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Density matrix negativity for two oscillators in an Agarwal bath
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A system of two harmonic oscillators is placed in an Agarwal bath. The resulting quantum master equations
are studied with the help of quantum characteristic functions. The density matrix positivity is investigated in
view of the recent interest in searching for a sound quantum dissipation theory. An analytical criterion is
derived for density matrix negativity for two uncoupled oscillators. It is found that, for an initial two-oscillator
squeezed state with a real squeezing paransetEmsity matrix negativity occurs for two uncoupled oscillators
at temperatures lower thaiw/ (kg In coths|) with » the oscillator frequency arki the Boltzmann factor. As
a by-product an analytical expression is also obtained for determining the quantum separability of two un-
coupled oscillators. The effects of interoscillator coupling on density matrix negativity are discussed.
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[. INTRODUCTION bath. In Sec. Il the problem of the density matrix negativity
of a one-oscillator system is reviewed, and an analytical cri-
In this paper we extend a previous discusgibhon one  terion for density matrix negativity is derived. In Sec. IV the
primary oscillator in a dissipative bath to a system of twodissipative dynamics of two coupled oscillators in an Agar-
coupled primary oscillators. The aim is to study the densitywal bath is examined, and an analytical expression is ob-
matrix positivity of the two-oscillator system under the in- tained for determining the density matrix negativity of two
fluence of an Agarwal bath. uncoupled oscillators initially in a highly entangled two-
Three important attributes are desired for any bath theotode squeezed state. A discussion is presented in Sec. V
ries of quantum dissipation, namely, translational symmetryWith analytical results concerning quantum separability of
approach to eventual thermal equilibrium, and completdipartite continuous-variable systems.
positivity for the reduced density matrix of the system. The
bath model first proposed by Agarwi@] (the Agarwal bath Il. MODEL
guarantees translational invariance and thermal equilibration. i o o
For many initial conditions and moderate-to-high tempera- e start with a model Hamiltonian describing only one
tures density matrix positivity is also supplied by the Agar-Primary oscillator of frequency, and massn coupled to a
wal bath. For these reasons the Agarwal bath model has se8Ath of secondary oscillators of frequeney and massn,
a wide range of applications in physics and chemistry. How{k#
ever, the Agarwal bath model is not totally free of density
matrix pathology, which usually occurs at low temperatures. N t t b
For thepcase cg‘yone primary oicillator, density meﬁrix nega- Ha=fiwod a+2k ﬁwkbkbﬁq; e @
tivity was found for a subset of initial conditions at low bath
temperature$3]. Quite recently, a pair of harmonic oscilla- whereqg® andqp are the coordinate observables for the sys-
tors has emerged as an important paradigm for infinite ditem and the bath oscillators, respectively, which are related
mensional systems, also known as systems of continuous the corresponding boson operators by
variables, in quantum information and quantum communica-

tion theories. To our knowledge, systems of two harmonic ( 12

(a'+a),

oscillators dissipated by an Agarwal bath have only recently q°=
been investigated by Jg] in the context of quantum sepa-

rability. One of the purposes here is to show the occurrence hoo\12
of density matrix negativity for a system of two harmonic qE:(_) (bl“‘ by, (2.2
oscillators in an Agarwal bath, and subsequently to deter- 2mywy

mine the physical regimes within which density matrix posi- ) o )

tivity, translational symmetry, and the approach to thermaPNd g are the coupling coeff|C|ents._The bath oscillators can
equilibrium coexist. Due to the wide range of applicability of b€ various phonon modes in a solid, or modes of vacuum
the Agarwal bath in various branches of physics and chemtadiation fields into which an excited atom decays via spon-
istry, it is highly desirable to develop analytical criteria for taneous emission. Adopting the rotating-wave approximation
determining density matrix negativity for both one-oscillator (RWA) widely used in fields such as quantum optics, the
and two-oscillator systems. These aims have been fullynodel Hamiltonian reduces to

achieved in this paper for initial one-mode and two-mode

meo

squeezed states. Hom=foaat+s> w.bib,+ bia+b.a’
The paper is organized as follows. In Sec. Il we introduce RIWA 0 ; KKk ; 9 (b @)
guantum master equations for two oscillators in an Agarwal (2.3
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We note that the rotating-wave approximation neglects theeconsider density matrix negativity for the one-oscillator

rapidly oscillating terms of Eq2.1). For simplicity we shall  case, thereby establishing a basis for later comparisons. An

seth=1 in the rest of the paper. equation for the one-oscillator characteristic function
Agarwal has obtained a Schinger-representation mas- y*(\,\*) follows from the quantum master equatith4):

ter equation for the reduced density operatam the limit of N 1

. . . . N 19 &
an infinite number of bath oscillatof& ,— [dw, f(wy)] [2] (9—)i+[—iw)\+ y()\+}\*)]%

Jd
2 +iolaap]=Laa,a)p 1

d
ot Lo + y(A 2] m)f*

=—ynla+a’,[a+a’,p]] -
=—yn(N+\* . 3.1
—y(ala+a',p]—-[a+a’,pla’~2p), i X 30
(2.4) Equation(3.1) is solved by the method of characteristi@.
' Assuming the characteristic function
wherey=mf(wo)|gc(wo)|? is the damping constartt(w) is

the density of bath oscillatorg.(w) is the continuum form 1 *\ _ me_y %3N
of gy, n=(e”’*sT—1)"!, w is the renormalized frequency X (AT ex;{% CneOAT(=ADT, - (32
of (O] [5],
f ) whereC,,(t) are the coefficients to be determined, one ar-
- wo+7’f0 do (wa))lgiiz)ﬂ ' 2.5 rives at the set of differential equations O,
Ci0= (io=¥)Cyot ¥Co1, (3.3
andP stands for the Cauchy principal part. Approximations _
assumed in deriving Ed2.4) include the Born approxima- Co=(—iw—v)Cy+ yCyp, (3.9
tion, which treats the bath effects in the lowest order, and the
short memory hypothesis for the bath. C0=2(iw—y)Cpyo— y(N—Cyy), (3.5
It is straightforward to generalize the one-oscillator Agar-

wal master equatiof2.4) to a system of two oscillators. If C11:27(ﬁ— Cy1)+2%(Copt Cao), (3.6)

there are two primary oscillators coupled to each other in the

system with a Hamiltonian . . _
Y Cop=—2(iw+7)Cop— (A= Cy). 3.7

Analytical solutions to the above equations for all initial con-

wherelJ is the coupling strength, and each oscillator is dissi-dItlonS can be found in Ref1] where illustrations of second

pated by the bath modes in the form of B2.4), the master order moments as functions of time are also given for an

cquation for the reduced density matrix for the wo OSCiIIa_initial coherent state and an initial squeezed state. For the
q . y case of a squeezed-state start, i.e., the wave functidn at
tors can be written as

