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Iterative solutions for relativistic
dissipative cosmologies

T. Harko and M.K. Mak

Abstract: Iterative solutions of the gravitational field equations for a homogeneous flat
Friedmann—Robertson—Walker Universe filled with a causal bulk viscous fluid in the
framework of the full Israel-Stewart-Hiscock theory are presented. The general solution

of the field equations are presented in a parametric form in the zeroth-, first-, second-,

and mth-order approximation by the method of iteration. The time evolution of the scale
factor, energy density, deceleration parameter, entropy, Kretschmann scalar, and bulk viscous
pressure-thermodynarnic pressure ratio for a Zeldovich fluid-filled space-time are discussed.

PACS Nos.: 98.80-k, 04.20Jb

Résumé : Dans le cadre de la théorie complete d’Israel-Stewart-Hiscock, nous présentons des
solutions itératives pour les équations du champ gravitationnel d’un univers plat homogeéne

de Friedmann-Robertson—Walker dont le volume est rempli d’un fluide visqueux. Nous
présentons la solution générale des équations de champ sous forme paramétrique aux ordres
d’approximation zéro, un et deux. Nous étudions I’évolution dans le temps du facteur
d’échelle, de la densité d’énergie, du paramétre de décélération, de I’entropie, du scalaire de
Kretschmann et du rapport entre la pression visqueuse et la pression thermodynamique pour
le cas d’un espace-temps rempli d’un fluide de Zeldovich.

[Traduit par la Rédaction]

1. Introduction

Dissipative bulk viscous type thermodynamical processes are supposed to play a crucial role in
the dynamics and evolution of the early Universe. Over 30 years ago Misner [1] suggested that the
observed large-scale isotropy of the Universe is due to the action of the neutrino viscosity that was
effective when the Universe was about 1 s old. There are many processes capable of producing bulk
viscous stresses in the early Universe such as interactions between matter and radiation, quark- and
gluon-plasma viscosity, and different components of dark matter [2]. Traditionally, for the description
of these phenomena the theories of Eckart [3] and Landau and Lifshitz [4] were used (for an extensive
review of viscous dissipative cosmologies based on Eckart-type theories see ref. 5). Because of the
work in refs. 6-8 it became clear, however, that the Eckart-type theories sutfer from serious drawbacks
concerning causality and stability. Regardless of the choice of equation of state, all equilibrium states
in these theories are unstable, and in addition, signals may be propagated through the fluid at velocities
exceeding the speed of light. These problems arise due to the first-order nature of the theory, i.e.,
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it considers only first-order deviations from the equilibrium. The neglected second-order terms are
necessary to prevent noncausal and unstable behavior.

A relativistic second-order theory was found in ref. 6 and developed in ref. 7 into what is called
“transient” or “extended” irreversible thermodynamics. However, Hiscock and Lindblom [8] and His-
cock and Salmonson {9] have shown that most versions of the causal second-order theories omit certain
divergence terms. The truncated causal thermodynamics of bulk viscosity leads to pathological behavior
in the late Universe [9], while the solutions of the full causal theory are well behaved for all times. There-
fore, the best currently available theory for analyzing dissipative processes in the Universe is the full
Israel-Stewart—Hiscock (ISH) causal thermodynamics. Exact general solutions of the field equations
have been obtained very recently in refs. 10-12 for a flat homogeneous Friedmann—Robertson—Walker
(FRW) Universe filled with a full causal viscous-fluid source obeying an equation of state for the bulk
viscosity coefficient £ of the form & ~ p*, where p is the energy density of the cosmological fluid and s
is aconstant (for a review of causal thermodynamics and its cosmological and astrophysical applications
see ref. 13).

The evolution of the Universe contains a sequence of important dissipative processes, including
the GUT (Grand Unified theory) phase transition, taking place at r =~ 1073* s and a temperature of
about T = 10?7 K, when gauge bosons acquire mass; reheating of the Universe at the end of inflation
(r = 10732 5), when the scalar field decays into particles; decoupling of neutrinos from the cosmic
plasma (r & 15, T =~ 10'0 K), when the temperature falls below the threshold for interactions that
keep the neutrinos in thermal contact; nucleosynthesis, decoupling of photons from matter during the
recombination era (t &~ 10s, T ~ 103 K), when electrons combine with protons and no longer scatter
the photons, etc. [13].

