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ASYMPTOTIC INFERENCE FOR UNIT
ROOT PROCESSES WITH
GARCH(1,1) ERRORS
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W.K. LI
University of Hong Kong

This paper investigates the so-called one-step local quasi-maximum likelihood
estimator for the unit root process with GARCHL) errors When the scaled
conditional errorgthe ratio of the disturbance to the conditional standard devia-
tion) follow a symmetric distributionthe asymptotic distribution of the estimated
unit root is derived only under the second-order moment conditiois shown

that this distribution is a functional of a bivariate Brownian motion as in Ling
and Li (1998 Annals of Statistic®6, 84—125 and can be used to construct the
unit root test

1. INTRODUCTION

Consider the unit root process with the first-order general conditional hetero-
skedastic errorfsGARCH(1,1)]:

Vi = dYia t gy, (1.2)
& = ’Ot\/ﬁt, hy=ag+ a8t2—1 + Bhy_q, (1.2)

where¢ =1 andag > 0, « = 0, andB = 0, andn,’s are a sequence of inde-
pendently and identically distributg@li.d.) random variables with zero mean
and variance one

The GARCH models were proposed by Bollersld®86 and have impor-
tant applications in financial and econometric time sei&sne reviews can be
found in Bollersley Engle and Nelson(1994. Whena = 8 = 0, &s defined
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by model(1.2) reduce to.i.d. white noisesand in this case the unit root pro-
cess has been investigated for a long titmerecent decadesnotivated by the
practical applications in statistics and econometricany statisticians and econ-
ometricians have considered various unit root processes with.ndneirrors
Some related results on estimating and testing unit roots can be found in Phillips
and Durlauf(1986), Phillips (1987, Chan and Wei{1988, Lucas(1995, and
Herce (1996 and references thereibvVhen the error terms follow a GARCH
mode] how to estimate and how to test the unit root are obviously important
problems

Ling and Li (1998 derive the limiting distribution of the local maximum
likelihood estimatof MLE) for a general nonstationary autoregressive moving-
average time series with general-order GARCH errors and demonstrate that
the MLE is more efficient than the least squares estiméi&E). Seo (1999
also independently has derived the limiting distribution of the local MLE unit
root in the nonstationary ARp) model The simulation results in Se@d@999
and Ling Li, and McAleer(2001) show that the unit root tests based on the
MLE are not only more powerful than Dickey—Fuller tests based on the LSE
but also have more stable sizésowever the results in Ling and L{1998
require thatEe; < oo, whereas those in S6d999 require thatEef < co.

Note that the condition for strict stationarity is(km? + 8) < 0 (see Nel-
son 1990, the condition forEe? < « is @ + 8 < 1, and the condition for
Eei < o0 is 3a? + 2aB + B2 < 1. The conditions foiEe; < oo or Eef < oo
are clearly much more stringerfeor the pure GARCIKiL,1) model Lee and
Hansen(1994 and Lumsdain€1996 prove that MLE are consistent and as-
ymptotically normal under ltwn? + 8) < 0. A challenging problem is whether
or not we can derive the limiting distribution of the MLE under weaker condi-
tions for the unit root process with GARCH errok&hen, is symmetrically
distributed in this paper we obtain the asymptotic distribution of the so-called
one-step local quasi-MLE of the unit root in mod&l1) under the assumption
thatae + B < 1, that is only the existence of the second momentzpfs re-
quired In the literature on unit root with GARCHhis is the weakest condition
for the unit root distribution to exisfThis limiting distribution is a functional
of a bivariate Brownian motion and is also the same as that obtained in Ling
and Li(1998.

This paper proceeds as followSection 2 presents the one-step local MLE
and main resultsSection 3 extends the results in Section 2 to models with a
constant intercepfThe proof of main results is given in Section 4

Throughout the papgt)’ denotes the transpose of the vedthro(1)(oy(1))
denotes a series of numbeimndom numbepsconverging to zerdin prob-
ability); O(1)(0p(1)) denotes a senes of numbgrandom numbejpsthat are
bounded(in probablhty) -5 and %5 denote convergence in probability and in
distribution respectivelyandD = D[0,1] denotes the space of functiohis)
on[0, 1], which is defined and equipped with the Skorokhod topol@jlings-
ley, 1968.
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2. ONE-STEP LOCAL QMLE AND MAIN RESULTS

Given observationy,,..., Y, with the initial valuey, = 0, generated by model
(1.2), the log-likelihood function(ignoring a constantcan be written as

ef(4)

ongs) &Y

< 12 < < 1 <
L(¢,0) = H%h(dﬁ) and 1(¢,0) = =5 Inh(¢,5) -

where¢ andé = (@, @, ) are unknown parameters,(¢) = y; — ¢y,_1, and
hi(¢,8) = do + @e(¢) + Bh_1(,5) with £9(¢p) = &0 andho(¢,5) = ho. The
true values of¢ andé are 1 ands = (ao,a, B), respectively We make the
following assumptions

Assumption 1 0 = {(@, @, 3):0 < ag = g = ap,0 < oy = @ = 0,0 <
B =B=p,a+B<1,66€ 0andéc 0.

Assumption 2 n, has a symmetric distribution arih; < co.