=0 reads

Hyo=w(ala; +ala,) +J(ala,+alay), (2.6)

J N
a—‘t’+i[HtWO,p]: > La(a,ahp. 2.7 |(0))=£)=5(¢)|0), (3.8
i=1,2 )
whereé=re'?, and
Following our previous treatmeii] we adopt a method

of solution which utilizes the quantum characteristic function S £)= 1., 1 5 a.g
X()\ly Ia)\Zy ;at) [6]1 (g)_ex 55 a Efa ! ( ' )
XN A N NS ,t):Tr(peMaIe—Xfalekzage—kﬁaz), the second order coefficientstat 0 are(cf. Appendix Q

(2.8) Cu(t=0)=sintPr, (3.10
where the trace is taken over the system of two oscillators 1
(cf. Appendix A). Instead of dealing directly with the density PO
matrix, we derive an equation of motion for the characteristic Coo(t=0) 4 e "sinh2, (3.17
function x(N\1,\7 ,\2,A\3 ,t) which is then solved by the
method of characteristics. 1
Coz(t=0)=—ze"’smh2r. (3.12

Ill. ONE PRIMARY OSCILLATOR . _ o
) ) ) ) ) To probe density matrix negativity, Talkner proposed an op-
In this section our purpose is twofold. First, we briefly eratorb [3]

illustrate our method of solution for the simpler problem of
one oscillator in an Agarwal baflef. Eq. (2.4)]. Second, we b=e'q+ie "p (3.13
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where Equation(3.20 is a necessary and sufficient condition for
. . the density matrix positivity of Gaussian states as shown by
p=ata’, ig=a—a. (3.14  Talkner[3]. For an initial squeezed state
One can show that (p)=0, (q)=0, (3.21)
b|£€)=0. (3.19

the positivity requirement is then
It follows that att=0

ApAg=[(pg)|=Vi+[(a®)—(a™)[*. (3.2
Tr(b™bp)=Tr(b™b|£)(£])=0. (3.16
Therefore the positivity requirement is stronger than the un-
For a smallAt>0, certainty lower bound3.19. In terms of the second order

Tr(bpr)ZTr(bTbAp)ZAt Tr(b*b£A|§><§|) moments the positivity requirement can be written as

=Aty[e ?(2n+1)—-1]. (3.17) (2C11+1)2— 4(Coat C20)?=4|Cpy— Cod * + 1. (323
This implies that when ] - .
Introducing an auxiliary functiord(t)

e’’>2n+1, (3.18 , , ,
Tr(bbp) turns negative at smat] indicating density matrix {O=Ciat Cu (Cort Co ™~ [Cor= Cd”s (3.24
negativity. However, when this happens, the variance prodie positivity requirement is equivalent to

uct ApAq does not necessarily drop below the uncertainty

limit. The requirement of the uncertainty principle is much L(1)=0. (3.29
weaker than that of density matrix positivity. This can be

understood as follows. The uncertainty principle for the pairat t=0, for an initial squeezed state with a real squeezing
of operatorsp andq has the form parametez=r, the auxiliary functionZ(t=0) equals zero.

It follows that positivity of the density matriy depends on

ApAg=1, (319 the sign of the time derivative d@f(t) att=0. A derivation of
while the physical density matrix requires {(t) and its time derivative is given in Appendix B from the
solutions to Eqs(3.5—(3.7) [1]. Here we list an analytical
(P?)(a*)=|(pa)|>. (3.20  expression foi(t):

(t)=nn+1)+e 4 [N°—(2n+1)sintPr]+e 2" (w?— y?) " 1(2n+1)(sintf r —N)[ w?— y? cog 2t Vw?— %) ]

1
-5 ye (w2 — 42~ Y2(20+ 1)sinh 2 sin(2tVwZ— y?). (3.2

It is easily verified that{(0)=0. The asymptotic value of To gain a better understanding of the density matrix evo-
£(t) at long times is apparently(n+ 1), which implies that lution in the whole time domain, we display in Fig. 1 the
for finite temperatures at some point in time the density maauxiliary functionZ(t) for y/w=0.1, and three temperatures,
trix will regain positivity regardless of its anomalies at ear- namely, zero temperature=0 (top panel, n=(e—1)" 1 (or

lier times. The time derivative of(t) att=0 follows from  T=w/ks, middle panel and the critical temperatura

Eq. (3.26: =(e?—1)/2 (bottom panel The initial squeezed state has a
_ real squeezing parametérr = 1. The zero temperature case
L(0)=9[(2n+1)e 2 —1]. (3.27 exhibits the worst density matrix negativity witf(t) re-

maining negative until approximatelyt=0.63043. ForT

We hence recover the negativity criterioB.18), first dis- =w/Kg, {(t) becomes positive at approximatelyt

cussed by Talknelr3], from the set of exact solutioid] of ~ =0.3745. The critical temperature allows no density matrix

second order moments governed by E@s5—(3.7). How-  negativity, and neither do any higher temperatunes(e?
ever, far more information is revealed in the analytical ex-—1)/2 as shown in Appendix B. We note that the duration of
pression(3.26 obtained for(t), which allows negativity —negativity has a slight dependence gnFor example, for
determination for alt. In addition, we prove in Appendix B y/w=0.2 and T=w/kg (T=0), {(t) takes wt=0.3763
that the density matrix is positive for dliif the temperature (wt=0.64065) to recover from negativity. In general, for
is high such that B+ 1>e”". low temperatures such thatnzZ1<e?, density matrix
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FIG. 1. Negativity of the one-oscillator density matrix is illus-
trated by the auxiliary functiog(t) plotted as a function oft for
r=1, y/o=0.1, and three temperaturea=0 (top panel, n
=1/(e—1) (middle panel, andn=(e?—1)/1 (bottom panel

negativity may recur for a period of time. This will be dis-
cussed in detail in the next section.