It is the purpose of the present paper to present an iterative scheme for obtaining general solutions
of the Einstein gravitational field equations for a causal bulk viscous-fluid-filled flat and homogeneous
Universe. By using the Laplace transformation and the convolution theorem, the second-order differ-
ential equation describing the evolution of the Hubble parameter H is transformed into an integral
equation. Then the general solutions of the equations are obtained in a parametric form in the zeroth-,
first-, second- and mth-order approximation by using an iterative method. The approximate solutions
of the field equations are compared with an exact solution of the field equations for a dissipative fluid
satisfying the stiff equation of state.

The present paper is organized as follows. The physical model and the basic equations are presented
in Sect. 2. The method of iterations is applied to the evolution equation in Sect. 3. In Sect. 4, we discuss
and conclude our results.

2. Thermodynamics, field equations, and consequences

For a flat homogeneous FRW Universe with a line element
ds? = ds? — r:E(!} (d.\'2 + Lll\': — d::) (1

filled with a bulk viscous cosmological fluid the energy-momentum tensor is given by

I}kzlp—.—p—i—ﬂm;u*—tp—i—I"[)rSf (2)
where p is the energy density, p the thermodynamic pressure, IT the bulk viscous pressure, and u; the
four velocity satisfying the condition u;u* = 1. We use units so that 87 G = ¢ = |.

The gravitational field equations together with the continuity equation ]’“L = 0 imply
3H? = p, 2H +3H*=—-p—11, p+3(p+ p)H =—3HTI (3)

where H = a/a is the Hubble parameter.

©2002 NRC Canada

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Harko and Mak 593

The causal evolution equation for the bulk viscous pressure is given by [14]

. 1 it & T
T4+ M=—3EH — 7\ 3H - —— = — = 4

+ 3 5 ( = £ T) (4)
where 7 is the temperature, & the bulk viscosity coefficient, and 7 the relaxation time. Equation (4)
arises as the simplest way (linear in IT) to satisfy the H theorem (i.e., for the entropy production to be

: A y T
non-negative, S; = HE/E.T > 0, where §' =eN' — %u* is the entropy flow vector, e is the entropy
per particle, and N' = nu' is the particle flow vector) [7,8].

To close the system of equations (3,) we have to give the equation of state for p and specify T, 7,
and £.

An analysis of the relativistic kinetic equation for some simple cases, given in ref. 15, has shown that
in the asymptotic regions of small and large values of the energy density, the viscosity coefficients can
be approximated by power functions of the energy density with definite requirements on the exponents
of these functions, & ~ p*, s = const. For small values of the energy density, it is reasonable to consider
large exponents, equal in the extreme case to one, s =~ |. For large densities, the power of the bulk
viscosity coefficient should be considered smaller (or equal) to 1/2,s < 1/2.

Therefore, as usual, we shall assume the following phenomenological laws [14, 15]:

p=(y-Dp, E=ap', T=pp", t=(p"=ap'" (5)

where ]l <y <2anda = 0,8 = 0,r = 0,and s > 0 are constants, Equations (5) are standard
in cosmological models whereas the equation for 7 is a simple procedure to ensure that the speed of
viscous pulses does not exceed the speed of light.

The requirement that the entropy is a state function imposes in the present model the constraint [10]

L (6)

sothat) <r <1/2forl <y <2.
The growth of the total co-moving entropy X over a proper time interval (1o, 1) is given by [14]

4
(1) — X (o) = —3k§'f NH&T ' dr (7)

fo

where kg is Boltzmann’s constant.

The ISH theory is derived under the assumption that the thermodynamical state of the fluid is close
to equilibrium, that is the nonequilibrium bulk viscous pressure should be small when compared to the
local equilibrium pressure [16]

O<<p=(-Dp (8)

If this condition is violated then one is effectively assuming that the linear theory holds also in the
nonlinear regime far from equilibrium. For a fluid description of the matter, the condition (8) ought to
be satisfied.