Because we do not assume thgtis normal the maximizer ofL(¢,5) on
R X 0 is called the quasi—-maximum likelihood estimat@MLE) of ¢ = 1
andé. In practice g5 andhg are unavailable and can be replaced by some con-
stants These initial values do not affect our asymptotic resultkich can be
verified via some arguments similar to those in Lee and Ha(894).

Let ¢ s be the LSE of the unit rootp = 1 in model (1.1). Then ¢, s =
(S y2 ) (S, Vi Yeo1). The residuak; =y, — ¢ syi_1 can be used as the
artificial observations o§; to estimate’ in model(1.2) through MLE as in Lee
and Hansen(1994). Becaused, s — 1 = Op(n~1)[see(2.9), which follows],
Theorem C in Appendix C shows that Hessian matrices baseq and &, are
asymptotically equivalentThe corresponding asymptotic equivalence on the
log-likelihood functions and the score functions can be found in Lemran2
Ling et al (2002). Thus if Assumptions 1 and 2 hold then the MLE &fbased
on & is asymptotically equivalent in probability to that based on the #ues
in Lee and Hanseii1994. Hence we assume that the estimatdy of 6 has
been obtained angn (3, — 8) = Oy(1).

Using 6, and an initial estimatqrbn with n(¢, — 1) = Ogy(1), the one-step
local QMLE of ¢ = 1, denoted by, is obtained by the one-step iteration

. N 92(h,5,) 1T [ al(e,b,)
=¢,— —_— — ) 2.2
On = L—Zl Ig? L=$HL—21 ¢ L=$n 2

When(¢,8) = (1,8), we abbreviatel,(¢,5) andd?l(¢,5) to al, andd?l,, re-
spectively If Assumptions 1 and 2 hoJdhenn™*2 3, 321, /d$dé = 0,(1) by
Lemma 65 in Ling et al (2001, and hencgby Theorem 3L in the same papger
we have



544 SHIQING LING AND W.K. LI

1 o[ 024,86, 92,

FFE[ e ‘aﬁ]:%m’ (2.3)
121l (d)5) al, B 10 92,
Hg{ ocb @}‘”(d’—l){nz;la(b ]+op(l) (2.4)

uniformly in the ball®,, = {¢: [n(¢ — 1)| = M} for any fixed positive constant
M. Thus by (2.2)—(2.4), we have that

A _ 180 1.8 (e, 50
n(¢n_1):n(¢n_1)_|:_227:| {HETLJM_FOP(D
n 92| n 14l

As pointed out by a referee and the co-editor Professor Bruce Hathsénnot
the local QMLE in the usual sengleut it has the same asymptotic distribution
as the QMLE We call ¢, the one-step QMLEIn practice we can useb, as a
new initial value to repeat the iterative proced(?e?), and for the estimated
value from each iterative proceduyiiehas the same asymptotic representation
as(2.5). The following is our main result

THEOREM 21. Let ¢, be the estimator of the unit roat = 1 such that
(2.5) holds. If Assumptions 1 and 2 are satisfied, then

1
wam%m

1 ’
Ff w2(7) dr
0

where(w;(7),w,(7)) is a bivariate Brownian motion with covariance

n(gn—1) 5

Eh, 1
Q=1 1 E@/h) + ka? § B2EDE(g2,/h2) | (2.6)

k=1

F=E@/h) + 2a?>y B2 VE(e2 ,/h?) and k = En{ — 1. In particular,
whenn; is normal,x = 2.

Remark Let

1) = Sw(r) and Bylr) = — 5| 2 —wy(r) +
1\T) = o Wl(’T an 2 T) = 0_2 0'2K — 1W]_('T

1W2(T)’
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whereo? = Eh, andK is the (2,2)th element ofQ in (2.6). ThenB,(7) and
B,(7) are two independent standard Brownian motigks shown in Ling and
Li (1998,

1 1
| Bindem R | ndem

n(d;n - 1) é 1 2 1
UzFfO B2(7)dr fo B2(7)dr

2.7)

o°F

The second term of(2.7) can be simplified as[Vo?K —1/Fo?] X

(f B2(7) dr)"Y2¢, where¢ is a standard normal random variable independent
of [3B2(7) dr (see Phillips1989. Let c = oF/VK andp? = 1/o-2K € (0,1).

We can obtain that

1
pf Bl(T) dBl(T) 1 -1/2
nc(dy, — 1) 5 — + l—p2<f B2(7) d7> & (2.8)
f B2(7)dr 0
0
Under Assumptions 1 and 2ing et al (2001 show that
1
f By(7) dBy(7)
N(ds—1) 5 = (2.9)
f B2(r)dr
0

From (2.8) and(2.9), we see that the asymptotic distributionf is a combi-
nation of that of s and a scale mixture of normalshis property is similar to
those of the least absolute deviation estimators of unit roots given by Herce
(1996. Ling and Li (1998 show thatg, is more efficient tharb, s, in the sense
defined in Ling and McAleef2003. Our result heavily relies on the symmetry
assumptionWhenr, is asymmetricthe MLEs of¢ andé are not asymptoti-
cally independentand hencéd2.4) and(2.5) do not hold In this casethe lim-

iting distribution of the local MLE of(¢, §) can be obtained by using a similar
method to that in Ling and McAled2003.