IV. TWO PRIMARY OSCILLATORS

PHYSICAL REVIEW E65 056120

with arbitrary initial means and variances, and to investigate
density matrix anomalies for the particular time evolution
starting from an initial two-mode squeezed state. Results will
be compared with the squeezed-state start of the one-
oscillator case.

From the master equation for the reduced density matrix
for the two oscillators one can derive an equation of motion
for the characteristic functiog(\1,\7 ,Ao,A5 ,t):

Ix Ix ax
—+ —ioN——+io\
at izzl,z PONign, e 'axi*)
dx ~ dx _
YN N )|+ + FNF)?
v(N }\| ) N ‘”‘i* 7”()\| )\| ) X}
iJ[ A i +X J +iJ[ A3 J +\¥
W20, T Mg, ) XTI MeghE TG E X
=0. (4.7

We assume that the characteristic function has the form

XM AT )

ZGX%EH Cmn,k|)\r1n( _)\,{)n)\;( _)\’ZC)I} '
(4.2

The Gaussian wave packets are obtained by restrigting
+n+k+1=<2 in the summation oven,n k,l Aside from the
on-site first and second order moments introduced for each
individual oscillator, four more cross moments, namely,
C1001 Co1,100 Ci0100 andCpy o5, are added to account for
cross correlations of the two oscillators. In the absence of a
direct coupling between the two oscillators, ik 0, a case
which is of high relevance to the usual setups of quantum
teleportation, on-site second order moments of each oscilla-
tor evolve according to Eq$3.5—(3.7). However, quantum
correlations between the two oscillators from an initial
highly entangled statésuch as a two-mode squeezed state
will persist for a significant period of time with cross mo-
ments playing an important role in determining the proper-
ties of the two-oscillator system density matrix. Various op-
erator averages can be calculated from the first and second
moments; for example, for the first oscillator, one has

One of the most frequently mentioned examples in quan-
tum optics and quantum information theories is the two-
oscillator squeezed state, which was also utilized in a recent
experimental realization of continuous-variable teleportation
[8]. In this section we shall investigate the time evolution of

(a1)=Cox 00. 4.3
(a})=C1o00: (4.4
(af)=2Coz,00t (Co1,00° (4.9
(a?)=2Cy0 00+ (C1000° (4.6)
(ajag)=Cy1 0+ C1004 01,00 4.7

the density matrix of a system of two coupled harmonic os<{similar relations exist for the second oscillgtoand for
cillators in an Agarwal bath initially in a two-oscillator cross correlations

squeezed state. Our focus is to solve a set of general equa-

tions for the time evolution of the Gaussian wave packets

(alag)=C10,06C00,01+ C10,01: (4.9
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(aa;)= Co1,0800,20" Co1,10, (4.9
(ajaly= C10,0800,10" C10,10: (4.10
(a18,) = Co1,000,01F Cox,01- (4.1

PHYSICAL REVIEW E 65 056120

Coo,n: 2y(n—Cog,119 +2¥(Coo,02T Co0,20
—i13(Co1,10~ C10,00> (4.295

Co007= —2(iw+¥)Coo oz~ ¥(MN—Cpg 10 —iJ (301,0(1;‘r 26

Equations of motion for the moments can be derived from

Eq. (4.1). Although for our purpose in this paper only second
order moments are important to the density matrix positivity,
we nonetheless discuss in passing first order moments, whid

are governed by four coupled differential equations:
Ci006= (i©—¥)Cio00t ¥Cor00+ 1IC00,10,  (4.12
Co1,07= (—i@—¥)Co100t ¥C1000~19Co0,01, (4.13
Coo.16= (i©—¥)Coo 10t ¥Cooort 1IC1000  (4.14

Coo,01=(—i®w—¥)Cop01F ¥Co010~19Co1.00 (4.15

Equations(4.12—(4.15 obey the Ehrenfest theorem, which

For a state with initial zero first order moments, the dissipa-
h/e dynamics and the properties of the Gaussian density
matrix as a function of time are completely determined by
the above ten coupled equations. Solutions for on-site mo-
ments were already listed in RéfL] for all initial Gaussian
wave packets including that of the two-mode squeezed state.
For zero direct couplingl=0, analytical solutions for the
cross moments are given in Appendix D.

To further understand the physical significance of the sec-
ond order moments, let us defiSas the sum of four out of
the ten second order moments:

S=Cy0,10t Co1,01t C11,00t Coo,11, (4.27)

connects the time dependence of expectation values of ca-

nonically conjugate variables with the Hamiltonian equations

of classical mechanics:

d
at (C10,00" Co1,00T Coo,10" Coo,01)

=i(0+J3)(C1000~ Co1,00" Co0,10~ Coo,00- (4.16

and A as the sum of the remaining six second order mo-
ments:

A=Cy0,001 Co2,00" Coo,02T Coo,20

+C10,01+ Co1,10: (4.28

The equations that govern the time evolution of second ordeConsider two Einstein-Podolsky-Rosen type operatioasid

moments were first derived in R¢#]:

Ca000=2(iw—¥)Cg0,00~ ¥(N—C11,00 +1ICig 10,

(4.1
Ci1,0= 27(N—C11,00 +2%(Coz.00+ C20,00
+13(Co1,10~ C10,00)> (4.18
Co200= — 2(iw+ ¥)Co00~ ¥(N— C11,00 —iICo1 01,
(4.19
C1010= 2i @C1g 10+ 213(Cao,00+ Coo,20
+ ¥(C10,00+ Co1,1072C10,10 (4.20
C10,01: 13(Coo,11~ C11,00 T ¥(Co1,01+ C10,10= 2C10,00) s
(4.21)
C-301,102 —i1J(Coo,11~C11,00 + ¥(Co1,01F C10,1072Co1,10,
(4.22
C01,01: —2i wC01,01_ 2iJ( C02,00+ Coo,oz)
+ ¥(C10,01+ Co1,207 2Co1,00» (4.23

Coo,26= 2(i 0 —¥)Coo 20~ ¥(M— Cpp.12 +1IC10 10,
(4.29

v:
v2i=a,+a]+a,+al, (4.29

iv2o=a,—a]—a,+aj). (4.30
The variances of the operatdisando can be conveniently
expressed in terms @& andA:

