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The recent Monte Carlo data of Degrkve and Henderson for the density profiles of hard spheres near 
a large hard sphere are used to obtain direct correlation functions and bridge functions for this 
system both directly, using the Omstein-Zemike relation and an approximation, due to Verlet, for 
the bridge function. 

INTRODUCTION 

The calculation of the direct correlation function from a 
pair correlation function or a profile requires a knowledge of 
the bridge function which is defined below. Explicit formulas 
for the bridge function are available only for the coefficients 
in an expansion of this function. Only the low order coeffi- 
cients are known. These coefficients are difficult to calculate 
and the convergence of the series may not be rapid. As a 
result it is common to use simple approximations. The one 
employed here, due to Verlet, seems to be the best simple 
approximation. 

Density profiles, p(x), for a hard sphere fluid near a 
large hard sphere have been reported in two recent studies. 
Attard’ has obtained p(x) using integral equation techniques. 
Degrkve and Henderson* have obtained p(x) using the 
Monte Carlo method. These studies give p(x) for a wide 
range of densities of the bulk hard spheres, p=p(=~), and for 
a full range of the ratio, R, of the diameters of the large and 
the small hard spheres. The direct correlation function for the 
hard spheres near a hard wall was not reported in these stud- 
ies. It seems to us to be worthwhile to report results for this 
function and for the closely related bridge function. This we 
do in this paper. The results reported here are valid only in 
the limit of small concentration of large spheres. 

METHOD 

We consider a single solute hard sphere in a solvent of 
hard spheres. Let R be the ratio of the diameter of the solute 
hard sphere to that of the solvent hard sphere. By writing our 
basic formulas for variable R, we avoid the need to repeat 
formulas for the cases of solvent-solvent and solvent-solute 
pairs and achieve an economy. First we write the general 
expressions and do not specify any subscripts. If R = 1, the 
correlation functions of the pair are those of the solvent and 
are not subscripted. If R > 1, the correlation functions of the 
pair are those of solvent-solute pair and are subscripted with 
the symbol )I’. 

Outside the hard sphere cores, r> (R + l/2), the cavity 

function, y(r), is equal to g(r) = p( r)lp. We obtain approxi- 
mate values for y(r) inside the core using 

In y(r)=D, OSrSX, (14 

(r-X)4 +B (r-Al3 += (r-A)* +D 
lny(r)=A ___ - ~ , 
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r r 

2 ’ 0) 

where X=(R - l/2) and the diameter of the small hard 
spheres has been taken, without loss of generality, to be 
(+= 1. The distance r is the separation of the centers of the 
two spheres. The parameter D is given by 

8v-97/z2+3q3 
D= (1-7# ’ (2) 

where ~=7rpdf6, which gives a very accurate value3.4 for 
y(0). The parameter C was chosen to be 

.=-38(2-v) I+ 1+277 x 
(l-d3 ( 1 1+17/2 * (3) 

This expression gives a very accurate value for y’(0) for 
R = I .3*4 The R dependence for C was chosen in analogy to 
the corresponding Percus-Yevick (PY) expression.5 For 
R>l, Eq. (la) gives y’(O)=0 for r<X which is known to be 
correct.4 The remaining two parameters, A and B, were cho- 
sen so that y(r) and its slope at (R + l/2) are continuous. 

If R = 1, Eq. (1) is the the same as the expression used by 
Grundke and Henderson (GH) (Ref. 4) which was found to 
be accurate by means of a computer simulation by Torrie and 
Patey.6 We expect Eq. (1) to be accurate for R > 1 also. Labik 
et a1.7 have developed an alternative formula for y(r). 

