
PHYSICAL REVIEW E, VOLUME 65, 056120
Density matrix negativity for two oscillators in an Agarwal bath
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A system of two harmonic oscillators is placed in an Agarwal bath. The resulting quantum master equations
are studied with the help of quantum characteristic functions. The density matrix positivity is investigated in
view of the recent interest in searching for a sound quantum dissipation theory. An analytical criterion is
derived for density matrix negativity for two uncoupled oscillators. It is found that, for an initial two-oscillator
squeezed state with a real squeezing parameters, density matrix negativity occurs for two uncoupled oscillators
at temperatures lower than\v/(kB ln cothusu) with v the oscillator frequency andkB the Boltzmann factor. As
a by-product an analytical expression is also obtained for determining the quantum separability of two un-
coupled oscillators. The effects of interoscillator coupling on density matrix negativity are discussed.

DOI: 10.1103/PhysRevE.65.056120 PACS number~s!: 05.30.2d, 03.67.Lx, 02.50.Ga
o
it

n-

eo
tr
et
he

io
ra
r

se
w
ity
es
ga
th
-
d
o
ca
ni
nt
-
nc
ic
te
si

a
of
em
or
or
ul
d

c
wa

ity
cri-
e

ar-
ob-
o
-
c. V
of

e

ys-
ted

an
um
on-
ion
he
I. INTRODUCTION

In this paper we extend a previous discussion@1# on one
primary oscillator in a dissipative bath to a system of tw
coupled primary oscillators. The aim is to study the dens
matrix positivity of the two-oscillator system under the i
fluence of an Agarwal bath.

Three important attributes are desired for any bath th
ries of quantum dissipation, namely, translational symme
approach to eventual thermal equilibrium, and compl
positivity for the reduced density matrix of the system. T
bath model first proposed by Agarwal@2# ~the Agarwal bath!
guarantees translational invariance and thermal equilibrat
For many initial conditions and moderate-to-high tempe
tures density matrix positivity is also supplied by the Aga
wal bath. For these reasons the Agarwal bath model has
a wide range of applications in physics and chemistry. Ho
ever, the Agarwal bath model is not totally free of dens
matrix pathology, which usually occurs at low temperatur
For the case of one primary oscillator, density matrix ne
tivity was found for a subset of initial conditions at low ba
temperatures@3#. Quite recently, a pair of harmonic oscilla
tors has emerged as an important paradigm for infinite
mensional systems, also known as systems of continu
variables, in quantum information and quantum communi
tion theories. To our knowledge, systems of two harmo
oscillators dissipated by an Agarwal bath have only rece
been investigated by us@4# in the context of quantum sepa
rability. One of the purposes here is to show the occurre
of density matrix negativity for a system of two harmon
oscillators in an Agarwal bath, and subsequently to de
mine the physical regimes within which density matrix po
tivity, translational symmetry, and the approach to therm
equilibrium coexist. Due to the wide range of applicability
the Agarwal bath in various branches of physics and ch
istry, it is highly desirable to develop analytical criteria f
determining density matrix negativity for both one-oscillat
and two-oscillator systems. These aims have been f
achieved in this paper for initial one-mode and two-mo
squeezed states.

The paper is organized as follows. In Sec. II we introdu
quantum master equations for two oscillators in an Agar
1063-651X/2002/65~5!/056120~15!/$20.00 65 0561
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bath. In Sec. III the problem of the density matrix negativ
of a one-oscillator system is reviewed, and an analytical
terion for density matrix negativity is derived. In Sec. IV th
dissipative dynamics of two coupled oscillators in an Ag
wal bath is examined, and an analytical expression is
tained for determining the density matrix negativity of tw
uncoupled oscillators initially in a highly entangled two
mode squeezed state. A discussion is presented in Se
with analytical results concerning quantum separability
bipartite continuous-variable systems.

