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Exact dissipative cosmologies with stiff fluid
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Abstract. — The general solution of the gravitational field equations in the flat Friedmann-
Robertson-Walker geometry is obtained in the framework of the full Israel-Stewart-Hiscock
theory for a bulk viscous stiff cosmological fluid, with bulk viscosity coefficient proportional to
the energy density.

Introduction. — Dissipative bulk viscous-type thermodynamical processes are supposed
to play a crucial role in the dynamics and evolution of the early Universe. There are many
processes capable of producing bulk viscous stresses in the early cosmological fluid-like inter-
action between matter and radiation, quark and gluon plasma viscosity, different components
of dark matter, particle creation, strings and topological defects, etc. [1].

Traditionally, for the description of these phenomena the theories of Eckart [2] and Landau
and Lifshitz [3] were used. But Hiscock and Lindblom [4] have shown that the Eckart-type
theories suffer from serious drawbacks concerning causality and stability. Regardless of the
choice of equation of state, all equilibrium states in these theories are unstable and in addition
signals may be propagated through the fluid at velocities exceeding the speed of light. These
problems arise due to the first-order nature of the theory, i.e. it considers only first-order
deviations from the equilibrium. The neglected second-order terms are necessary to prevent
non-causal and unstable behavior.

A relativistic consistent second-order theory was found by Israel [5] and developed into
what is called transient or extended irreversible thermodynamics [6-8]. In particular, Hiscock
and Lindblom [7] have shown that these second-order theories are free of the pathologies of the
Eckart-type theories. Therefore, the best currently available theory for analyzing dissipative
processes in the Universe is the full Israel-Stewart-Hiscock causal thermodynamics.

Exact general solutions of the field equations for flat homogeneous universes filled with a
full causal viscous fluid source for a power law dependence of the bulk viscosity coefficient on
the energy density have been obtained recently in [9-11]. The evolution of a homogeneous
and isotropic dissipative fluid in the truncated Israel-Stewart theory has been analyzed, by
using dynamical systems methods, by Di Prisco, Herrera and Ibanez [12]. They have found
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that almost all solutions inflate, and only a few of them can be considered physical, since they
do not satisfy the dominant energy condition.

It is the purpose of this letter to obtain the general solution of the gravitational field
equations for the case of a bulk viscous cosmological fluid, with the bulk viscosity coefficient
proportional to the energy density, obeying the Zeldovich (stiff) equation of state. In this
case the solution can be presented in an exact parametric form. The behavior of the scale
factor, deceleration parameter, viscous pressure, viscous pressure-thermodynamic pressure
ratio, comoving entropy and Ricci and Kretschmann invariants is also considered.

Geometry, field equations and consequences. — For a Friedmann-Robertson-Walker
(FRW) Universe with a line element ds? = dt? — a?(¢) (dz?® + dy? + dz?) filled with a bulk
viscous cosmological fluid the energy-momentum tensor is given by

TF = (p+p + M) wu® — (p +10) 67, (1)

where p is the energy density, p the thermodynamic pressure, II the bulk viscous pressure and
u; the four-velocity satisfying the condition u;u* = 1. We use units so that 87G =c¢ = 1.
The gravitational field equations together with the continuity equation Tl’“,C = 0 imply

3H? =p, 2H 4+ 3H? = —p—1I, p+3(p+p)H=—3HII, (2)

where H = a/a is the Hubble parameter. The causal evolution equation for the bulk viscous
pressure is given by [13]

. B 1 T & T
TH+H——3€H—§TH<3H+;—E—T>, (3)

where T is the temperature, £ the bulk viscosity coefficient and 7 the relaxation time. Equa-
tion (3) arises as the simplest way (linear in IT) to satisfy the H theorem (i.e., for the entropy
production to be non-negative, SZZ =TI2/¢T > 0, where S° = eN' — %ul is the entropy flow
vector, e is the entropy per particle and N* = nu' is the particle flow vector) [6,7].