3. MODELS WITH A CONSTANT INTERCEPT

The co-editoyBruce Hansenpointed out that many economic data include an
intercept In this sectionwe consider the following model

Vi = pt dYa t ey, (3.1)
&t = Ut\/Ft, h, = ag + aed , + Bhi_y, (3.2)
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whered = (g, a, B) is defined as in2.1). DenoteA = (u, )’ and assume that
its true value is\o = (0,1)". Let A, s = (s, %Ls) be the LSE ofAy. Then

n -1 n
n > Vs >V
N t=1 t=1
)\LS = n n n (33)
Z 2:1 -1 Elyt Yi-1
t=1 t= t=

Let the residuak; = y; — i s — éLSyH. Under Assumptions 1 and, 2Zing
et al (2001 prove that the MLE of based org, is asymptotically equivalent
in probability to that based on the trug as in Lee and Hansefi994). As in
Section 2 we can assume that the estima&yrof § has been obtained and
\/ﬁ(sn - 8) = Op(l)

The log-likelihood function for mode(3.1) and(3.2) is similarly defined as
(2.1) with ¢ replaced byA. Let N, = diag{\/n, n}. Using an initial valueA,
with Ny(Ap — Ag) = Op(1), the one-step local QMLE,, of A, is obtained by
the one-step iterative procedure @2) with ¢ replaced byA. If Assump-
tions 1 and 2 holdthenn 2N, XL, 92l,/dAd6 = 0,(1) by Lemma €5 in
Ling et al (2001, and hencgby Theorem 3L in the same papgwe can obtain
the asymptotic representation

) " o
Ny(An — Ao) = - NS = |+ 0,(2). 3.4
oo =S o] S o s
In Appendix B we show that

10 93, ., (t
ngaqbau = Ffo w, (1) dr. (3.5)

Thus by Theorem 21, Lemma 42 in the next sectign(3.5), and the continuity
mapping theoregwe have the following result

THEOREM 31. Let A, = (fn, ¢,.n)’ be the estimator ok, = (0,1)’ such
that (3.4) holds. If Assumptions 1 and 2 hold, then

1 -1
1 J; w;(7) dr w;,(1)

fn
Nn<A " >i>|:—l ) ) 1 :
Pun—1 J w,(7) dr f W2(7) dr fowl(T)dWZ(T)
(0] 0

where F and(w,(7),w,(7)) are defined as in Theorem 2.1.
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Remark Similar to (2.8), by Theorem 3L, we can show that

pJ By(7) dBy(7) — Bl(l)J(; Bi(7) dr

0

1 1 2
[J; B2(r)dr — (fo B,(7) d7'> }
1 1 27-1/2
+ V11— p?2 [Jo B2(7)dr — <fo By(7) dT) ] £, (3.6)

wherec andp are defined as i2.8). Under Assumptions 1 and 2ing et al
(20021 show that

nc(d,, —1) 5

1 1
f Bl(T) dBl(T) - Bl(l) f Bl(T) dT
0 0

n(d;;LLS -1 5 1 1 2
[f B2(7)dr — (J B,(7) d7> }
0 0

From (3.6) and(3.7), we see that the limiting distribution Q?Mn is a combina-
tion of that of @Ls and a scale mixture of normalSome critical values of
limiting distributions in(2.8) and(3.6) with differentp are given in Ling et al
(2001, and those for the correspondingtatistics are given in Sed999 and
Ling et al (2002).

(3.7)

4. PROOF OF MAIN RESULTS

LEMMA 4.1. Under Assumption 1, the processe®hd ¢, defined by model
(1.2) are strictly stationary and ergodic and have the expansions

oo k
h, = a0{1+ 2 H (am?; + B)} a.s. 4.1
k=1i=1
and
ok 1/2
& = a&/zm |:1 + 2 H (ani; + ,3)} a.s. (4.2)
k=1i=1

Proof This comes straightforwardly from Theorem 2 in Nel94d990 (for
another expansigrsee also Ling and L.i1997). u

LEMMA 4.2. Suppose that the processis generated by model (1.2) and
Assumptions 1 and 2 are satisfied. Then

1 [n7] & o gtz El ko1 C
o P Y - Y o | 5 [wy(r),wy(r)]in D X D,
\/ﬁt211|:t h, ht(ht >k1B tk} ' ’
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where[w;(7),wW,(7)] is a bivariate Brownian motion with mean zero and co-
variancerQ and Q is defined in Theorem 2.1.

Proof Let A = (A4, A5)" be a constant vector withA’ # 0. Denote

By Lemma 41, it is easy to show that botfy and¢; are martingale differences
with respect ta%, whereZ; is theo-field generated byn,,n;_4,...}. First we
consider the asymptotic property §f,; = S{7 &/v/n. From Lemma 4L, we
see that, is a function in terms ofnZ ;, nZ,,...}. Note thate, = n,4/h, and
7, is symmetric It is easy to see thad(g,_; &_;/h{) = 0 asi # j, and hence

1 & &2
02 =ES?=AM0%+ 212, + A%{E(H> + ka2 Bz(kl)E<;]—2k>]
t k=1 t

=N < o,
where 02 = Eh,. By Assumption 2 and the Cauchy-Schwarz inequality

o2E(1/h) > 1 and hencar*® > A02 + 2A3A, + A2E(1/h) = (oA, +
Ao/o)? + A3[a2E(1/h,) — 1]/o2 > 0. Note that