((AD)?)=1+S+A, (4.31

((AD)?)=1+S—A. (4.32

From the set of coupled equations for second moments one
can derive equations of motion f&in Eq. (4.27 andA in

Eq. (4.29:

S=—-29(S-2m+2yA
+2iJ(Cy0,00~ Coz,00t Coo,20~ Co0,02)
+2i w(Cy0,10~ Co1,00» (4.33
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A= —2yA+2y(S—2m)+2i3(C1010- Co10) The_ criterion f_or density matrix positivity is best illus-
’ ' trated in the matrix forms of the second order moments. The
+2i w(Cy0,06~ Coz,00" Coo.20~ Co0,02- (4.39 second order terms in the exponent of E42) can be writ-

) _ ten in a matrix form:
It follows thatS asymptotically goes to2 at long times, and

A to zero. Adding the above two equations, 1
d | SO M AE )
2 (STA)=2i(J+ )(Cy 00~ Coz,00t Coo,20

dt
- Cll,OO 2C02,00 - ClO,Ol C10,10 )\l
—Coo02+C1010-C . 4.3
0002t C10.10~ Coz.00 (4.39 » 2C00 —Ci100 Ci010 —Curoo1| | A
Our initial state here is the highly entangled two-oscillator —Ci001 Co101 —Coo1r 2Co002 A2
*
squeezed state Ci010 ~Cor10 2Co020 —Cooa A2

(4.40

One can also write the second order exponent in the form
with s a real number an{) the vacuum state for both oscil-
lators. The characteristic function at tihe O has the form

efs(a'{a}alaz)m) (4.36

1
SO A AT MIMAT M AT AT, (44D
XN, AT 5,05 ,0)=exd — 3Sinh 23(A A+ ATAS)

where the new basis is related % \; A% \5)" b
—sinf? s\ +|\2%)].  (4.37) (A A2 M) by

1 1
Detalls of the derivation of Eq4.37) can be conveniently - - 0 O
found in Appendix C. Att=0 there are only four nonzero 2 2
second moments, namely, R i
N1 2 2 i s
C11,040)=Cp140) =Ssinl?s, (4.38 AN 1 1 Ao (4.42
| O 0 - = *
A2 2 2 2
1 i
Clojldo) = COl,Ol(O) = — Es|nh E (439 0 0 — E 5

For zero direct coupling=0, analytical expressions of all andM is a real symmetric matrix
nonzero second order moments can be obtained for an initial
two-mode squeezed stafef. Appendix B. Those expres-

sions will be used to derive an analytical criterion for density M = Vi Vi 44
matrix negativity for two uncoupled oscillators. Analytical - VIz V, (4.43
expressions o8 andA for an initial two-squeezed state and
zero couplingl=0 are also listed in Appendix E. with
C20,OO+ COZ,OO_ C11,00 [ (CZO,OO_ COZ,O()
V=2 . , (4.49
1(C20,00~ Co2,00 —Co2,00~ C2000~ C11,0
Co0,20t C00,02~ Coo,11 1(Co0,20~ Co0,02
V,=2 . , (4.45
1(Co0,20~ Co0,02 —Co0,02~ Co0,20~ Coo,1
and
B ( Ci1010t Cor,01~ C10,00~ Cor10  1(C10,10~ Co1,010t C10,01~ Co1,10 ) 4.46
i (C1010~ Cor,00~ C1001+ Co1,10  ~C1010~ Co1,00~ C10,00~ Cor,10/ '
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The corresponding Wigner characteristic  function For Gaussian states, which are the focus of the discussion
x™W(N1,AF \5,\%) can also be written in the matrix form  here, Eq.(4.48 is a necessary and sufficient condition for
density matrix positivity[9]. Since the determinant of
1 . .
XW()\?,A'l,)\g,A'zhexr{— 5(7\? AL AR A M can be written as
Def | —M]=Def | —V,]Def | —V,]+ Det[V,]

X(I=M)(\T N A5 AT =T (1= V1)KV K (1 = Vo) VIK],

(4.47) (4.59

with | the identity matrix. the positivity criterion is equivalent to
The criterion for density matrix positivity can be written

in the form|[9] De{ M — 1]+ 2DefVy,]— DefV; —1]—Def V,—1]<1.

(4.52
Z(t)>0 4.4
® (448 For an initial two-mode squeezed state the auxiliary func-
where the auxiliary functioZ(t) is defined as tion Z(0) equals zero. Unlike the case of one primary oscil-
B ) lator, it turns out thaZ(0) vanishes as weltf. Appendix B.
Z(t)=Defl - V,]Def| —V,]+(1-De{Vy,]) Therefore, for the density matrix to exhibit negativity at
—TH (1= V) KV K1 —V2)VIZK]—Det[I —V,] smallt, one needs to show that
—Def 1 —V,] (4.49 2(0)<0. (4.53
with the matrixK Fortunately, for the set of initial conditions with four nonzero
second order moment4.38 and(4.39, and zero direct cou-
K= 0 1 (4.50 pling J=0, an analytical expression f@i(t) can be obtained
-1 0/ ' from the ten second order moments after some effort:

Z(t)=16(n(n+1)+e *"[n2—(2n+1)sini’ s]
+e 2720+ 1)(sinf? s— 1) (w2~ ¥?) [ w?— y? cog 2t\w?— »?) 1}?

—4y%e M (w?—y?) Y (2n+1)? sink? 2s Sir(2t Vw?— ¥?). (4.54
|
This analytical expression fat(t) is one of our main results, The next question is how long density matrix negativity

and allows positivity determination of the two-oscillator den- lasts and if it recurs for low temperatures. To obtain infor-
sity matrix for allt. Expanded up to third order inaround  mation on the duration and recurrence of negativity, we de-
t=0, the auxiliary functionZ(t) has a surprisingly simple note the roots oZ(t)=0 by ty:

form:

(sintf s—)(w?— ¥ w?— y? cog 2tg\w? — y?)]