II. MODEL

We start with a model Hamiltonian describing only on
primary oscillator of frequencyv0 and massm coupled to a
bath of secondary oscillators of frequencyvk and massmk
(kÞ0)

ĤA5\v0a†a1(
k

\vkbk
†bk1q(

k
gkqk

b, ~2.1!

whereqs andqk
b are the coordinate observables for the s

tem and the bath oscillators, respectively, which are rela
to the corresponding boson operators by

qs5S \

2mv0
D 1/2

~a†1a!,

qk
b5S \

2mkvk
D 1/2

~bk
†1bk!, ~2.2!

andgk are the coupling coefficients. The bath oscillators c
be various phonon modes in a solid, or modes of vacu
radiation fields into which an excited atom decays via sp
taneous emission. Adopting the rotating-wave approximat
~RWA! widely used in fields such as quantum optics, t
model Hamiltonian reduces to

ĤRWA5\v0a†a1\(
k

vkbk
†bk1(

k
gk~bk

†a1bka
†!.

~2.3!
©2002 The American Physical Society20-1
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We note that the rotating-wave approximation neglects
rapidly oscillating terms of Eq.~2.1!. For simplicity we shall
set\51 in the rest of the paper.

Agarwal has obtained a Schro¨dinger-representation mas
ter equation for the reduced density operatorr in the limit of
an infinite number of bath oscillators@Sk→*dvk f (vk)# @2#

]r

]t
1 iv@a†,a,r#5LA~a,a†!r

[2gn̄†a1a†,@a1a†,r#‡

2g~a@a1a†,r#2@a1a†,r#a†22r!,

~2.4!

whereg5p f (v0)ugc(v0)u2 is the damping constant,f (v) is
the density of bath oscillators,gc(v) is the continuum form
of gk , n̄5(ev/kBT21)21, v is the renormalized frequenc
of v0 @5#,

v5v01PE
0

`

dv
f ~v!ugc~v!u2

v2v0
, ~2.5!

andP stands for the Cauchy principal part. Approximatio
assumed in deriving Eq.~2.4! include the Born approxima
tion, which treats the bath effects in the lowest order, and
short memory hypothesis for the bath.

It is straightforward to generalize the one-oscillator Ag
wal master equation~2.4! to a system of two oscillators. I
there are two primary oscillators coupled to each other in
system with a Hamiltonian

Ĥ two5v~a1
†a11a2

†a2!1J~a1
†a21a2

†a1!, ~2.6!

whereJ is the coupling strength, and each oscillator is dis
pated by the bath modes in the form of Eq.~2.4!, the master
equation for the reduced density matrix for the two oscil
tors can be written as

]r

]t
1 i @Ĥ two,r#5 (

i 51,2
LA~ai ,ai

†!r. ~2.7!

Following our previous treatment@1# we adopt a method
of solution which utilizes the quantum characteristic functi
x(l1 ,l1* ,l2 ,l2* ,t) @6#,

x~l1 ,l1* ,l2 ,l2* ,t !5Tr~rel1a1
†
e2l1* a1el2a2

†
e2l2* a2!,

(2.8)

where the trace is taken over the system of two oscilla
~cf. Appendix A!. Instead of dealing directly with the densit
matrix, we derive an equation of motion for the characteris
function x(l1 ,l1* ,l2 ,l2* ,t) which is then solved by the
method of characteristics.

III. ONE PRIMARY OSCILLATOR

In this section our purpose is twofold. First, we briefl
illustrate our method of solution for the simpler problem
one oscillator in an Agarwal bath@cf. Eq. ~2.4!#. Second, we
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reconsider density matrix negativity for the one-oscilla
case, thereby establishing a basis for later comparisons
equation for the one-oscillator characteristic functi
x1(l,l* ) follows from the quantum master equation~2.4!:

]x1

]t
1@2 ivl1g~l1l* !#

]x1

]l

1@ ivl* 1g~l1l* !#
]x1

]l*

52gn̄~l1l* !2x1. ~3.1!

Equation~3.1! is solved by the method of characteristics@7#.
Assuming the characteristic function

x1~l,l* !5expF(
mn

Cmn~ t !lm~2l* !nG , ~3.2!

whereCmn(t) are the coefficients to be determined, one
rives at the set of differential equations forCmn

Ċ105~ iv2g!C101gC01, ~3.3!

Ċ015~2 iv2g!C011gC10, ~3.4!

