the interface becomes fully developed,
given by Eq.~63! and shown in Fig. 2~b!. The crests and
troughs of the undulation are formed under the nodes
antinodes of the surface waves, respectively.

The undulation amplitudeH under a pure standing wav
(R51) is examined in Fig. 3 as a function ofg and ĥm0 . It
is clear from this figure that the amplitude increases dram
cally with a decreasing thickness of the dense liquid lay
Mathematically one can verify from Eq.~61! that for R.0,
H tends to blow up asĥm0 approaches zero. It is because t
gravity current decreases withĥm0

3 , while the alternating
streaming currentQA decreases only withĥm0

2 . The thinner
the layer, the less static pressure the fluid can offer to re
mobilization due to streaming. A steeper interface gradien
therefore required for a thinner layer in order to produce
gravity current that is strong enough to balance the stream
current. The time to reach such an equilibrium stage will a
be longer. The present theory of course breaks down w
ĥm0 becomes too small, or whenH becomes too large.

The undulation becomes more marked wheng is closer
to unity, or the density contrast~and hence the effective grav
ity! is smaller. It is remarkable that when the wave is pur
standing and the density contrast is sufficiently small~g.0.9
in the present case!, there exists a critical thickness of th
dense liquid layer for whichH50, or the undulation will not
be developed at all. This happens only in the particular c
that the streaming current forms closed circulating ce
within the dense liquid layer even when the interface is fl
When this critical thickness is exceeded, the amplitudeH
will change in sign. By then, the crests of the undulation w
be formed at the antinodes instead.

Let us examine in further detail the flow structures in t
boundary layer. Also forg50.5 andĥm05z5kh051, Fig. 4

FIG. 3. Effects of the density ratiog and the thickness of the dense liqui
layer ĥm0 on the undulation amplitudeH, wherez5kh05R51.0.
license or copyright, see http://pof.aip.org/pof/copyright.jsp
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shows the horizontal mass transport velocity componenûL

[uL /(ks21ŨI
2) at three positions:~a! x̂150, ~b! x̂15p/4,

and~c! x̂153p/4, before~solid lines! and after~squares! the
undulating interface is developed. The undulation, wh
amplitude is one order of magnitude smaller than the la
thickness itself, is, however, not shown along the interfa
which is simply denoted by a horizontal dashed line an̂
51. Recall that above and below the interface are water
the dense liquid, respectively. The gravity current in t
dense liquid layer is zero initially when the interface is fl
and flows from a crest~e.g., x̂15p/2! to a trough~e.g., x̂1

50, p! when the undulating interface is being developed
is clear from Fig. 4 that Lagrangian drift of either fluid
essentially unidirectional~i.e., along the incident wave! in all
stages when the reflection coefficient is relatively small~R
50, 0.4!. The flow structure becomes more complicat
when the wave reflection turns out to be more substan
(R50.7, 1.0!. The profile ofûL then depends onR, x̂1 , as
well as the stage of the undulation development. Of parti
lar interest are the points where the mass transport velo
reverses in direction, as they may correspond to the cen

FIG. 4. Local vertical profiles of mass transport velocityûL(n̂) in a two-
fluid Stokes boundary layer, as a function of the reflection coefficientR at
the positions~a! x̂150, ~b! x̂15p/4, and~c! x̂153p/4, whereg50.5, and
z5kh05ĥm051.0. Solid lines are the initial profiles att̂250, while squares
denote the equilibrium profiles ast̂2@1. The dashed line atn̂51.0 denotes
the water/liquid interface.
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of circulating cells. Such features are important for the s
pension and accumulation of particles in the benthic bou
ary layer.

The two-dimensional flow patterns forR51 and R
50.7 are detailed in Figs. 5 and 6, which show the m
transport velocity vectors (ûL ,v̂L) and the streamlines over
period equal to half-wavelength. Note that the vertical velo
ity component and the vertical coordinate have be
stretched by the same factor, (kdm)21, relative to their hori-
zontal counterparts. Under a pure standing wave~Fig. 5!, the
mass transport in the top part of the water boundary la
~say,n̂.3! is qualitatively the same as that in a single-flu
Stokes boundary layer. Namely, the fluid converges tow
the antinodes, and diverges away from the nodes.8 Initially
when the interface is flat, there are closed circulating cells
water above the interface, while the streaming current in
dense liquid always converges toward the nodes@Fig. 5~a!#.
Such motion of the fluids leads to the formation of undu
tion crests at the nodes and troughs at the antinodes, as
in Fig. 2. When the undulating interface is fully develop
@Fig. 5~b!#, closed circulating cells of a rather weak curre
are then developed in the dense liquid layer, consistent w
the fact that the net discharge in the layer is now zero. Me
while on the water side, those original closed circulati
cells above the interface are now completely suppressed,
as a result, the mass transport velocity farther up ga