In order to close the system of equations (2) we have to give the equation of state for p

and specify T, £ and 7. As usual, we assume the following phenomenological laws [13]:

p=0C-1p, E=ap’T=pp", 1=¢ '=ap!, (4)

where 1 < v <2 and o« >0, 8 >0, r > 0 and s > 0 are constants. Equations (4) are
standard in cosmological models, whereas the equation for 7 is a simple procedure to ensure
that the speed of viscous pulses does not exceed the speed of light.

The requirement that the entropy is a state function imposes in the present model the
constraint 7 = (y — 1) /v [9] so that 0 <r <1/2for 1 <~ < 2.

The growth of the total comoving entropy ¥ over a proper time interval (¢o,t) is given
by [13]

t
X(t) — X (to) = —3kg* / MHe*Tdt, (5)
to

where kg is the Boltzmann constant.

The Israel-Stewart-Hiscock theory is derived under the assumption that the thermodynam-
ical state of the fluid is close to equilibrium, that is the non-equilibrium bulk viscous pressure
should be small when compared to the local equilibrium pressure |II| < p = (y — 1) p [14]. If
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this condition is violated then one is effectively assuming that the linear theory holds also in
the non-linear regime far from equilibrium. For a fluid description of the matter, the condition
ought to be satisfied.

To see if a cosmological model inflates or not, it is convenient to introduce the deceler-
ation parameter q = d}dI;l —-1= p+3§)—+3ﬂ. The positive sign of the deceleration parameter
corresponds to standard decelerating models, whereas the negative sign indicates inflation.

With these assumptions the evolution equation for flat homogeneous causal bulk viscous

cosmological models is

.. . . . 278
H+3HH +3" o 'H>***H — (14 r)H 'H? + % (v —2)H? + 32—a

yH25 =0.  (6)

By introducing a set of non-dimensional variables A and 6 by means of the transformations

1
H = aph,t = %0, with ag = (370‘) 172 s A % and using the expression of r as a function
of v, eq. (6) takes the form

2

d2n dh dh\? 2r—1 1
— 4+ 2R+ B2 — (1 )R h? h2=s) = 0.
d92+{ + ]de (L+7) w) T T 0. (7

By denoting n = (1 —2s) /(1 —r) and changing the variables according to h = yt/ (=),
n= [y"/177)df eq. (7) becomes
d%y

dn?

d
+(2+y”)£+(2r—1)y+y"+1:0. ®)

General solution for a stiff cosmological fluid. — We consider the case of a stiff cosmo-
logical fluid with equilibrium pressure equal to the energy density by taking the values of the
parameters v = 2 and r = 1/2. By introducing the substitutions v = 1/u and u = dy/d,
eq. (8) can be transformed into a second-type Abel first-order differential equation:

d

d_: _ (2 4 yn) ,U2 + yn+1U3. (9)
A particular solution of eq. (9) for n = 1, s = 1/4 has been obtained in [15]. We consider

now another case of a stiff cosmological fluid with bulk viscosity coefficient £ linearly propor-

tional to the energy density p,& = ap. Consequently, s = 1 and n = —2 and hence eq. (9)

becomes 4 5 5 4 Aly)
v 1 v Y
=t 2+ =)= —{— ]02, 10

dy y ( y2> B(y) |dy B(y) (10

where A(y) = 2y*> — 1 and B(y) = —y. By introducing a new variable o = 1 — %, eq. (10)

can be written in the general form

d
= 0B(y) + Aly), (11)
g
or d
Y 2
— =2y" —oy— 1. 12
Qo =2V oy (12)

Hence we have transformed the initial Abel-type equation into a Riccati differential equa-
tion. A particular solution of eq. (12) is given by

g

- 13
e (13)

y:



M. K. MaK et al.: EXACT DISSIPATIVE COSMOLOGIES WITH STIFF FLUID 765

and therefore the general solution of eq. (12) is

0)=—-0A(o AQ(U)ei%
Vo) = —ohlo)+ o T (14

where A (o) = (1+ 02)_1 and C is a constant of integration.