1 o) 2
E(&2 Fiy) = A2h + 20,0, + 3| = + i = 3 g%, ) |.
h "\ h &

By Lemma 41, {E(£;?| F_,)} is a strictly stationary and ergodic time series
By the ergodic theorem and Assumptionit?is easy to show that

1 n
[ES?] " t:El E(6%[ A1) —>1 as (4.3)

Furthermorebecausd &;'} is also a strictly stationary and ergodic time series
with finite variance it follows that for any smalle > 0O,

Sk

> EL[£21(&F = Vna*e)]
t=1

=E[£?1(& = Vno*e)] =f - x2dP(x) — 0, (4.4)
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asn — oo, whereP(x) is the distribution function of;. By (4.3) and(4.4) and
the invariance principle for martingalélall and Heyde 198Q Theorem 4,

1 [n7] - )
S = NG > & > W*(r) inD, (4.5)
t=1

whereW*(7) is a Brownian motion with variance *r.
Let Sy = 277 &,/VN. Note that

[n7] )\2 .
Rz

E| &n‘r] - q*n7]| 2 E
[nr] [n7]

<—E<Eﬁ" 'El e k|>:_20(,8)_0(1)’ (4.6)

Vn &

wherec is a constant ana(1) holds uniformly in7 € [0,1]. By (4.5) and
(4.6),

[n7]
S = = > & 5 WH(r) inD.
t=1
Furthermoreby Cramér’s devicewe complete the proof |
LEMMA 4.3. Suppose that Assumption 1 holds. Then:

(1) for any K,

(@) h = —+a23k e, as.
(b) el _ OB« 72) as;
he

-1

h, k
k< [q(anfi + B)] as.,

(©)

t

(2) leth i = ao[1+ 25 T1 -1 (an i + B)] and e, | = ANy ; it follows
that, for k= 0,1,...,1 — 1,

@ “ o) as
t,1

-1

t k1 k
[_H(om?_i +,8)} as,;

(©) Elhy—hi| = O(p'*1) witho<p <1
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Proof

(1) Because 0< B < 1 andEe? < oo, (a) holds obviously By (a), (b) holds
obviously Becauseh; i1 > (an?; + B)h.; as, we have thath,_,/h;, =
(e /hivn) < [ITCq(an?; + B)]~* as, that is (c) holds
(2) It is easy to see that,, = ao[l + /T T1_ (an?; + B)] + I (an?; +
B)hi—k1, and hence we can show th@ holds Similarly, we can show thatb)
holds By Lemma 41, Elhek — hiwil = o 272 1 EMTT oy (ami i + B)] =
g2 i1l + B)1 = O(p' 1), that is (c) holds This completes the proof
|

LEMMA 4 .4. Suppose that Assumptions 1 and 2 hold apé@ne of the
following types of random variables:

1
@ Py

82 t—1 2
(®) h3<23k ' )

0 -2 (S0 (Ern)
t t k=1 k=1

Then HX{,(g, — Eg)]%n converges to a constant? and

[n7]
_n E (0 — Eq) e ooWo(7) inD,
t=1

where w(7) is a standard Brownian motion.

Remark Davis, Mikosch, and Basrak(1999 prove thate, and h; are
strongly mixing with geometric rateé\s a referee pointed ouit is possible
to prove Lemma 4 under some mixing framewarlHowever one has not
shown in the literature tha®t,_, B e, and X,—, 8% *h,_,, which follow,
are strongly mixing Our proof uses Theorem 2lin Billingsley (1968 and
heavily relies on Lemma.4.

Proof Because the proofs df) and (b) are similay we present only the
proofs of(b) and(c). For (b), denote

2

* St K— l 2 s £t| 2
O = h3 EB —k and O = Z,B St kI |

whereg, |, hy |, ande;_y | are defined as in Lemma3} By Lemma 41, g;" is a
measurable function af;, n._,,.... Meanwhilegy’, is a measurable function of
{T]tvﬂ-’nt*l}'
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. 1/ 2 1 2|2
Elgf —gil?=E| 5| 2 B e 2 B ek
he \ k=1 h
1 I-1 2 1 - 2|2
=3E| 5| 2B ] — 3 2 B ey
ht k=1 h k=1

2

¢ 2

=3EI2 + 3EI22 + 3EI32. (4.7)

2
+ 3E

In Appendix A we prove that there exists@& (0,1) such that
EIf=0(p'), EIZ=0(p"), and EIf=0(p'). (4.8)

By (4.7) and(4.8), it is easy to show that
> [El(gf — Eg) — (g7 — EgI*]Y? < co. (4.9)
=1

By Theorem 211 in Billingsley (1968, E[>{ (g — Eg’)]%n converges ab-
solutely to a constant$ and wheno, > 0,

[n7]
— 2 (g7 — Eg’) 5 ooWo(r) inD. (4.10)

Whenoy = 0, it is not difficult to verify that the conditions C1-C4 of Theo-
rem 32 in Ling and Li (1998 are satisfied and by the theorem

[n7]
N > (g — Eg) =0 inD. (4.11)
t=1

Using a similar method as f@#.8), we can show thaE(g;, — g;')? = O(p")
and hence{"] E(g, — g;)¥vn = 0,(1), whereo,(1) holds uniformly inr €
[0,1]. Furthermoreby (4.10) and(4.11), we can claim that the conclusion with
case(b) holds