FIG. 5. Two-dimensional plots of mass transport velocity vectors a
streamlines for the~a! initial stage, and~b! equilibrium stage, corresponding
to the case of pure standing waveR51.0 presented in Fig. 4. The dashe
line at n̂51.0 denotes the water/liquid interface.
license or copyright, see http://pof.aip.org/pof/copyright.jsp
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strength and is greater in magnitude than it is initially. Wa
simply sinks at the nodes and escapes upward at the
nodes. The corresponding pictures are qualitatively differ
for a partial reflection,R50.7 ~Fig. 6!. Owing to net steady
currents, closed circulating cells do not exist in either fluid
either the initial or equilibrium stages. The initial flow ne
ertheless reverses in direction in a region centered ax̂1

5p/4 in the top part of the water boundary layer, as well
in a region centered atx̂153p/4 in the dense liquid layer. As
the equilibrium stage is approached, the flow reversal in
ter is enhanced and intensified, thereby leading to a redu
net mass flux of water longitudinally. On the other hand,
flow reversal in the dense liquid disappears entirely, resul
in a uniform steady discharge along the layer.

Fu14 has further studied other effects on the mass tra
port due to the local development of undulation. By a
large, one may conclude from the present findings that
gravity current can be instrumental in regulating the lo
flow structures, and therefore the mass transport in a t
fluid Stokes boundary layer can be materially different fro
that of a single fluid.

V. SPREADING ON THE GLOBAL SCALE

Let us now shift our focus to the global-scale balan
between gravity and viscosity. Substituting Eq.~47! into Eq.
~58!, we may get a dimensionless governing equation
ĥm0( x̂2 , t̂4):

FIG. 6. Two-dimensional plots of mass transport velocity vectors
streamlines for the~a! initial stage, and~b! equilibrium stage, correspondin
to the case of partial standing waveR50.7 presented in Fig. 4. The dashe
line at n̂51.0 denotes the water/liquid interface.
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]ĥm0

] t̂4
2

12g

6 tanhkh0

]2ĥm0
4

] x̂2
2 52

12R2

sinh2 kh0

]QD

] x̂2
, ~64!

where QD is given by Eq.~48! and fully detailed in the
Appendix, and the normalized timet̂4 is defined in Table I.
The forcing term is proportional to the gradient of the unid
rectional discharge rateQD , which is a function of the slow
variables via dependence onĥm0 . This term represents th
net spreading effect due to streaming induced by surf
waves.

The right-hand side of Eq.~64! vanishes if the surface
wave is absent (QD50), or is a pure standing wave (R
51). In such cases, the spreading of the dense liquid wil
driven solely by the gravity current. In dimensional form
Eq. ~64! without the streaming term reduces to that obtain
by Huppert@Ref. 4, Eq.~2.9!# for the propagation of a two-
dimensional viscous gravity current:

]hm

]t
2

~12g!g

3nm

]

]x S hm
3 ]hm

]x D50. ~65!

As reasoned earlier, our theory covers flow under
buoyancy-viscous balance, and serves as an extensio
Huppert4 when the wave-induced streaming becomes as
nificant as the buoyancy in driving the flow.

If the total volume of the viscous fluidq is finite and
invariant with time and the spreading profile is symmetric
about x50, an analytical similarity solution to Eq.~65! is
available as follows:4,15

hm~x,t !50.842F 3q2nm

~12g!gtG
1/5

~12Y2!1/3

for 2xN<x<xN , ~66!

where

Y~x,t !50.709F ~12g!gq3t

3nm
G21/5

x, ~67!

and xN(t), which is the position of the leading front of th
current, is given byY(xN ,t)51. For comparison with the
present work, the solution above may be expressed in dim
sionless form as follows, which is the solution to Eq.~64!
without the forcing term:

ĥm~ x̂2 , t̂4!50.842F3q̂2 tanhkh0

2~12g! t̂4
G1/5

~12Y2!1/3

for 2 x̂N< x̂2< x̂N , ~68!

where

Y~ x̂2 , t̂4!50.709F2~12g!q̂3t̂4

3 tanhkh0
G21/5

x̂2 ~69!

and

q̂5q~ka/dm!2 ~70!

is the normalized total volume of the dense liquid.
Equation~64! is a nonlinear partial differential equation

Given an initial profileĥm( x̂2,0), one may solve numerically
the equation forĥm as a function of space and time. Figur
7–10 show the results for pure progressive waves~i.e., R

d
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50! that have been generated with a second-order exp
scheme of forward-time, centered-space finite-difference
proximation of Eq.~64!.

The initial profile in Fig. 7 is obtained from Eq.~68!
with q̂5kh051, g50.5, andt̂4520. The effects of surface
waves are seen by comparing the profiles~a! without waves
and~b! with waves~z51.0!, after a subsequent time interv
of t̂4510. Profile~a! is also obtainable from the analytica
solution Eq.~68!, and has been checked in agreement w
that obtained independently by the numerical method. W
out surface waves, the dense liquid continues to spread
symmetrically about the centerx50, while the maximum
height of the layer keeps on decreasing. In the presenc
surface waves, the streaming current enhances the flow in

FIG. 7. Comparison between the longitudinal global profiles of the de
liquid ĥm( x̂2 , t̂4) spreading with and without surface waves att̂4510.0,
whereR50, g50.5, andz5kh051.0. The dashed line is the initial profile
obtained from Eq.~68! by settingq̂51.0 andt̂4520.0.

FIG. 8. Effects of the density ratiog on the global spreading profile of th
dense liquidĥm( x̂2 , t̂4) at t̂4510.0, whereR50, and z5kh051.0. The
dashed line is the initial profile.
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fore front, but counteracts the gravity current in the re
front. As a result, the entire dense liquid migrates in t
direction of wave propagation; the center of mass of the p
file is shifting forward gradually. While profiles~a! and ~b!
have approximately the same maximum height, the latte
clearly asymmetrical about its center of distribution; t
front is steeper at the fore than the aft.

Effects of the ratios of density and viscosity and t
water depth are shown in Figs. 8–10. In these cases,
initial profile is of a lens shape geometrically given by
segment of a circle. As shown in Ng,11 the discharge rate du
to streaming decreases withg because a denser fluid tends
be more sluggish under wave forcing. This accounts for
different speeds of migration of the dense liquid for differe
values of the density ratio, shown in Fig. 8. The fore fro
where the streaming and gravity currents add up positiv
propagates the fastest and is therefore the steepest in the
of g50.9 when the liquid is only slightly heavier than wate
The buoyancy force, which is relatively large forg<0.3,

eFIG. 9. Effects of the Stokes boundary layer thickness ratioz on the global
spreading profile of the dense liquidĥm( x̂2 , t̂4) at t̂4510.0, whereR50,
g50.5, andkh051.0. The dashed line is the initial profile.

FIG. 10. Effects of the water depthh0 on the global spreading profile of the
dense liquidhm(x,t) at t50.5 day, whereR50, g50.5, z51.0, T155 s,
anda5dm50.1 m. The dashed line is the initial profile.
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turns out to be subdominant in driving the propagation of
fore front. This is reasonable because the density curre
proportional to the third powerĥm @cf. Eq. ~47!#, which
drops rapidly with the dense liquid layer thickness. The r
front, where the gravity and streaming currents negate e
other, however, remains virtually stationary with time
most cases, although the profile gradient at this front
steeper for a smaller density ratio~greater buoyancy!. The
front even spreads rearward when the fluid is dense eno
~g50.1!. As a result of the features occurring at the tw
fronts, the spreading profiles forg>0.5 are highly skewed
toward their fore fronts~hence their peaks are sharper a
closely behind the abrupt fore fronts!, while those forg50.1,
0.3 have more rounded and symmetrical distributions ab
their peaks. The gravity current may outweigh the stream
current at the rear front for a sufficiently dense liquid.

