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We study transport properties of a two-dimensional electron system with Rashba spin-orbit coupling
in a perpendicular magnetic field. The spin-orbit coupling competes with Zeeman splitting to introduce
additional degeneracies between different Landau levels at certain magnetic fields. This degeneracy, if
occurring at the Fermi level, gives rise to a resonant spin Hall conductance, whose height is divergent as
1=T and whose weight is divergent as � lnT at low temperatures. The Hall conductance is unaffected by
the Rashba coupling..
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FIG. 1 (color online). Illustration of the two-dimensional

semiconductor quantum well as shown in Fig. 1. The electron system studied in the text.
Remarkable phenomena have been observed in the two-
dimensional electron gas (2DEG) over last two decades,
including most notably, the discoveries of the integer and
fractional quantum Hall effect [1,2]. From the point of
view of applications, many semiconductor devices have
been designed to take advantage of the properties of
quantum physics. Nevertheless, a principal quantum as-
pect of an electron, its spin has been largely ignored. In
recent years, however, a new class of devices based on the
spin degrees of freedom of electrons has emerged, giving
rise to the field of spintronics [3–5]. Spintronics is be-
lieved to be a promising candidate for future information
technology [6]. However, in order to be successful in
device applications, effective spin injection into conven-
tional semiconductors is essential. One proposal is to
make use of the Rashba spin-orbit coupled 2DEGs to
achieve this goal [7]. In particular, the spin-Hall effect
predicted by Murakami et al. [8] and Sinova et al. [9] has
generated intensive theoretical studies. Thus far, all the
studies have been limited to zero magnetic field [10].

In this Letter, we study theoretically the spin transport
properties of 2DEGs with a Rashba spin-orbit coupling in
a perpendicular magnetic field. We find that the quantized
charge Hall conductance remains intact in the presence of
the Rashba spin-orbit coupling. However, a distinct spin
Hall current can be generated. The spin Hall conductance
can be made divergent or resonant by tuning the sample
parameters and/or magnetic field B. The resonance effect
stems from energy crossing of different Landau levels
near the Fermi level due to the competition of Zeeman
energy splitting and spin-orbit coupling. The height of the
resonant peak in spin Hall conductance is proportional
to 1=T, and its weight is proportional to � lnT at low
temperatures.

We consider a two-dimensional electron system con-
fined in the x-y plane of an area Lx � Ly provided by a
0031-9007=04=92(25)=256603(4)$22.50
electron is subject to a spin-orbit interaction and to a
perpendicular magnetic field ~BB � �Bẑz. An electric field
is applied along the y axis. We are interested in the spin
Hall conductance along the x direction. In our study,
electron-electron interactions are neglected. The
Hamiltonian for a single electron of spin-1=2 is given by
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where m, �e, gs are the electron’s effective mass, charge,
and Lande g factor, respectively. �b is the Bohr magne-
ton, � is the Rashba coupling, and �� are the Pauli
matrices. We choose the Landau gauge ~AA � yBx̂x, and
consider periodic boundary condition in the x direction,
hence px � k is a good quantum number.

Let us start with a discussion of the single particle
solution at E � 0. The problem can be solved exactly [11–
13]. For a given k, the Hamiltonian can be written as
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where ! � eB=mc, � � �mlb= �h
2, and g � gsm=2me,

with me the mass of a free electron and lb �
��������������
�hc=eB
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the magnetic length. ak � 
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of H0 is given by
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with s � �1, for n 
 1; and s � 1 for n � 0. The eigen-
state jn; k; si has a degeneracy N" � LxLyeB=hc, corre-
sponding to N" quantum values of k. The two-component
wave function is given by

jn; k; si �
	

cos#ns"nk

i sin#ns"n�1k

�
; (4)

where "nk is the eigenstate of the nth Landau level in the
absence of the Rashba interaction. For n � 0, # � 0,
otherwise for n 
 1, tan#ns � �un � s

��������������
1� u2n

p
, with

un � �1� g	=
������
8n

p
�. The energy levels as functions of

dimensionless parameter � are plotted in Fig. 2. An
interesting feature of this system is the energy level
crossing as � changes by varying B or �. As we shall
see below, this energy crossing, if it occurs at the Fermi
level, gives rise to a resonance in the spin Hall conduc-
tance.