To see if a cosmological model inflates or not it is convenient to introduce the deceleration parameter

dH™! 30
"l B +3p+ ©)
dt 2p

The positive sign of the deceleration parameter corresponds to standard decelerating models whereas
the negative sign indicates inflation.
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With these assumptions the evolution equation for flat homogeneous causal bulk viscous cosmolog-
ical models is [14]

32-s

H+3HH+3"a 'H* X H - (1 +rH 'A* + —{y QH+ —yH* P =0 (10)
Q‘

By introducing a set of nondimensiona] variables & and ¢ by means of the transformations H =

aoh,t = m 6, with g = (3’-9) .5 7& and using the expression of r as a function of y given in
(6). (10) takes the form

d*h
d‘)

dh dh\2 2r—1 " o
[2h+;2“ "]EE—{H r)yh~! (dﬂ) + lr_rh3+|_rh"'"”:0 (11)

By denoting n = (1 — 2s) /(1 — r) and changing the variables according to
h= \‘1‘”]_"), n= f \-'”“_”dg (12)

(11) becomes

d?y dy
Gzt g+ =Dy +yH =0 U

3. Iterative solutions of the evolution equation

Due to the complicated nonlinear character of the evolution equation (13), very few cosmological
solutions of this equation for specific choices of the parameters r and n are known in the framework of
the full ISH theory, most of the investigations being devoted to the study of models withs = 1/2[10,12]
ors = 1/4[19].

The cosmological model presented above, could be robust if the cosmological solutions of (13),
depicting the causal bulk viscous FRW space-time, could be studied for an arbitrary range of values of
s in the hope of leading to the possibility of correct physical description of a well-determined period in
the evolution of our Universe.

By using the Laplace transform and convolution theorem, the differential equation (13) is equivalent
with the following integral equation:

n
y(m) =f F—x)[y @) +y@)]y" (x)dx + yo () (14)
0
where
_ 1 [—6+Dr-0 _ 6-1)n—x)
Fln—x =5 [e e ] (15)
yo(n) =" (Me " + N &) (16)

=2(1—=r) (17)
_ (B =1)y(0) — ¥y*(0) N — (8§ + 1) y(0) + ¥y*(0)
q 26 ' ™ 25
and we denoted (g“‘) = y*(0).

n n=0 "

The solution of the integral equation (14) can be easily obtained by using the method of successive
approximations or method of iteration to obtain a solution to any desired accuracy. Taking as an initial

M

(18)
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Fig. 1. Variation of the scale factor a(r) for the stiff ~ Fig.2. Variation of the energy density p(r) for the stiff
causal bulk viscous cosmological fluid for r = 1/2, causal bulk viscous cosmological fluid for r = 1/2,
s = 1/4, y(0) = 0.5009, and y; = —1.0009 repre- s = 1/4, y(0) = 0.5009, and y; = —1.0009 repre-
senting the zeroth- (dotted line), first-, second-, and senting the zeroth- (dotted line), first-, second-, and

third-order (longest broken line) approximate solu- third-order (longest broken line) approximate solu-
tions. tions.
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approximation the solution of the linear part of (13), the general solution of the integral equation (14)
can be expressed in the first-, second-, and mth-order approximation, m € N, as follows:

q ’
yi(n) = [ Fn~x) [_vo (x) + _vo(x}] ¥o (x) dx + yo (1) (19)
0
n r
¥2 () =fu F o= [ () + 3@ ]y dx + y1 () (20)
n r
Ym—1(n) = f@ F(n—x) [}',,,_2 (x) + ym-z(X)] i _2(x)dx + ym—2 () (21)
n ;
ym () = fu Filni=x) [.v,,,_i (x) + _vm—|(x)] Ym—1(X)dx + ym—1 (1) (22)
y(n) = mli_.mm Ym (1) (23)

We can express the iterative solutions of the gravitational field equations for a bulk viscous-fluid-
filled FRW Universe in the framework of the full ISH theory in the following parametric form (in the
following equations we write o for the variable of integration to distinguish it from the independent

variable):
2 L 2 5 2
r-—m:—f vy (o) do, a=apel", p =3y () (24)
] {j] o
2 2s 2r
p=3(-1ady™ (), E=3Faedy"m, T=p3afy™~ 1) (25)
_ as—12s—1) =D 11 3 dy: | 2%
FSERCCAT A= se T ranien =
603C€2“_” n 3
E(r)—E(ro)=Lf [ -+ )]}’2(0}62”d0 (27)
P G
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Fig. 3. Variation of the deceleration parameter g (1) Fig.4. Variation of the entropy Z (1) for the stiff causal

for the stiff causal bulk viscous cosmological fluid for bulk viscous cosmological fluid forr = 1/2,5s = 1/4,
r=1/2,5s = 1/4, y(0) = 0.5009, and y; = —1.0009 y(0) = 0.5009 and y; = —1.0009 representing the
representing the zeroth- (dotted line), first-, second-, zeroth- (dotted line), first-, second-, and third-order
and third-order (longest broken line) approximate so- (longest broken line) approximate solutions.
lutions.
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where ag, tfp, and X (fp) are constants of integration.