The viscosity ratioz plays a similar role asg in control-
ling the spreading pattern of the dense liquid layer. T
streaming velocity is larger for a smallerz, resulting from a
higher rate of momentum transfer across the water boun
layer.16 The streaming effect is reflected in Fig. 9, aga
from the movement speed of the fore front, which clearly
higher for a smallerz. Also, while the fore front moves for
ward with time, the rear front hardly moves in most cas
The profiles forz55 and 10, however, do not differ from
each other appreciably. This is expected because, for
thing, the density current does not depend on this param
and the other, the wave streaming becomes rather insens
to the viscosity ratio when the latter is larger than unity.11

As reasoned above, the migration of the dense liquid
be much controlled by the streaming current, which in tu
depends on the influence of surface waves on the bot
boundary layer. Figure 10 shows the effects of the wa
depthh0 , via the dimensionless parameterkh0 , on the mi-
gration pattern of the layer. Since the normalization sca
for the variables depend onk which in turn varies withh0 ,
the present comparison is meaningful only in terms of
physical variables. In this plot, we consider a typical win
wave periodT155 s, and an equal value for wave amplitu
and Stokes boundary layer thicknessa5dm50.1 m, and the
spreading has lasted for a period oft50.5 day. Other inputs
are R50, g50.5, andz51.0. The values of wavelengthL1

and water depthh0 corresponding to eachkh0 are given in
the figure. It is very clear that in shallow water (kh050.7)
the wave streaming dominates over the buoyancy, while
deep water (kh052.0) the opposite is true. The streamin
velocity is proportional to the square of the near-bottom
viscid velocity ŨI , given by Eq. ~40!, and therefore de-
creases dramatically askh0 increases. In the case ofkh0

50.7, the span of the layer has stretched from 10 m to m
than 60 m in half a day, and the profile has turned to a hig
skewed distribution, as seen in previous plots. We may in
from this plot that for typical wind-wave periods of 5 s and a
wave amplitudea5O(0.1 m), a water depth of approx
mately 5 m can be the upper limit for an appreciable effec
the streaming current. This limiting water depth of cour
can be deeper for higher waves.
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VI. CONCLUDING REMARKS

An asymptotic theory is developed for the slow sprea
ing of a thin layer of highly viscous immiscible dense liqu
on the bottom of a near-shore waterway under the combi
effects of surface waves and gravity current. The flow,
cited by surface waves and driven by gravity, features sev
phenomena that become appreciable at different length
time scales.

The primary oscillatory motion occurs over a wave p
riod, which is too short to see any net mass transport. F
sufficiently long time and in the presence of reflected wav
the alternating component of the streaming current can
duce the development of an undulating interface between
near-bottom water and the dense liquid. Despite the sm
amplitude, the undulation in its course of formation can d
matically change the local structure of the mass transp
velocity of the near-bottom water. The position and numb
of circulating cells above and below the interface are fou
to be dependent on the thickness of the dense liquid laye
stratified wave boundary layer differs in nontrivial manne
from a homogeneous one. It is worthwhile as a future ext
sion of the present work looking into the much thicker se
ondary wave boundary layer, which is induced by convect
inertia, when subject to the presence of a thin layer of de
viscous fluid on the bottom.

The global spreading of the dense liquid takes place
length and time scales longer than the wavelength and w
period. The streaming induced by progressive surface wa
drives the dense liquid to migrate with a distinct pattern
the direction of wave propagation. The layer profile is alwa
steeper at the fore than the aft, approaching a jump profil
the front while leaving a long tail at the back as time go
on. It is remarkable that the wave streaming is particula
influential under a relatively shallow water environmen
Therefore the present theory is relevant to the transpor
benthic matter in a long shallow nearshore waterway or na
gation channel.

It will be desirable if experimental verification of th
present theory, particularly Eq.~64!, can be carried out. We
however, stress that our work has focused on the comb
effects of two well-known mechanisms: streaming induc
by surface waves and gravity current, which individua
have been well backed by experiments. Therefore,
present work should offer a sound basis for a quantita
understanding of a streaming-buoyancy combined action
the propagation of a viscous current.

Of course, a more comprehensive model may be
quired in order to take into account other factors such as
bottom topography and tidal currents that are also influen
in reality. Extensions of the present theory will be pursued
the future. A study on the spreading of a non-Newton
dense fluid is underway and will be reported soon.
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APPENDIX: EXPRESSIONS FOR FUNCTIONS AND
CONSTANTS IN THE STREAMING VELOCITIES
AND DISCHARGE RATE

Let us recall the streaming velocities, which are given
Eqs. ~43! and ~45!. They are composed of direct and alte
nating currents that can be written in terms of functions a
constants to be presented below:

UmD~ n̂!5FmD~ n̂!1CmDn̂,
~A1!