To obtain the direct correlation functions, c(r), we need 
an approximation to the bridge function. We use an approxi- 
mation, due to Verlet,8 which was brought to our attention by 
a paper of Lee,’ 

9(r) 
B(r)‘-2[l+ay(r)] ’ 
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where B(r) is the bridge function and differs from the pa- 
rameter B of Eq. (1). The bridge function is defined by c”,(k) = 

hv(k) 
1 +p@k) ’ 

Y(r)=h(r)-c(r)=ln y(r)-B(r), 

h(r)= I 
-1, rS(R+ 1)/2 
y(r)- 1, r>(R+ 1)/2, 

(5) 

(6) 

where, the subscript w is used for large-small pairs (R>l) 
and no subscript is used for the R= 1 (bulk or small hard 
spheres) functions. In principle, h,(r) obtained by simula- 
tion methods can be used to compute i,(k) and the Verlet- 
Weis fit can be used to obtain h”(k) for the denominator of 
Eq. (13). 

and Q is a parameter which is usually taken to be 4/5. This 
approximation has been used recently by Labik et al.” The 
function B(r) is defined in terms of 313). Thus, we must 
solve Eqs. (4)-(6) to obtain $r). The result is 

y(r)= 
2b(r)+[b2(r)+8cl lny(r)]1’2 

, (7) 
Cl 

where 

b(r)=cu In y(r)- 1 03) 

and 

c*=2cr-- 1. (9) 

Once y(r) is known, B(r) can be calculated from Eq. (4) 
and c(r), the direct correlation function, can be obtained 
from 

For R = 1, c(r) can be obtained from the Omstein- 
Zemike (OZ) relation, 

h(rd=c(rld+P h(rdc(r2ddr3, I (11) 
since y(r), and hence h(r), is known from simulation stud- 
ies. In principle, c(r) can be obtained from h(r) by taking 
the Fourier transform of Eq. (11) and solving the resulting 
algebraic equation, 

E(k)= 
h”(k) 

1 +&i(k) ’ 
(12) 

RESULTS 

Fist a was calculated. The resulting values can be ob- 
tained from where h(k) and Z(k) are the Fourier transforms of h(r) and 

c(r), respectively, and then taking the inverse Fourier trans- 
form. In practice, some care is needed since, at high densi- 
ties, the denominator in IQ. (12) is nearly zero for k-0. As a 
result, small errors in i(O), primarily due to truncation, pro- 
duce large errors in c”(O) if simulation data are used. It is 
better to obtain i(k) and c(r) using some fit of the simula- 
tion data. For example, the Verlet-Weis (VW) (Ref. 11) fit of 
h(r), which is constrained to give correct values for i(O), 
can be used, as was done by GH. 

Rather than use a constant value of LY, we choose a so 
that the value of c(O), computed using Eqs. (4)-(9) for R = 1, 
matches that obtained by the procedure of GH or that of 
Groot et al. .12 At high densities, LY is close to 415; however, (Y 
becomes increasingly large as the density decreases. The re- 
sulting values of c(r) are virtually the same as those of GH 
and Groot et al. 

For R>l, values for c,,,(r) and B,(r) could be obtained 
from the OZ relation, which is, in Fourier space, 

(13) 

The above procedure was the one we intended to use at 
the commencement of this work. In general, we were suc- 
cessful. Our calculated c,(r) and B,(r) were constant and 
equal to c(0) and B(O), respectively, for r&. We expected 
this because of the results of GH. These constant values are 
a reflection of the fact that the small sphere has disappeared 
inside the large sphere when r&i and nothing changes. 
However, the c,(r) which we obtained in this manner was 
negative for r> (R + 1)/2. Although not inconceivable, such 
a behavior is unexpected and unusual. These values of c,(r) 
in the neighborhood of the contact value, (R + 1)/2, are small 
and are likely to be in error because of numerical problems. 
The large negative values for 0 6 rd (R + 1)/2 are dominant 
in determining c,(r). 

One could obtain a VW fit of h,(r) and then determine 
c,(r). This was done by GH. However, their criterion for 
determining h,(R + l/2) is now known to be in error for R 
large and at least for small concentrations of the large sphere. 
Their formulas and computer program would have to be 
modified. This we have not done yet. 

However, the fact that y,,,(r), c,(r), and B,,,(r) for 
OsrSX are constant and equal to AO), c(O), and B(O), re- 
spectively, means that, at least for this range of r, Eqs. (4)- 
(10) are valid with the same value of cr as for the small hard 
spheres. It seems plausible that these equations are equally 
valid for y,,,(r), c,(r), and B,(r) for all values of r. This is 
the approximation used in this paper. 

17 
a=- +0.5150-0.2210~. 