M=[2(g+1)—3y]ady™ ), Ml p (28)

The nonsingular character of the approximative solutions for all time ¢ > 0 is consistent with the
finite character of the Ricci invariant R;; R/ and Kretschmann scalar R; i R"*

ik 4 ) ¢ ;
R,-J,-“RU“ — ].'Zuf{“t_‘.‘i r {r;}(q‘ + I) = (I + %) R;; RV (29)
g -—q+1 :
Owing to the form of the dimensionless quantities we have used, this form of the solution of the
evolution equation is not defined for s = 1/2.

4. Discussions and final remarks

At densities significantly greater than the nuclear one py, e.g., p >> pn, we have p — p, with
the speed of sound, ¢, tending to the speed of light, ¢, — ¢ [18]. A typical approach to the nuclear
equation of state in the very high-density regime is to construct a relativistic Lagrangian that allows
“bare” nucleons to interact attractively via scalar meson exchange and repulsively via the exchange of a
more massive vector meson. But at the highest densities the vector meson exchange dominates and one
still has p = p. Therefore, the equation of state most appropriate to describe the high-density regime of
the early Universe is the stiff Zeldovich one, with y = 2. Hence, a stift fluid can describe the evolution
of the Universe in the GUT era or during the reheating period. In a previous paper [19], we obtained
an exact solution for the gravitational field equations of a homogeneous flat FRW Universe filled with
a causal bulk viscous fluid satisfying the stiff equation of state p = p and having a bulk viscosity
coefficient proportional to the fourth root of the energy density & ~ p l/4 Hence, it is of interest to study
the physical behavior of the approximate solutions for the cases s = 1/4 and y = 2 for comparison with
the exact one. Therefore, for the physical interpretation of the solutions discussed below, we assume
the conditions r = 1/2 and s = 1/4.

In the limit of small times, t — 0, the invariants (29) tend to infinity. Also at this moment, the Uni-
verse arrives at a singular state with infinite energy density, bulk viscosity coefficient, and temperature
but with a finite scalar factor a (0) = a9 = const. The Zeldovich fluid-filled Universe continues to
expand and the temperature, energy density, and bulk viscosity coefficient decrease as the cosmic time
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Fig. 5. Variation of the Kretschmann scalar R;;, R/*  Fig. 6. Variation of the bulk viscous pressure—
for the stiff causal bulk viscous cosmological fluid for ~ thermodynamic pressure ratio |IT| p~' for the stiff

r=1/2,5 = 1/4, y(0) = 0.5009 and y; = —1.0009 causal bulk viscous cosmological fluid for r = 1/2,
representing the zeroth- (dotted line), first-, second-, s = 1/4, y(0) = 0.5009 and y; = —1.0009 represent-
and third-order (longest broken line) approximate so-  ing the zeroth- (dotted line), first-, second-, and third-
lutions. order (longest broken line) approximate solutions.
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t increases. The evolution of the Universe is noninflationary (¢ > 0) for all times 0 < ¢ < ¢, but for
times ¢ > ., the deceleration parameter ¢ < 0, hence the Universe ends in an inflationary phase.

During the second evolutionary era the expansion is associated with a rapid decrease in the energy
density and temperature but a large amount of co-moving entropy is generated. The evolution of the bulk
viscous pressure — thermodynamic pressure ratio for all times 0 < ¢ < ¢, is less than one showing that
the nonequilibrium bulk viscous pressure should be small when compared with the local equilibrium
pressure. The bulk viscous pressure is greater than the thermodynamical one, |I1] > p , for all times
t > t, and consequently, viscous-fluid inflation is a far from equilibrium process, as pointed out by
Maartens and Mendez [17].

So, it is a matter of a future analysis and theoretical developments to decide if the inflationary
behavior characterizing the present iterative solutions of the gravitational field equations for a FRW
Universe filled with a bulk viscous fluid given above, can accurately describe a real physical period in
the evolution of our Universe.

In Figs. 1-6, we present the time evolution of the scale factor, energy density, deceleration parameter,
entropy, Kretschmann scalar, and bulk viscous pressure — thermodynamic pressure ratio for the Zel-
dovich fluid-filled FRW Universe representing the zeroth-, first-, second-, and third-order approximation
solutions to the Einstein gravitational field equations.

In conclusion, the general physical behavior of this approximate solution describing the Zeldovich
fluid-filled FRW Universe presented here is consistent with the exact solutions given in [19].
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