UmA~ n̂!5FmA~ n̂!1CmAn̂,

UwD~ n̂!5FwD~ n̂!1CwD , UwA~ n̂!5FwA~ n̂!1CwA ,
~A2!

where the subscriptsD andA denote the direct and alterna
ing currents, respectively. Also recall that Re and Im deno
respectively, taking the real and imaginary parts,i is the
imaginary unit and the asterisk represents the complex c
jugate.

We first define two constantsD andE as follows:

D5
2gz2~12g!z coshlmhm

z coshlmhm1g sinhlmhm
, ~A3!

and

E5
g~12g!1g2 coshlmhm1gz sinhlmhm

z coshlmhm1g sinhlmhm
. ~A4!

For the current in the dense liquid, the real functio
FmD andFmA are expressible as follows:

FmD~ n̂!5 1
2 Re@Fmb~ n̂!2Fmb~0!# ~A5!

and

FmA~ n̂!5Fma~ n̂!2Fma~0!1Im@Fmb~ n̂!2Fmb~0!#,
~A6!

whereFma(n̂) is a real function andFmb(n̂) is a complex
function given by
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e,

n-

s

Fma~ n̂!5g~g21!n̂212 Re@ ig2 cosh~11 i !n̂

1 igE sinh~12 i !n̂#1
g2

4
~cosh 2n̂2cos 2n̂!

1
uEu2

4
~cosh 2n̂1cos 2n̂!

2
g

2
Re@E~sinh 2n̂1sinh 2i n̂ !# ~A7!

and

Fmb~ n̂!5g2@~11 i !n̂ sinh~11 i !n̂22 cosh~11 i !n̂#

2E* g@~11 i !n̂ cosh~11 i !n̂22 sinh~11 i !n̂#

1
g2

4
~cosh 2n̂1cosh 2i n̂ !

2
gE

4
~sinh 2n̂2sinh 2i n̂ !1

uEu2

4
~cosh 2n̂

2cosh 2i n̂ !2
E* g

4
~sinh 2n̂1sinh 2i n̂ !

2 iEg sinh~11 i !n̂1 i uEu2 cosh~11 i !n̂. ~A8!

The real constantsCmD and CmA , which are constant with
respect to the fast coordinates, are expressible as

CmD5
1

2
ReF S 2

]Fmb

]n̂
1

g

z2

]Fwb

]n̂ D
n̂5ĥm0

2C2aG ~A9!

and

CmA5S 2
]Fma

]n̂
1

g

z2

]Fwa

]n̂ D
n̂5ĥm0

1ImF S 2
]Fmb

]n̂
1

g

z2

]Fwb

]n̂ D
n̂5ĥm0

2C2aG , ~A10!

in which the derivatives of the functions are given by
]Fma

]n̂
52g~g21!ĥm012 Re@~211 i !g2 sinh~11 i !ĥm01~11 i !gE cosh~12 i !ĥm0#1

g2

2
~sinh 2ĥm01sin 2ĥm0!

1
uEu2

2
~sinh 2ĥm02sin 2ĥm0!2g Re@E~cosh 2ĥm01 i cosh 2i ĥm0!#, ~A11!

]Fmb

]n̂
5g2@2i ĥm0 cosh~11 i !ĥm0#2E* g@2i ĥm0 sinh~11 i !ĥm0#1

g2

2
~sinh 2ĥm01 i sinh 2i ĥm0!

2
gE

2
~cosh 2ĥm02 i cosh 2i ĥm0!1

uEu2

2
~sinh 2ĥm02 i sinh 2i ĥm0!2

E* g

2
~cosh 2ĥm01 i cosh 2i ĥm0!

1~12 i !Eg cosh~11 i !ĥm02~12 i !uEu2 sinh~11 i !ĥm02g2~11 i !sinh~11 i !ĥm01E* g~11 i !cosh~11 i !ĥm0 ,

~A12!

]Fwa

]n̂
52 Re@2~11 i !Dz#2uDu2z, ~A13!
license or copyright, see http://pof.aip.org/pof/copyright.jsp



s

Eq
s:

ch.

J.

xi-

ric
h.