For caseg(c), let
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Because I- 2g?/h, = 1 — 22 /h,, = 1 — 2n¢ is independent of_, it fol-
lows that
2}

2

[e'e)
Z Bkilst—k

k=

. 1 » 1 1-1
E|97_9€:||253CE _ZZﬁkht—k__ZE,Bkht—m
hi &1 hf =1

[N

2 2 /1-1 2
+3cE| | 5 — Z B ey > B ey
hi h k=1 ’ k=1
o -1 2| 1-1 2
+ 3CE[ > B e — X B e | | 2 B*hy }/hf‘
k=1 k=1 k=1
= 3CELZ, + 3cEL3, + 3cELZ, (4.12)

wherec is some constantn Appendix A we prove that there exists a constant
p € (0,1) such that

=0(p'), EL5=0(p'), and EL3=0(p"). (4.13)

By (4.12) and(4.13), we have that

[o’e}

> El(g — Eg) — (g — Eg)I*1Y2 < co.

Similar to (b), we can complete the remaining proof of casg This com-
pletes the proof [ ]

LEMMA 4 5. (Ling and Li, 1998, Theorem 3.1). LE§,(7),0 =7 < 1} and
{&,k=1,2,...} be two sequences of random processes such that
(@) Si(r) 5 S(r) inD;
[nr]
(b) N E & -5 &(r) inD;
(©) max |&/vn = 0;

12 ) . .
(d) - > & | is bounded in probability
t=1

and almost all trajectories of &) and £(7) are continuous. Then

S2s (e

0, asn— .
Ny=1

sup

O=7r=1
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LEMMA 4.6. Let g be defined as in Lemma 4.4. Then under Assumptions 1
and 2,

1 n
n? z(gt —EgQ)yt.= 0p(1).

Proof It is not difficult to verify thatg,’s satisfy the conditiongc) and
(d) in Lemma 45 (see Ling and Li 1998 the proof of Theorem 3). By
Lemma 42 and the continuity mapping theoreyy,;/n N w2(7). By Lem-

mas 44 and 45, 3L, (g — Eg)yZ./n® =n"t 3L [(y21/n)(g — Eq)] =
0p(1). This completes the proof [

The following lemma gives the asymptotic properties of the information
matrix.

LEMMA 4.7. Under Assumptions 1 and 2,

1
n2

n az|t - 1
— = Ff w2(r) dr,
Zl dp? o

where F and w(7) are defined as in Theorem 2.1.

Proot
021, Yo, 2a%ef ('S 2
w B _Tt ht |21B Yi-i-18t—i
3 t—1
&t 9 (1 oh 2ae Vi1 .
-1l |t — o i1y e
<ht )a¢(2ht 3¢> ht2 IZE]_B yt | 181 i
=l — 2021y + I3 + 2aly,. (4.14)
Note that
t—i—1
Yioi-1 = 2 8k_28k kE &= Yi-1— Est,r. (4.15)
t—i =1

Denoter,; = Elzlst,r. ThenErd = i. We first studyly, in (4.14). By (4.15),

g2 (1 ) 2 , g2 [C1 . 2
= he DB e | VAL ha > B Iei€—i
v \i=1 P \i=1
28 L
— <ZBI e )(gﬁllrt,isti>Yt1

= Tlt + T2t - 2T3t' (416)
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By Lemma 43(1)(b),

E|T3t|_iE[<2ﬁ' 1"}")(23' : W| rt,i|)|yt_1|}

= O<E{<_=21,3(i1)/2|rt,i >|yt—l|:|)
t—1

= O<2 BUV24[E|r |24/ Eyt21> = 0(vn) =o(n), (4.17)
i=1

whereo(-) holds uniformly int. Similarly, we can show that the following equa-
tion holds uniformly int:

E|T,:| = o(n). (4.18)

By (4.16) and(4.18), we know that

1 n 2 2

eI E hg(EB' e > yZ 1+ 0 (D). (4.19)
t=1
Next, we show that

12 12

= > 1y = 0,(1) and o E =0,(1). (4.20)
t=1 t=1

Because their proofs are similave prove only the latter

&Y, t—1
L = %(23' 1Yt i—1€t— |>

i=1

e [T =
= F(Z'BI le )yt 17 2<EBI_1rt,i8ti)ytl
i t i=1

= Py + Py (4.21)
Similar to Lemma 4, we can show that
1 [n7] & t—1 . -
S = n tZl h? <E B e ) - W(7) inD, (4.22)

whereW(7) is a Brownian motionSimilar to the proof of Lemma.8, by (4.22)
and Lemma 4, it is easy to show that

1 n

— > Py = 0,(D). (4.23)
|

Similar to (4.17), by Lemma 43(2)(b),

t—1 ‘ |

n
L E—j
E|P,y| = E| =5 -1 illVi—1| | = 0(D). 4.24
; | 2t nztzzl htg/zizlﬁ \/E |rt,|||yt 1| 0() ( )
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By (4.21), (4.23), and(4.24), it follows that