Z(t=0)=16y*t%(1—4yt)(2n+1—e 2 L _ _
(t~0)=16yt%( 7 ) +n(2n+1) " (n+1)e?"o+ne 2]

X (2n+1—e%). (4.55 L

=e’2‘/tosinhzsi§ y sinh 25(w?— y?) 12

The criterion(4.53 based on the second derivatidét) at

t=0 reads X Sin(2tgyw?—t2). (4.57
(2n+1-e %)(2n+1-€%)>0. (456  Note the second term on the left hand side of E457)

which containse?”'o and are hence unbounded. For finite
For s>0 (s<0), this implies that B+1>e? (2n+1  temperatures;+0, this term makes sure that £¢4.57) can-
>e”~ 2% in order to maintain density matrix positivity at the not be satisfied for large,. Therefore, for finite tempera-
beginning of the time evolution. For any lower temperaturestures, the density matrix retains positivityith no cross-
density matrix negativity will be encountered at smialln ~ overs to negativity at long times sinceZ(«)=16n?(n
the remainder of the section, without loss of generality we+1)2>0. At zero temperature, the equation figr can be
shall assumea>0. simplified as
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R s CAA R B AN A A
0)2 — 2 \~’, L 4 N
Y
-0.0002
ycoths
—e 2VMo+_~ _ B
=e + sin(2t \/(1)2 2). (4.58 0.0004
(02— 2 0 Y 7

-0.0006

Depending on the size afrelative to energies and y, the
equation admits one to an infinite number of solutions. This
becomes apparent if E¢4.58) is rewritten as -0.001

2 2
w _ Y o=y 0 2 4 6 8 10 12 14
e o= V31t 2 —mc 7
0wy 0w =y y-tantf s

0.0015F
Xsin(a* 2'[0\/(1)2— y?), (4.59

-0.0008

0.001
where
0.0005+

tanhs
a= arctany— (4.60 Z 0 /\v

For a sufficiently small squeezing paramedgsuch that

-0.0005¢

-0.001 r

tanhs< L (4.6 0 2 4 6 8 10 12 14

N 72, wt

there exist an infinity number df, that satisfy Eq(4.59). It FIG. 2. Negativity of the two-oscillator density matrix is illus-
follows that at zero temperature density matrix negativitytrated by the auxiliary functiod(t) pIottegas a function obt for
recurs tot=co if Eq. (4.61) is satisfied. For a large squeezing S=9-1. ¥/©=0.1, and two temperatures=0 (upper panéland
parametes such that tank~1, there is at least one approxi- 1 0-01 (lower panel.

mate nonzero solution

thats is substituted by, and only the positive sign is taken
\/ 1.5(coths—1) for the second term on the right hand side of Eg57). The
to= (w?— y?)coths+ y* 462 hymber oft, that satisfy Eq(4.57, however, is about twice
the number ofty that satisfy Eq.(4.63 for the same bath
The reader is referred to Appendix F for further discussiongemperature and the same valuesgandr.
onty andZ(t). The similarity between;(t) for one oscillator andZ(t)
Since for an initial two-mode squeezed state the criticafor two oscillators can also be exploited to obtain a proof of
temperature above which no density matrix negativity occurshe Z(t) non-negativity for two uncoupled oscillators and
is given by &+ 1=e2, a condition closely resembling 2n+ 1=e?/s which can be based entirely on the proof of the
2n+1=e? for the one-oscillator case with an initial one- Z(t) non-negativity in Appendix B. It is then concluded that
mode squeezed state, we are tempted to compare as well the 2n+ 1=e?/sl andJ=0, the two-oscillator density matrix
two auxiliary functions, namely;(t) for one oscillator and from an initial two-mode squeezed state does not encounter
Z(t) for two oscillators. As it turns out, the equatidifty) negativity for allt.
=0 for the one-oscillator case will have the same form as In Fig. 2 the auxiliary functionZ(t) of two uncoupled
Eqg. (4.57) if the positive sign is taken for the second term onoscillators is plotted fos=0.1, y/w=0.1, and two tempera-
the right hand side of Eq4.57), and the squeezing param- turesn=0 (upper panglandn=0.01(lower panel. For zero

etersis simply replaced by: temperaturen=0, density matrix negativity recurs for the
_ s o1 2 o — entire time interval displayed. Raising the temperature to
(sintfr—)(w?— 5%~ w’— y? cog 2t~ ¥%)] =0.01 drastically reduces the negativity recurrence so that

density matrix negativity reappears briefly only oncear

Ty —1r (- 2yt a2yt
Fn(2n+ 1) (n+1)e™o+ne” ] wt=2.3) as shown in the lower panel.

1 The case of nonzero interoscillator coupling has to be
=e ?MosiniPr + 5 vsinh X (w?—y?) 12 investigated numerically at this stage as analytical solutions
to the ten coupled equations remain elusive. In Fig. 3 we

X sin(2tgy o’ — 7?). (4.63 displayt, as a function of the interoscillator couplingfor

s=1/2, y/o=0.1, andn=1/2. For this set o andn, only

Therefore, the results we have obtained so fartfoin this  one nonzerd, exists. It is found that positivéd's reduce the
section can be applied to the one-oscillator case providedmount of timet, the density matrix spends in negativity
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oscillator system. The effects of the direct interoscillator cou-
pling J on density matrix negativity were studied
numerically.

The origin of the density matrix negativity documented in
this paper lies in the Markovian approximation in the Agar-
wal master equatiori2]. Suaez, Silbey, and Oppenheim
have studied the validity of the Markovian approximation in
the context of relaxation theory of two-level systefi8]. It
was shown that anomalies in the Markovian evolution in the
weak coupling limit can be remedied by supplementing a
slippage in the initial conditions. It is concluded that nonlo-
cal memory effects need to be taken into account at the be-

. . . : . . . . ginning of the evolution, and only after this transient time
%_8 06 -04 02 0 02 04 06 08 1 can the reduced dynamics be properly described by Markov-
J ian evolution with the density matrix free of negativ[tiQ].
The merits(and shortcomingsof the Agarwal bath have
been recently compared in detd20] with those of other
various relaxation approaches.

Entanglementor inseparability highlights quantum non-
while negativel's prolongt,. The couplingl, however, does locality, and is of great importange to quantum information
not change the critical temperature below which density ma’gh_eory. A sep_arable density matrix can be represented by a

) . mixture of direct-product states. Measurements made on
trix negativity commences. i ; )
states that are separable exhibit only classical correlations. A
bipartite density matrix is separable if it can be written in the
form

FIG. 3. The duration of negativity, as a function of the int-
eroscillator coupling strength for s=1/2, y/v=0.1, andn=1/2.