Hence the general solution of the gravitational field equations for a Zeldovich causal bulk
viscous fluid-filled flat FRW Universe, with bulk viscosity coefficient proportional to the energy
density, can be obtained in the following exact parametric form, with o taken as parameter:

t(o) —ty = —% %, H (o) = apy® (o) |
a(o) = agexp {—% /y(a)da} , p(o) = 304(2);(;4 (o), (15)
4(0) = yi(g)—% I (0) = 6a2y? (0) [y (o) — oy (0) — 1] ,
II 1 o
‘p‘ - ’ 20 (o) 16)
Q a3
% (o) = X(o0) 4\/513 ﬁo 2 [ y(o)[y* (o) — oy (o) — 1] exp [—2 / y (o) da} do, (17)

where ag, to and ¥ (o) are constant of integration and ag = 2/3a.

The singular or non-singular character of the solution for all times ¢ > 0 can be checked
from the finite (infinite) character of the Ricci invariant R;jR* and Kretschmann scalar
Rij R*Y given by

I =Ry R7 = 1204y" [(3+ 30y — 5¢°) (3 + 30y — 4y°) +y*] (18)
J = Rij R = 12a5y* [(3 + 30y — 5y2)2 + yﬂ . (19)
80
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Fig. 1 — Time evolution of the invariants I = R;; RY (solid curves) and J = RiijRijkl (dashed curves)
for different values of the integration constant C' (ao = 3/2).

Fig. 2 — Time variation of the scale factor a for different values of the integration constant C: C' = —1.2
(solid curve), C'= —1.1 (dotted curve) and C = —1 (dashed curve) (ag = 3/2).
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Fig. 3 Fig. 4

Fig. 3 — Evolution of the deceleration parameter g for different values of the integration constant C":
C = —1.2 (solid curve), C = —1.1 (dotted curve) and C' = —1 (dashed curve) (ao = 3/2).

Fig. 4 — Time behavior of the bulk viscous pressure II for different values of the integration constant
C: C = —1.2 (solid curve), C = —1.1 (dotted curve) and C = —1 (dashed curve) (ap = 3/2).

Discussions and final remarks. — The evolution of the causal bulk viscous Zeldovich fluid
filled flat Universe starts generally its evolution from a singular state, as can be seen from the
singular behavior of the invariants I and J, presented, for different values of the integration
constant C, in fig. 1. Generally, the dynamics of the Universe depends on the numerical values
of C.

The behavior of the scale factor is presented in fig. 2, for some specific values of the
integration constant. The evolution is expansionary for all times. At the initial moment the
scale factor is zero, while the energy density tends to infinity.

The dynamics of the deceleration parameter, shown in fig. 3, indicates, for the chosen
range of the integration constant, a non-inflationary behavior for all times, with ¢ > 0,Vt > 0.

The bulk viscous pressure II is negative during the cosmological evolution, IT < 0,Vt > 0,
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Fig. 5 — Variation with time of the ratio | = % for different values of the integration constant C:
C = —1.2 (solid curve), C' = —1.1 (dotted curve) and C' = —1 (dashed curve) (ap = 3/2).

Fig. 6 — Dynamics of the comoving entropy X for different values of the integration constant C:
C = —1.2 (solid curve), C = —1.1 (dotted curve) and C' = —1 (dashed curve). We have used the
4\/§a0a8

=1.

normalizations ao = 3/2 and ——
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as expected from a thermodynamic point of view. In the large-time limit, as can be seen from
fig. 4, the viscous pressure tends to zero. In the same limit the bulk viscosity coefficient also
becomes negligibly small.

The ratio [ of the bulk and thermodynamic pressures, | = |II/p|, is presented in fig. 5. For
all times the condition ! < 1 holds and therefore the model is thermodynamically consistent.

During the cosmological evolution a large amount of comoving entropy is produced, with
the entropy ¥ increasing in time and tending in the large-time limit to a constant value
presented in fig. 6.

Due to the specific equation of state satisfied by the bulk viscosity coefficient, the relaxation
time 7 is a constant in the present model.

Most of the known exact solutions of the gravitational field equations with a causal bulk
viscous cosmological fluid do not satisfy the required conditions of the thermodynamic con-
sistency, leading to an inflationary behavior and violating the condition of smallness of bulk
viscous pressure. The solution represented by egs. (15)-(17) can consistently describe the
early dynamics of a superdense post-inflationary era in the evolution of the matter-dominated
Universe, when, as expected, the bulk viscous dissipative effects play an important role.
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