We now study the system in the presence of the E field.
The Hamiltonian H can be rewritten as

H � H0�E	 �H0; H0 � ���elb�y � kc=B	E; (5)

where we have dropped an overall constant
�e2E2=2m!2. H0�E	 is given by Eq. (2) of H0 with the
replacement of y by y� eE=m!2 in ak. In the absence of
Rashba coupling, H is exactly solvable. For � � 0 and
E � 0, an exact solution of H is not available. While px
remains to be a good quantum number, H0 couples the
state jn; k; si with jn� 1; k; s0i. Below we shall calculate
the charge and spin Hall current to the order of O�E	 by
treating H0 as a perturbation up to the first order. Our
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FIG. 2 (color online). Landau levels of an electron as func-
tions of � � �mlb= �h

2 for g � gsm=2me � 0:1. Arrows indi-
cate those level crossings giving rise to resonant spin Hall
conductance.
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theory is accurate for the linear response. The charge
current operator of a single electron is given by [14]

jc � �evx;

vx � 
x;H�=�i �h	 � px=m� y!� ��= �h	�y;
(6)

and the spin-� component current operator is

j�s �
�h
2
�S�vx � vxS

�	: (7)

Let �jc;s	nks be the current carried by an electron in the
state jn; ke; si of H, including also the perturbative cor-
rection. We have, up to the first order in E,

�jc;s	nks � �j�0	c;s	nks � �j�1	c;s	nks; (8)

where the superscript refers to the 0th or 1st order in the
perturbation in H0, and

�j�0	c;s	nks � hn; k; sjjc;sjn; k; si;

�j�1	c;s	nks �
X
n0s0

hn0; k; s0jH0jn; k; sihn; k; sjjc;sjn
0; k; s0i

��ns � �n0s0 	

� H:c:

(9)

In the above equation, n0 � n� 1 since the matrix ele-
ment vanishes for other values of n0. Note that H0�E	
depends on E so that the 0th order in H also contributes
to the current. The average current density of the
Ne-electron system is given by

Ic;s �
1

Ly

X
nks

�jc;s	nksf��nks	; (10)

where f is the Fermi distribution function, and Ne �P
nksf��nks	. The charge or spin Hall conductance is

then given by Gc;s � Ic;s=E.
We first present the results for the charge current and

the spin currents in the spin-x and spin-y components.
They are found to be
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From the above expression, we obtain that the Hall con-
ductance Gc � -e2=h, with the filling factor - � Ne=N".
In fact this result holds to all order in E. This is because
the only k dependence of the energy comes from the
�kcE=B term in H, thus the group velocity vx � cE=B.
This result is consistent with the quantization of the Hall
conductance [15]: the spin-orbit coupling does not
change the charge current carried by each state. The
spin-y component current is found to be finite even in
the absence of E. Similar result was reported previously
in the systems at B � 0 [16]. In the limit B ! 0, our result
gives Iys ! �ne=�2 �h	, which is the same as the result
found at B � 0. Since this is not a response to any
external field, we will not give further discussion here.
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The spin-z component current is the most interesting.
Within the perturbation theory, Izs , hence Gz

s, can be
divided into two parts. The part arising from the 0th
order in H0 is found to be the product of the spin polar-
ization Sz and the Hall conductance Gc divided by the
electron charge (�e),

Gz�0	
s � �hSzi�Gc=e	;

hSzi � � �h=2-	
X
n;s

cos�2#ns	f��ns	:
(12)

Since the charge current is a constant, Gz�0	
s / hSzi. The

spin polarization per electron at T � 0 as a function of
the Landau level filling is plotted in Fig. 3(a), for a set of
parameters appropriate for In0:53Ga0:47As=In0:52Al0:48As
[17]. hSzi oscillates as a result of the alternative occupa-
tion of mostly spin-up and mostly spin-down electrons. It
reaches maxima at filling - � odd integers, and minima
at - � even integers at a strong field B. There is a jump at
B � B0 � 6:1T or - � 12:6. Below the field, hSzi reaches
minima at filling - � even integers and minima at - �
odd integer. The jump is caused by the energy crossing of

two Landau levels with almost opposite spins. This value
of the filling factor corresponds to the parameter � at
point 1 in Fig. 2. In the weak field limit, hSzi !
�geB=4.c and the spin susceptibility approaches to a
constant, dhSzi=dB � �ge=4.c:

The second part in Gz
s arises from H0 and shows a

resonance.
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(13)