V. DISCUSSION

As an extension of our previous wofk] we have exam-
ined the detailed behavior of density matrices for two har-
monic oscillators evolving under the influence of a form of p=2, PipA® Pk, (5.1
dissipative bath first proposed by Agarwal. The Agarwal !
bath has the appearance of the perfect bath from the physical
perspective: it preserves the translational invariance of th
system, and delivers the eventual thermal equilibrium to th
dissipative process. For one primary oscillator the Agarwa
bath model has been applied to a variety of fields despite th
well-known fact that it violates the positivity requirement of
the reduced density matrix for certain initial conditions
[3,10-13. Recently, in the emerging literature of quantum
information and communicatiop8,9,13—17 an enormous
amount of interest has arisen in bipartite canonical systems
of continuous variables, which are often synonymous with a 2(t)<O0, (5.2)
pair of harmonic oscillators. The dynamics of a coupled pair
of harmonic oscillators in a dissipative bath have also been
an important problem in physics and chemistry. In this papekvhere the auxiliary functiorE(t) is defined as
we have identified density matrix anomalies for two oscilla-
tors in an Agarwal bath initially in a two-mode squeezed
state. Analytical criteria have also been developed for deter-

fhere p;>0, andZ;p;=1. An inseparability criterion con-

erning positivity of the partial transpo$EPT) of the den-
sity matrix was proposed by Pergk3], and later shown by
Rorodeckiet al. to be a necessary and sufficient condition
for inseparability of 2<2 or 2x 3 systemg14]. When it is
applied to Gaussian states in a two-oscillator system, the
density matrix is inseparable if and only[8]

E(t)=Def | —V;|Def | —V,]+(1—|DefVy,]|)?

mining density matrix negativity. — T (1= V1)KV K(I —Vz)VIzK]
Among our findings an analytical form &f(t) is obtained
for zero direct coupling= 0, which can be used to probe the —Defl =V;]-Defl =V;]. (5.3

density matrix negativity of two-oscillator systems. For an
initial two-oscillator squeezed state with a real squeezing paH—Z _— . .
rameter s, density matrix negativity occurs for two un- or an initial two—modeT squeezed_ state with a real squeezing
coupled oscillators at temperatures lower thanParametes and zero direct coupling=0,

fiwl (kg Incoths). An analytical expression was also found

for {(t) for a one-_oscillator system initially in a one-mode Def Vy,]= — e " sint? 2s=<0. (5.4)
squeezed state with a real squeezing parameteroofs of

sustained density matrix positivity have been given for bath

temperatures higher thah w/(kglIncothr) for the one- It follows that in order for the two-oscillator system to be
oscillator system, andiw/(kglncoths) for the two- separable, it is required that
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O<E(t)=Z(t)—4e “sink? 2s=16{n(n+1)+ e *[n2—(2n+1)sint’s]
+e 24 2n+1)(sintf s—N)(w?— 7)Y w?— ¥* cog2t\w?— y?)]}?
—de~ M sint 29 1+ (2n+ 1)29A(w?— ¥A) " Lsird(2tywZ — 19 ]. (5.5

Ther_efore, as a by-product, our exa_mination of_the density XN A5 D)
matrix negativity here has resulted in an analytical expres-
sion for the determination of quantum separability of the

bipartite system.

Gaussian states evolving under the Agarwal bath are ad- . .
equately described by normal-ordered characteristic func- XP(21,21 ,25,73). (A4)
tions. Our approach can be readily extended to tripartite sys-
tems of harmonic oscillators. Trimode entanglement has ) o .
attracted much attention lately with the advent of experi-' € *often;usgd Wigner  distribution  function
ments of continuous-variable teleportatid]. Separability W(Z1,21,22,2;) is the Fourier transform of the Wigner
properties of multiparty systems are intrinsically more com-characteristic functiony¥(\y,A\T ,\2,\3) which is related
plex and intriguing. Work along this direction is currently to x(\1,AT ,\2,A3) by a simple factof22]:
underway.

= J d%z, d?z, exp(N 125 —NT 23+ N\ 25 —\32,)
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APPENDIX A: THE CHARACTERISTIC FUNCTIONS XW(zy,7} ,2,25) (A5)
The two-oscillator characteristic function

X(\1,AT A5, \3) [Eq. (2.8)] is a direct generalization of the

_ a—INq]F2— N2 * *
characteristic function for one oscillatgf(x,\*) [21]: € X(\1ATA2A2). (A6)

The Wigner distribution functionV(z,,z7 ,z,,z5) gives a
Xl()\,)\*)zTr(pe"aTe*”*a). (A1) description of quantum states in close resemblance to the
phase space classical descriptions, which is related to the
For one oscillator, the quantum characteristic functionWey! classical-quantum corresponder28].
X1(\,\*) is the Fourier transform of the phase space distri-

bution functionP(z,z*) of the density matrixp,
APPENDIX B: DENSITY MATRIX NEGATIVITY FOR ONE

PRIMARY OSCILLATOR

In this appendix we describe derivations of the auxiliary
function £(t) and its time derivative from the analytical so-
lutions to Eqs(3.5—(3.7) [1]. A proof that{(t)=0 for 2n’
The phase space distribution functiBr(z,z*) is also called ~+1=€" is also given here.
the Glauber-Sudarshahrepresentation of the density matrix ~ The auxiliary functionZ(t) can be written as
p, which plays the role of the quasiprobability:

xl()\,)\*)zfdzzexp()\z*—)\*z)Pl(z,z*). (A2)

{(1)=C1(Cy1+1) —4|Cql%. (BY)
pzf d?z Py(z,2*)|z2){z]. (A3)

Making use of the expressions f@r; andC,, from Ref.[1]
For the case of two oscillators similar relations exist betweerwith the initial conditions C;;(0)=sintfr and Cy,(0)=

the characteristic function(\1,AT ,X2,\3) and the phase —sinh2/4, one quickly arrives at Eq(3.26) after some
space distribution functioP(z,,z} ,z,,25) of the density straightforward simplifications. The time derivative &ft)
matrix p: which follows from Eq.(3.26) takes the form
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d
d—f =—2ye 1+ 2n(n+1)]+2ye *(2n+1)cosh 2 —2ye 2" (2n+1)(sinkf r —Nn)(w?—y?) !