1 n

— > o = 0,(D). (4.25)
n® t=1

By (4.14), (4.19), and (4.20), we have

no92| 1 y& 2022 ('L 2
2 ¢ = 2 2{ ;1 -+ h3 : 2B e | YR 0p(1)
t=1 t N

1
n2

i=1

120 1 2
=—-— 2. E + 2a? 2i-DE
nthYt 1[ (ht> @ IZB <h2 >]
1.0 1 1
I 2 - _ _
5=

2a2 n 82 t—1 ) 2
T h > Ytz—l{h_t3<2 ,Bllst—i)

i=1

-1 g2,
— Z ﬁZ(Il)E<F>:| + Op(l),
t

i=1

1 N 1 t—1 2
= —pzlyfl{E(h > + 2a2232(' 1>E< hZ >] +0,(D),

(4.26)

where the last equation holds by Lemma&.4~urthermorenote that

i=t t

1 N ) ) Zfi 1N o) . 27i
= EV{E eS| B See ()]

Il
/0
3N||_‘
HM:
:,<
|—\
N———
—
M
>
N
-
=)
m
/o~
M
~
—
+
(@]
©
°_
l_\
p—

where the last equation holds becaydg/n = O,(1) andeZ ;/h, = O(8') as.
Thus we have

n 1 n 1
2D wr il Iec IR F+0p(1)£)FJ‘ wi(7) dr
n°{=10 n® =1 0

by Lemma 42 and the continuity mapping theoreirhis completes the proof
[ |
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LEMMA 4.8. If Assumptions 1 and 2 hold, then

Lo e [P ) o)
Wy (7) dw,(7),
nt13¢ 01 2

where(w;(7),w,(7)) is defined as in Theorem 2.1.

Proof

ol B 3
;;:MTT&_%<% )(Eﬁ' yti18ti>
& o 8t2 ! i
() (Ze e
2
+£(__1>(EB I’t,isti>, (427)
he \ hy

wherer,; = X,_, &_,. Denote the last term if4.27) asR,. Similar to (4.24),
we can show thaE[n~* 3L, R ]% = 0,(1) and thusn * 3L, R, = 0,(1). Fur-
thermore by Lemma 42 and applying Theorem.2in Kurtz and Protte(199:D
we know that the conclusion holds

Proof of Theorem 2. By Lemma 42 and the continuity mapping theorem
all limiting distributions in Lemmas Z and 48 are jointly convergenBy (2.5)
and Lemmas # and 48, we complete the proof u
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APPENDIX A: PROOFS OK4.8) AND (4.13)

Proof of (4.8). By the definition ofe,_y| in Lemma 43, |ei—« || = |&—«| as. Fur-
thermore by Lemma 43(1)(b), we have

1 1-1 2 1 1-1 2
h2 < > Bklstk> " he ( > Bklstk,l>
t \k=1 t \ k=1

1

Iy

kil(st—k

-1 12[1- 32

= glﬁkfl(et—k_ €—k1) [2 (el + &k |)} /ht2
-1 1/2

= ;Bk_l(stfk_stfk,l) [ B (e k|/\/_:| A
-1
-1 - 32

=B ek~ St—k,l) << > .Bk/z) >
k=1 k=1
-1 12

= 2 Bk_l(st—k - 8t—k,|) -0(D).

k=1
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Thus by Lemma 43(2)(c),

-1
Elf 0(23“E|8t KT &t k,||>

k=1

-1 -1
= o<k21/3klE\/E - \/htk,l|> = O<zlﬁklE|ht - htk,||>

1-1 -1
= O<Eﬁk1p'k“> —0<E pi) =0(lpy) = O(pY), (A1)
k=1 k=1
where 0< p < 1, p; = max{3, p}, and 0< p, < 1 such thalp} < p) for some large
enoughl.

By Lemma 43(2)(a),

1 1 ' _ 2 |ht_h[,l‘|h[+ht,l| 2 _ 2
I2 <h_2_ F)(kElBk 18tK|> = htzhtz,l Z.Bk latfk,l

k=1

_ [h=hy [Y2[h + by, [*2
hZh,,

E:Bk 1|8t kll>

k=1 ht,l

-1 2
= O( h1 - ht,l |1/2 (kz‘; Bkl(kl)ﬂ) ) = O(‘ h1 - ht,l |1/2).
=1

Thus by Lemma 43(2)(c),

EIZ = O(Elh, — hy,[) = O(p"), (A.2)
where 0< p < 1. By Lemma 43(1)(b),

1 [ee]
T2 kZ:I Bkilst—k

o 1-1
Z Bkilst—k + kZ Bkilst—k
=1

k=1

55
|

o(pk—1-(k= 1)/2)]

= 2n; ¥

i kal
k=1

=2w 32

Ms

%Bk 1
k=1

k

1

o(1),

oo
E Bkilst—k
k=I

whereO(-) holds uniformly in allt. Hence

EI2 = O<EBZ<“)Esf_k> =0(p"),

k=I

(A.3)

where 0< p < 1. By (A.1)—(A.3), we complete the proof of.8).
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Proof of (4.13). Note that by Lemma 43(1)(b), S, B || /A/h; = O(1) as.
Therefore

1 -1 2 2
ELﬁtSZCE[h—3<;13klhlkhlkl> ]+2cE[—3<2/3 “h_ k) }
t = t =

= 2cEI2 + 2cEI2, (A.4)
wherec is a constantBy Lemma 43(1)(c), h,_/h; < B~¥ as, and hence

17 = _3 2 B2* V1 h_ — R 12
hg &4

-1

= 20571 3, B2V |y~
k=1

_2|2,3k 2lhe_k = hew .