Resonance occurs when two states are close to degen-
eracy. For reasonable values of the Rashba coupling,
(b)(a)
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FIG. 3. (a) Average spin h�zi (unit: �h=2) per electron as a
function of 1=B. (b) Spin Hall conductance versus B at T � 0.
The parameters used are � � 0:9� 10�11 eVm, ne � 1:9�
1016=m2, gs � 4, and m � 0:05me, taken for the inversion
heterostructure In0:53Ga0:47As=In0:52Al0:48As (see Ref. [17]).
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this will happen only for the pair of states jn; s � 1i
and jn� 1; s0 � �1i. However, at T � 0, if jn; si and
jn� 1; s0i are both occupied or both unoccupied, the
contributions to Gs from this pair vanish. Therefore,
only the states near the Fermi level are important in the
sum in Eq. (13). If the two states at the Fermi energy
become degenerate, Gz

s becomes divergent. Therefore,
there is a resonance in the spin Hall conductance. The
resonant condition (in the clean limit) is given by�����������������������������������

�1� g	2 � 8n�2
q

�

�����������������������������������������������
�1� g	2 � 8�n� 1	�2

q
� 2;

(14)

where n � -=2 � n� 1. In a sample of given ne, and
� � 0 and 1 > g > 0, there is a resonant magnetic field
B0 for the resonance as the solution of Eq. (14). In
Fig. 3(b), we show the result of Gz

s at T � 0 as a function
of -, or 1=B. In addition to the oscillations similar to hSzi,
there is a pronounced resonance at B0 or at filling - �
12:6. At this filling the 13th Landau level is partially
filled. From Fig. 3(b), we also see that there are satellite
peaks around the resonant field B0. The resonance point
coincides with the jump point for hSzi. The spin Hall
conductance becomes divergent while hSzi has only a
finite jump at the energy crossing point near the Fermi
level.

In order to analyze this resonance further, we focus on
the two relevant states and neglect all other states in the
problem. For simplicity we consider the two states j0;�1i
and j1;�1i. The linear response of the two level problem
to the electric field can be studied analytically. The sin-
gular part of the spin Hall conductance near the resonant
point (point 2 in Fig. 2) is caused by the mixing of the two
states, and is given by (for filling - < 1),

Gz
s � �

Df��1� f�	
jbj

	
1� exp

�
�

g �h!0jbj
�1� g	kBT

��
; (15)

where D � e
���
2

p
-g=4.�1� g	, !0 is the value of ! at

the resonant field B0. The Fermi distribution f� �
�exp
�� g �h!0jbj=2�1� g	 ���=kBT� � 1	�1, where �
is the chemical potential measured relative to the middle
of the two levels, and b � �B� B0	=B0. At low T, as
b ! 0, Gz

s ! �Dg�1� g	�1 �h!0=kT, and
R
Gz
sdb !

�D ln
 �h!0=kBT�. In Fig. 4, we show Gz
s (including both

singular and nonsingular parts) as a function of B at
several temperatures. As we can see, both the height
and the weight of the resonant peak increase as the
temperature decreases.

The calculations reported in this Letter have been
performed on a 2DEG without potential disorder. Since
the effects of disorder in systems with Rashba coupling
and strong magnetic field is not well understood at this
point, we will make only a few general comments here.
We assume that, just as in the case without Rashba
coupling, the presence of disorder gives rise to broadening
of the Landau level and localization so that the extended
states in a Landau levels are separated in energy from
256603-3
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FIG. 4 (color online). Spin Hall conductance as a function of
B at various temperatures for a two level system with ne fixed,
g � 0:1, and - � 0:5 at the resonant field B0. b � �B� B0	=B0;
t � kT= �h!�B0	.
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those in the next one by localized states. Inspection of the
Rahsba Hamiltonian shows that Lauhglin’s gauge invari-
ant argument still holds [18], and each Landau level with
its extended states completely filled contribute e2=h to the
Hall conductance. Thus we conclude that identical quan-
tum Hall effect is observed whether the Rashba coupling
is present or not. For the spin Hall conductance, we
further assume that there is only one extended state per
Landau level as in the case of no Rashba coupling, and
that the spin current is carried only by extended states.
The resonance discussed above will then occur if the
extended state of the band jn; si and the jn� 1; s0i band
can become degenerate. In principle, such a degeneracy is
disallowed due to level crossing avoidance. However,
since potential disorder does not couple states of different
spins, any coupling between these two states will have to
arise from Landau level mixing effect of the disorder in
the absence of Rashba coupling. Provided this is negli-
gible, the crossing avoidance gap will also be negligible.

In summary, we have studied the transport properties
of two-dimensional electron gas with a Rashba spin-orbit
coupling in a perpendicular magnetic field. The Rashba
spin-orbit coupling competes with the Zeeman energy
splitting to cause the energy level crossing. When the
level crossing occurs near the Fermi level, the spin Hall
conductance becomes divergent or resonant, while the
charge Hall conductance remain intact.
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