X[w?— y? cog 2t\w?— y?)]— y?e 2720+ 1) (2n+ 1 - e¥)(w?— y?) ~2sin(2tJw? - 7?)
— ye~2Y(2n+1)sinh 2 cog 2t w2~ »?). (B2)

At t=0, only C;,(C;;+1) and Ré&C,,) contribute tod{(t)/dt as the time derivative of I1KC,,) vanishes at=0. One
obtains a simple expressi¢iq. (3.27)] for d/dt att=0.
At the critical temperature @+ 1=e?", d¢/dt adopts the simple form

d
d—é; = yw?e ?"e? sinh 2r (w?— %) " [1—coq 2t Vw’—y?)]. (B3)

It is apparent that, for @+ 1=e?", d{/dt=0. It then follows from¢(0)=0 that at the critical temperature 2 1=¢e")
density matrix positivity is guarantegdr, equivalently,£(t)=0] for all t.
For temperatures higher than the critical temperature{2>e?"), we can writedZ/dt in the form

d
d—f: —ye M(2n+1-e?)(2n+1—e )+ ye 2 (2n+1)(2n+1—e? +sinh ) (w?— y?)  H{ w?— y? cog 2t Vw?— %) ]

—y2e 2 (2n+1)(2n+1—e)(w?— ¥ Y2sin(2t N 'y?) —ye 2"(2n+1)sinh 2 cog 2t N 'yi)
=yw?e ?'sinh 2 (2n+1)(w?— %) 1—coq2tVw’—y?) ]+ ye e 2(2n+1—e? )+ ye 2"Y(2n+1)

X (2n+1—e®)&t), (B4)
|
where the auxiliary functio(t) is defined as yt<2. (B8)
2— y2coq 2t\w?’— y?
)= ©y f 2w ) Obviously, the value of, fulfills this requirement:
o =Yy
; [2_ .2 1
_ ysin(2tyo—vy )_e_zyt yte==In| 1+ Z)<2 (B9)
02— ),7 2 w
Yo - in the physical regime of weak coupling< . The auxilia
= 1—sin( B+ 2t Jw2— +2 In the phy g pling< ry
W= 72[ A o™= 7] function &(t) also has this peculiar property of having posi-
© tive first and second time derivatives for smallFor ex-
_am29t ample,
+ oty e (B5)
with H=2ye 2t 22 cog gt 2tyoP7D)
V=7
/5’—arctanL (B6)
- [2_.72° 8
W=y =A4yw?t?— 3 Y?w?t3+0(1)%. (B10)

For 2n+1>e?', in order to prove thad{/dt is non-negative
for all t, it is sufficient to show tha£(t) is non-negative for
all t. This is obviously true fot=t.=(2v) ! In[(o+y)/w].

For smallt, it is sufficient to look at a Taylor expansion o

&(1):

Since&(0)=0, the fact thak(t)>0 for 0<t<t. also shows
¢ that(t)=0.

4 2 APPENDIX C: CHARACTERISTIC FUNCTIONS FOR
E(t)= §’yw2t3— §y2w2t4+ O(t)°. (B7) SQUEEZED STATES
In this appendix we derive expressions for the character-
In order for the leading term, which is positive for 0, to be  istic functions for both one-mode and two-mode squeezed

much greater than the absolute value of the second term, it &tates. For the one-oscillator case of a squeezed-state start,
required that the characteristic function a0 can be calculated from
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XS t=0)=Tr(|€)(£e*a e M"2)

= (0[S (¢)era'e M ag(£)|0).

Taking advantage of the fact th&(£)S'(£)=1, a pair of
S(¢) andS'(¢) can be inserted betwee® ande M*:

€y

XOMN*,1=0)=(0[ST(£)e'S(£)S!(£)e ™" 25(9)|0).
(C2
The right hand side of EqC2) can be evaluated from

Sf(&)er's(&)=exp(ra’ coshr —rae ¥ sinhr),
(C3)

St(&)e 2" ag(g)=exp(—N*acoshr +A*a'el?sinhr),

(C4

which follow from
S'(¢)as(é)=acoshr —a'e'?sinhr, (C5)
S'(¢)a's(¢)=a' coshr —ae "?sinhr. (C6)

Therefore one obtains

1 )
X()\,)\*,t=0)=ex;< —|\|?sinkPr — Z)\ze"asinhz

PHYSICAL REVIEW E65 056120

XN, AT Ao, 05,0
:Tr[e-s<a1a;—ala2>|o><o|
w eS(@jah-ajap) gh1a] @\ agghpala =23 )
(C8)
We first make use of the identif4]

es( aJlra; —ajay) — el"alaze— In(coshs)(alral + a;az-%— Ve~ Falaz’
(C9

wherel'=tanhs. Since|0) is the vacuum state for both os-
cillators, i.e.,

_ T T _ _
e In(coshs)(ala1+a2a2+l)e Fala2|o>:e In(coshs)|0>,

(C10
one arrives at

t
X()\l ’ E'I_( 1)\2 1)\3 10) = 672 ln(COShS)<0| eiralaze}\lal
><e"‘fale”ZaZe‘“zaZe‘FaIa£|0).
(C1)

. . T
We would like to move the two exponential operatefs®

and e*zaz to the left of the double annihilation operator
e %1% We need to apply to EqC11) three times the iden-
tity

e’eB=elABlgBeA (C12
1 ., provided that
- Z)\* e’sinh2r |. (C7
. A,B],A]=[[A,B],B]=0. C13
For the two-oscillator squeezed state the normal-ordered [[A.B].AJ=[[A.B].B] (€13
characteristic function reads by definition It then follows from Eq.(C11) that
XA A N AE,0)= e 2 In(coshs)<0|efF)\laZefFalaZexza;ef)\I a1g—\> a2e7FaIa£|O> (C14)
—eg 2 In(coshs)<0| efF)\la2e)\2a42refF)\Zalefl“alaZef)\’l‘ aig—\; aZefl“aIanrlo>
(C1H
—e 2 In(coshs)<0|e—F)\l)\Ze—F)\laZe—F)\zale—FalaZe—x’l‘ ale—)\;aZe—FaIa;|0>_
(C16
|
We are now left to evaluate a*=—TA,—\¥, (C18
* * o1
(0] 21gl” A2~ Ia1d2g~I'a137) 0) (C17 B*=—-TN—\5. (C19