12077 (14) 

The first coefficient is exact; the other two are not. Values for 
the cavity function, the direct correlation function and bridge 
function are shown in Figs. l-3. The results for these func- 
tions for R = 1 are welI known but are included for compari- 
son and completeness. The values shown for R = 11.8 were 
calculated using our simulation values for yw( r), extended 
for OGrG6.4 by means of Eq. (l), and B,(r) and c,(r) 
were then calculated using the Verlet approximation, Eq. (4). 
The functions y,,,(r), B,(r), and c,(r) do not change for 
r GA because once the small sphere has “disappeared” inside 
the large sphere, nothing changes for r<X. 

If we obtain c,(r) directly from the simulation values of 
h,,,(r) using Eq. (13), we obtain curves which are similar to 
the results of Fig. 2. These values for c,(r) are constant and 
equal to c(0) for r<X and then decrease for Osr-Xsl. The 
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FIG. I, Cavity functions for a fluid of hard spheres near a large hard sphere. FIG. 3. Bridge functions for a fluid of hard spheres near a large hard sphere. 

only difference from the results in Fig. I is that c,,,(r) at 
r= (R + I)/2 is negative and small. This behavior, we pre- 
sume is due to numerical problems and is not correct. There- 
fore, we prefer the values in Fig. 2. 

CONCLUSIONS 

The Verlet approximation seems useful for calculating 
B(r) and B,(r) for hard sphere systems. Its utility for other 
potentials is less certain. The Verlet approximation with a 
constant is identical to the PY approximation at low densities 
and so gives an incorrect fourth virial coefficient. This is not 
too serious for hard spheres since the PY fourth virial coef- 
ficient is reasonably accurate. However, the PY fourth virial 
coefficient can have substantial errors for potentials with at- 
tractive regions. A state dependent LT, as was done here, may 
overcome this and other problems. 

The question of whether the Verlet approximation is use- 
ful for calculating the bridge function, B,,(r), for a pair of 
large hard spheres in a fluid of hard spheres is open. In some 
ways, Eq. (4) is attractive. Attard et ~1.‘~ and HendersonI 
have shown that y,,,,,,(r) and In y,,(r) are proportional to R, 
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FIG. 2. Direct correlation functions for a fluid of hard spheres near a large 
hard sphere. 

Henderson, Chan, and Degrkwe: Hard spheres near a large hard sphere 6977 

r/a 

when R is large. This means that B,,(r) must also be pro- 
portional to R, when R is large. If cr,, is a constant and is of 
order R, Eq. (4) gives a B,,,,,,(r) which is of order R at low 
densities (or possibly ambiguous depending on the limit of 
pR2 and p2R2 as p tends to zero and R tends to infinity) and 
independent of R at finite densities, which is incorrect. On 
the other hand, if a,,,,+ is a constant, but not large, then Eq. 
(4) yields a B,,(r) which is proportional to R2 at low den- 
sities (or possibly ambiguous depending on the limit of pR 
as p tends to zero and R tends to infinity) and which is 
proportional to R at finite densities, which is better but not 
completely satisfactory. If a,,,,,, is not of order R and propor- 
tional to p-’ at low densities, which is the case for B(r) and 
B,(r), then B,,(r) is proportional to R at all densities, 
which seems attractive. 

In fact, it was considerations such as these which lead us 
to an approximation, based on the Martynov-Sarkisov (MS) 
approximation,‘5 

B(r)= - 
Cln y(r)12 

2[1-ta lny(r)] * (15) 

Without the second term in the denominator (i.e., the MS 
approximation), this approximation gives a B,,(r) which is 
proportional to R2, which is incorrect. We abandoned Eq. 
(15) after we became aware of Eq. (4) as there is no point 
inventing new approximations when there are existing ap- 
proximations which are likely to be as good. Our point is that 
thinking about B,,(r) can lead to Eq. (4) or similar approxi- 
mations. 

In summary, we feel that the Verlet approximation is 
useful for approximating hard sphere B(r) and B,(r), espe- 
cially if LY is not kept constant, and that the same values of a 
may be used for both functions. The Vet-let approximation 
may well be useful for B,,(r) also. However, it is unlikely 
that the same values of cr will be appropriate for B,,(r). 
Intuitively, we feel that the hypemetted chain 
approximation,i6 

B,,(r) = 0, (16) 
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may turn out to be the best approximation but have no quan- 
titative arguments to support this conjecture. 
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