983Phys. Fluids, Vol. 14, No. 3, March 2002 Viscous density current under surface waves
and

]Fwb

]n̂
5~12 i !z2D* $g@~12 i !ĥm02sinh~12 i !ĥm0#

1E@cosh~12 i !ĥm021#%2~11 i !zD* @ ĥm0z~1

1 i !11#1 i z~2zD* ĥm02uDu2!, ~A14!

and the complex constantC2a is

C2a5~11 i !$g@~11 i !ĥm02 i sinh~12 i !ĥm0#

1 iE@cosh~12 i !ĥm021#%

3@2g cosh~11 i !ĥm01E* sinh~11 i !ĥm02gD* #.

~A15!

Similarly, for the current in water, the real function
FwD(n̂) andFwA(n̂) can be expressed as

FwD~ n̂!5 1
2 Re@Fwb~ n̂!# ~A16!

and

FwA~ n̂!5Fwa~ n̂!1Im@Fwb~ n̂!#, ~A17!

where the real functionFwa(n̂) and the complex function
Fwb(n̂) are given by

Fwa~ n̂!52 Re@ iDe2~12 i !z~ n̂2ĥm0!#1
uDu2

2
e22z~ n̂2ĥm0!

~A18!

and

Fwb~ n̂!5 i z$g@~12 i !ĥm02sinh~12 i !ĥm0#

1E@cosh~12 i !ĥm021#%D* e2~11 i !z~ n̂2ĥm0!

1D* @~11 i !zn̂12#e2~11 i !z~ n̂2ĥm0!

2~11 i !zĥm0D* e2~11 i !z~ n̂2ĥm0!

1
uDu2

2
e22z~ n̂2ĥm0!1 i uDu2e2~11 i !z~ n̂2ĥm0!.

~A19!

The real constantsCwD andCwA are

CwD5~FmD2FwD! n̂5ĥm0
1CmDĥm01 1

2 Re@C1a#

and

CwA5~FmA2FwA! n̂5ĥm0
1CmAĥm01Im@C1a#,

in which the complex constantC1a is

C1a5$g@~11 i !ĥm02 i sinh~12 i !ĥm0#

1 iE@cosh~12 i !ĥm021#%

3@2g sinh~11 i !ĥm01E* cosh~11 i !ĥm01zD* #.

~A20!

The net discharge rate of the dense liquid, given by
~47!, also comprises of direct and alternating component
Downloaded 06 Nov 2006 to 147.8.21.97. Redistribution subject to AIP 
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QD5 1
2$Re@ IF mb~ ĥm0!#2Re@ IF mb~0!#

2Re@Fmb~0!#ĥm01CmDĥm0
2 1Re@Fin#%, ~A21!

QA5$IF ma~ ĥm0!1Im@ IF mb~ ĥm0!#%2$IF ma~0!

1Im@ IF mb~0!#%2$Fma~0!1Im@Fmb~0!#%ĥm0

1CmAĥm0
2 /21Im@Fin#, ~A22!

where

IF ma~ n̂!5g ReF ~12 i !g sinh~12 i !n̂2~12 i !

3E cosh~12 i !n̂2
E

4
~cosh 2n̂2 i cos 2n̂!G

1g~g21!
n̂3

3
1

g2

8
~sinh 2n̂2sin 2n̂!

1
uEu2

8
~sinh 2n̂1sin 2n̂!, ~A23!

IF mb~ n̂!5g2F n̂ cosh~11 i !n̂2
12 i

2
sinh~11 i !n̂

2~12 i !sinh~11 i !n̂G2E* gF n̂ sinh~11 i !n̂

2
12 i

2
cosh~11 i !n̂2~12 i !cosh~11 i !n̂G

1
g2

8
~sinh 2n̂1sin 2n̂!2

gE

8
~cosh 2n̂

1 i cos 2n̂!1
uEu2

8
~sinh 2n̂2sin 2n̂!

2
gE*

8
~cosh 2n̂2 i cos 2n̂!2

11 i

2
gE

3cosh~11 i !n̂1
11 i

2
uEu2 sinh~11 i !n̂,

~A24!

and the complex interface term is expressed as

Fin5
11 i

2
$g@~12 i !ĥm02sinh~12 i !ĥm0#

1E@cosh~12 i !ĥm021#%

3@g2g cosh~11 i !ĥm01E* sinh~11 i !ĥm0#.

~A25!
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