Thus by Lemma 43(2)(c),

-1

EI? = 2a5%1 3 ¥ %'k = 0(1%p}) = O(p}), (A5)
k=1

where 0= p < 1, p; = max{g, p}, and 0< p, < 1 such that?p}] < p), for some large
enoughl. By Lemma 43(2)(b) and 43(2)(c), the Cauchy—Schwarz inequality applying
to hy_y/hy, andE[ B/(an? + B)]? < 1, we have

redigen]
I T Y
{ [ (amBﬁB)zrz}Z:O(”')’ (A.6)

wherec is a constantBy (A.4)—(A.6), EL3, = O(p') with 0 < p < 1. Now, we con-
siderLy; in (4.13).

\/\

I/\

1 1 2/1-1 2 /1-1 2
L%t: h_2 - h_2 <23k18tk,l> <2Bklhtk,l>
t t1 k=1 k=1
|h2—h2’ |2 -1 B 2 /1-1 B 2
= th“h“ll E B~ 18t—k,| 2 B* 1ht—k,|
e N k=1 k=1

-1 2
sc|ht—ht,.|1/2(glﬂ“|stm/ﬁ) (Zﬁk 2 i k') (A7)

l |
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wherec is a constantBy Lemma 43(2)(a) and 43(2)(b), the Cauchy—Schwarz inequal-
ity, andE[B/ (an? + B)]* < 1,

-1 h
ELétscElht—ht,.E<ZBk ! I;“')
k= 't, |

-1 h 4711/4\4
ot S ()]
k=1 ht,l
| 1-1 . 1 47 (k—1)/4\4
SO -1 E -
el |

-1 B 47 (k-1)/4)4
=0(p){ 2 |E| =/ =0(p'), (A.8)
k=1 an+ B
where the second inequality follows by the Minkowski inequatynilarly we can show
thatEL3, = O(p'), where 0< p < 1. This completes the proof q#.13). n

APPENDIX B: PROOF OH3.5)

Proof.

azlt = 2a28t2 s i1 t-1 i1
agow  h h 241'3 Eri Zlﬁ Yeei-18i
2a? [ &f - 1
B F(h_t _1><2 Blleti><2 Bllytilsti>
t t i=1 i=1
1 82 t—1 _ 2ae
" F(l’]_t 1><.213I1y‘i1> t<ZBI yti181i>
i\ M i= i

= J;, — 202y + Jg + Iy + 200, (B.1)
By (4.15),
g2 (1L 2 e2 t—1
‘J2t_h3<ZBI 1 >ytl h3<2ﬁl l ><2BI rt|8t |>
i=1
= Ky = Ky (B.2)

By Lemma 43(1)(b),

s el 5 (o)
- O(E[(Eﬁ“””rm >]> = o<i21,3<i1>/2\/W) =0(1), (B.3)

i=1

whereO(-) holds uniformly int.
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() - —2[ T
[(2 . l|yt_i_1||i/tﬁi|>2>

n -1 2 n
2(2 - Mx/Eyfil) zégom):om. (B.4)

Similarly, we can show that

1 n 2 1 n 2

—E|( X ) =01 and S E| X | =o0(D). (B.5)
n t=1 n t=1

By (B.1)—(B.5), we have that

1 2y 2a%s? 2
———2[—yh1 = <23'1 )ym}op(l)
t i=1

t=1 3¢9,U~ n¥2 &

1 0 1 2
32 > V| El = | +2a? E p20-vg( 2
: =1 ht i=1 h

2 n 2 /t—1 2 t—1 2
-=3 y—{%(i B‘leti) > B2 1>E< = )] +0,(1),
t t

i=1

13 Y 1 2[ 5 2(i—1) el
Et:zl\/ﬁ E h + 2a ;13 E ht +0,(1), (B.6)

o Y1 | S paiene (B )| _ L Yea| S paiong (B
3 n[?f 1E<h5>] 15X [Samve(

18 Y1\ S o 2
R )[iElBﬂ"”E(?—tz)} +0,(1),

where the last equation holds becaysg /v/'n = Op(1) andeZ ;/h, = O(B') as. Thus
we have that

n
=2

1 n - 1
5# (W tElyt1> F+0,(1) = Ffo w;,(7) dr

by Lemma 42 and the continuity mapping theoreifhis completes the proof n
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APPENDIX C ASYMPTOTIC EQUIVALENCE
OF HESSIAN MATRICES

The likelihood function based o#y can be written as

2

€t
2h,(8)’

< 1 . < 1 <
L.(6) = H ZIII(S) and 1,(6) = 3 Inh(8) —

whereh,(8) = @, + @e?, + ph_1(8) = Si_sB[a@, + a@sZ,] with ho(§) = some
constant The following theorem shows that the Hessian matricek(¢f, 5) andL,(5)
are asymptotically equivalent on the parameter sgge {(¢,5):n|¢ — 1| = M and
5 € 0} for any fixedM > 0.