with Expanding all four exponential operators, one has
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Tt o0
0lea* a1t B* azg—Tajag—Taja;|(
o 10 9(x,2)=(1-2) e 1" 9= > L (x)2",
n=0

oo

_ a*ajaB*a,n—T'aja _1T\n
(0le* 21eP A2~ 21 ZHZO( I)"n,n) (C20 Iz<1. (C26
= 0yt Therefore
a* * a* * _ _patat
e E 8, e et
(C21 1 o* BT
§ B A I (27
(a*)™(B*)"
=(mm'|> > — where the prefactor (£I'?) ! exactly cancels out the pre-
Mm=0m+=o VMM factore 2 M(coshs) in Eq. (C14). Substitutinge’* andB*, one
o ) finally obtains
n—I,n—I C22 a* B*I
Z Zo [(n—1)! | ) (€22 XN N, ’2‘,0)=ex;<—1")\1)\2—%) (C28
- - (a*)m(ﬁ*)m’ r o\
mz=:0 mzo ymim'! =exg — 7z (Mot AIAZ)
*® n )I+n 2 2 2
X2 |:Eo (n—1)1_ Omn-19m"n-| (C23 —prz(MlP e (C29
where the coefficients can be simplified as
* n a*B* n—I r 1
— _T)2n _q\n—1 _ .
nZO ( F) |20 ( 1) ( T ) ﬁz— ESlnh 2s, (C30)
n! I .
Xm (C24) W:S"th S. (C3l)
o * APPENDIX D: CROSS MOMENTS FOR TWO
a* B
=> Ln< - )(r2)n, (C25 PRIMARY OSCILLATORS
n=0

From the four coupled equations for the cross moments

which are decoupled from the rest of the ten second order
whereL,(x) is the Laguerre polynomial of order[25,26.  moments §=0), one obtains solutions fa€14 10, Co101,
The series in Eq(C25) is just the generating function of C,j+Cop110, and Cigo1—Co1.10 applicable to all initial

Laguerre polynomials: Gaussian wave packets:
e*Zt y+\y27wz)
Croar 505757 (V1B 1)24 By 1))+ 4B, (@ [P =Wk 1)
+Hiw(@ 0 1)]- 2B, [ w(e®P P 4 1) —i P o2~ 1)), (D1)
e My o) 2 2tV y2— w? 2 2tVy2— w? 2 2tV y2— w? 2 2 a2tV y2— w2
Co101= 4—(y2_2_{7[Bl(e YO =1+ Ba(e T+ 1)+ yBy(e T = D[y - (e T +1)
— (e 0 1)1 20By[ w(e*V T T H 1) +i 52— (e O )], (D2)
72t(y+ \/7 ) )
ClO,01+ C01,10_2(,y—_{728 4tV72,w2+1)_2w28282tVy27w2(eZt\/727w2_ 1)[| w(Bl— B3)(62t\/727w2+ 1)
X (e 1) 4 (By+ By) [y — 0 (e2 V7w +1)1}, (D3)

C10,0r~ Cor.1= Bae™ 2. (D4)

Here theB’s are to be determined by the initial conditions.
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APPENDIX E: ANALYTICAL EXPRESSIONS FOR THE APPENDIX F: NEGATIVITY CRITERION FOR TWO
J=0 CASE UNCOUPLED OSCILLATORS

For zero direct couplingl=0, analytical expressions of

nonzero second order moments are easily obtained for an For an initial two-mode squeezed state with a squeezing

initial two-mode squeezed state: parametes,_ there exis'Fs an analytical expression Zgt) for
. . J=0. A series expansion &(t) for J=0 aroundt=0 up to
C20,00= Co0,20= Co2,05= Coo,02 fifth order int reveals that

1
=5 ye 2" (w?—y?)~(2n+1—cosh &)

28
—~ _ 2__ 3, 4 __ 5
X sinh(t 72— ?)[ V72— w? cosht V72— w?) Z(t~0)—1ﬁ[(yt) 4(yt)°+ 3 (yt)*—16(yt)
+iwsinh(tyy’— w?)], (E1) X(2n+1—e 2%)(2n+1—e?)
—1*27t— 32224—
C11,00:Coo,11:n_§e (2n+1—cosh &) + 5 o’y (2n+1)(cosh4—1)
X(0?=9*) " Hw?—y? cosh2t{y*— )], 64 _
+ = w?y%t5(2n+1)[2n? cosh &
(E2) 3
1 —(2n+1)sint? s(7+9 cosh &) ]+ O(t)®.
C1016= Chro= — Ee‘zﬂ sinh 25[ cosh 2t/ y?— w?) ( ) ( )1+0() 1
+iw(y?—w?)  Ysinh 2t\y?>— 0?)], (E3)
i Since the power series @ft) starts from second order in
Ci00=Cora= — 578 7(y"~w%) "sinh s 7(0)=2(0)=0. If 2n+1<e?s, 7(0)<0, and density ma-
_ s trix negativity occurs at smatl Ast increases, the negativity
Xsinh(2tyy*— w?). (E4  problem will be alleviated because the third time derivative

3 3 — . e . . .
The above expressions are used to derive an analytical critéj Z/d't att=0 is positive, and the fourth time derivative

444 _ e .
rion for density matrix negativity for two uncoupled oscilla- d°Z/d% at t=0 can also be positive for weak coupling

>
tors. W=7 _
It follows that analytical expressions éfandS can also Taking Z(t) to zero puts a constraint ory. From Eg.
be obtained for an initial two-squeezed state and zero cod#-57 the solutions foit oftel? come in pairs. Two solutions
pling J=0: with a pair labeled by§ andtg are related to one another by
A= ,ye—Z'yt(wZ_ ,}/2)—1/2(2ﬁ_’_ 1_e—25)
X sin(2t\w?—9?), (E5) t3(s)=t5(—s). (F2)
S=2n—e ?"'sinh 2 coq 2t Vw’— y?)
— e 2M(2A+ 1— cosh &) (w?— y?) L This means that one needs only to solve the problem for
positives if J=0. However, the symmetry no longer stands
X[ w?—y? cog 2t Jw?—2)]. (E6)  when a finiteJ is introduced.
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