THEOREM C Under Assumption 1, it follows that

921(¢,5) B 921,(5)
9606’ 9606'

n

sup —
(¢,8)€0, N t=1

H = 0,(D).

Proof. For simplicity we only consider the case witiy(¢, ) = 0 andho(8) = 0. It
is easy to modify the proof for the case with(¢,5) # 0 or hg(8) # 0.

%(¢,6)  &l(¢) h(¢,8) ah(¢,d)

9805’ 2h3(p,6) 96 98’
2h(¢,8) | 9606 h(¢,8) 96 98’ h (qS 5)
(C.1)

Wheng =1, 02l (¢,5)/0608" = 92,(5)/0505'. Because of the similarityve only present
the proof of the equatian

i el(¢) ah(e,8) oh(4,5) & 9hi(5) ah(d) H

1
n& | hig,s) a8 08" h3(5) a8 a8

=0,(1). (C.2)
(b, 5)60

In the following discussioyall O(-), Oy(-), andog(-) hold uniformly in(¢, 5) € 6, and
t=1...,n

Denoteei(¢) = yi — ¢Yyi—1. Because mag=n|n~Y2y,_4| = Oy(1) under Assump-
tion 1, it follows thate,(¢) = & — [n(¢ — (N~ ¥2y;_1)n" Y2 = g + O,(n~Y/2). Thus

e2(p) =2+ 0O <1>+8tOp<i). (C.3)
\n

By (C.3), we can show that

(C.4)

< i 1
hi(¢,0) = i:Eoﬁ'[ao + asf(¢)] = h(8) + ht/*(8)0, (ﬁ)
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Note thath(¢,8) = aq andh,(§) = ag . By (C.3) and(C.4), it follows that
ef.i(¢) _ et el i(p) — el 12 [ 1 1 ]

h($d) (@)  h(dd) | h(hd) h(d)
Op(nil) + Op(nil/z)etfi 8124 hll/z(g)op(nil/z)
= — =+ = =
ht(¢95) ht(¢,5)ht(5)

2
—i

(5)

= 0,(1) + 0,(2)

=0,(1) +0,(1)B "2 (C.5)

fori=0,1,..., where the next to last equation holds because,max|e;|/Vn = 0p(1).
Again because max,—,|e|/vn = 0,(1), we can show that max,—, supsece hi(5)/
\/n = 0,(1). Using the fact that,(§) = @, + B'h,_;(5) and a similar method as for
(C.5), we can obtain

het(6.8)  hy(d) 0
@8  he) BT eW h(a)

=0,(1) + 0,(DB 2 (C.6)

By (C.5), it is straightforward to show that

1 ) 1 ahG) o[ etd) el ]
Similarly, by (C.6), we can obtain
1 9h(e,9) 1 ah(d) _
b sa, M) oz, P (C.8)
1 9h(e,0) 1 oh(5)
neo B me) o oW (C.9)
By (C.7)—(C.9), it is easy to show that
1 oh(h,8) 1 ()|
‘ht(qﬁ,S) 8 h(8) a8 H‘Op(l)- (C.10)

Becauseaxg = ag andB'e? (¢)/[1 + B'e? ()] = 1 uniformly in ®, and anyt andi,
we have

1 on(e,8) 2AeRi(¢) 1Bl (¢)
= < O PR S
o)  oa ; s =0T

t—1

=0 (1)2BIV|SI i|7(¢) = 0,(1) + O, (1)2.3 lewil®, (C.11)

where the last equation holds Kg.3). Similarly, it follows that

1 ah(e,8) _

hbd) B =0,(1) + 0, (1)23 Ihe_i (8)]". (C.12)
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Note thath; (¢, §)[oh, (¢, 8)/dd,] = Op(1). By (C.11) and(C.12), we have

1 ahl(¢35) . -1 . 5 ,
h($,8) 08 H = Op(D) + Op(l)zoﬁu [hyi(8) + & %] (C.13)

Taking v, small enough such thg™ > B, we have
t—1 Qi 2

—O(l)+0(1)2 h(5) +O(1)238t.

t—1 Blz
<O(1)+O(l)zm

h,
(8
O,(D)p! Z Ble?

=0,(1)+0 <1>t2( b > 2+ 0,(1)p" 2/3 (C.14)

Under Assumption 1Es? < oo, and hence we can show thEmax—;—,SUgeco X
hi(8) < co. Note thate? = nZh,. By (C.13) and(C.14), we can show that

18 e |1 ah(d)
ht((byg) a~ H
12 — N
— o, +0,0( et ) 3 0| S prtre 8+ 1)
O )2 ([ i
r: )E{Eﬁ v(8) + e .”]E( b ) } 0,(1),  (C.15)

where 2 < v;. By (C.10) and(C.15), we have

18 & 1 oh(e,d) 1 ah(e8) 1 ()| L
nuht<5>[ht<¢,5> 5 ] s o5 @ o | %
(C.16)
10 g 1 oh(8) 1 oh(¢,d) 1 oh(d) ||
aéht [h(a) 95 } (g3 9 () 0 H_O”(l)'
(C.17)
By (C.5) and(C.13), it follows that
24 1 on(s.) |2
n&| (.5 (s ‘ oo a5 | %P (¢18)

Finally, by (C.16)—(C.18), we can show thatC.2) holds This completes the proof B