Ċ2052~ iv2g!C202g~ n̄2C11!, ~3.5!

Ċ1152g~ n̄2C11!12g~C021C20!, ~3.6!

Ċ02522~ iv1g!C022g~ n̄2C11!. ~3.7!

Analytical solutions to the above equations for all initial co
ditions can be found in Ref.@1# where illustrations of second
order moments as functions of time are also given for
initial coherent state and an initial squeezed state. For
case of a squeezed-state start, i.e., the wave functiont
50 reads

uc~0!&5uj&5S~j!u0&, ~3.8!

wherej5reiu, and

S~j!5expS 1

2
j* a22

1

2
ja†2D , ~3.9!

the second order coefficients att50 are~cf. Appendix C!

C11~ t50!5sinh2 r , ~3.10!

C20~ t50!52
1

4
e2 iu sinh 2r , ~3.11!

C02~ t50!52
1

4
eiu sinh 2r . ~3.12!

To probe density matrix negativity, Talkner proposed an o
eratorb @3#

b5erq1 ie2rp ~3.13!
0-2
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where

p5a1a†, iq5a2a†. ~3.14!

One can show that

buj&50. ~3.15!

It follows that att50

Tr~b†br!5Tr~b†buj&^ju!50. ~3.16!

For a smallDt.0,

Tr~b†br!5Tr~b†bDr!5Dt Tr~b†bLAuj&^ju!

5Dtg@e22r~2n̄11!21#. ~3.17!

This implies that when

e2r.2n̄11, ~3.18!

Tr(b†br) turns negative at smallt, indicating density matrix
negativity. However, when this happens, the variance pr
uct DpDq does not necessarily drop below the uncertai
limit. The requirement of the uncertainty principle is mu
weaker than that of density matrix positivity. This can
understood as follows. The uncertainty principle for the p
of operatorsp andq has the form

DpDq>1, ~3.19!

while the physical density matrix requires

^p2&^q2&>u^pq&u2. ~3.20!
f

a
r-

x
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Equation~3.20! is a necessary and sufficient condition f
the density matrix positivity of Gaussian states as shown
Talkner @3#. For an initial squeezed state

^p&50, ^q&50, ~3.21!

the positivity requirement is then

DpDq>u^pq&u5A11u^a2&2^a†2&u2. ~3.22!

Therefore the positivity requirement is stronger than the
certainty lower bound~3.19!. In terms of the second orde
moments the positivity requirement can be written as

~2C1111!224~C021C20!
2>4uC022C20u211.

~3.23!

Introducing an auxiliary functionz(t)

z~ t ![C11
2 1C112~C021C20!

22uC022C20u2, ~3.24!

the positivity requirement is equivalent to

z~ t !>0. ~3.25!

At t50, for an initial squeezed state with a real squeez
parameterj5r , the auxiliary functionz(t50) equals zero.
It follows that positivity of the density matrixr depends on
the sign of the time derivative ofz(t) at t50. A derivation of
z(t) and its time derivative is given in Appendix B from th
solutions to Eqs.~3.5!–~3.7! @1#. Here we list an analytica
expression forz(t):
z~ t !5n̄~ n̄11!1e24gt@ n̄22~2n̄11!sinh2 r #1e22gt~v22g2!21~2n̄11!~sinh2 r 2n̄!@v22g2 cos~2tAv22g2!#

2
1

2
ge22gt~v22g2!21/2~2n̄11!sinh 2r sin~2tAv22g2!. ~3.26!
vo-
e
s,

a
e

rix

of

or
It is easily verified thatz(0)50. The asymptotic value o
z(t) at long times is apparentlyn̄(n̄11), which implies that
for finite temperatures at some point in time the density m
trix will regain positivity regardless of its anomalies at ea
lier times. The time derivative ofz(t) at t50 follows from
Eq. ~3.26!:

ż~0!5g@~2n̄11!e22r21#. ~3.27!

We hence recover the negativity criterion~3.18!, first dis-
cussed by Talkner@3#, from the set of exact solutions@1# of
second order moments governed by Eqs.~3.5!–~3.7!. How-
ever, far more information is revealed in the analytical e
pression~3.26! obtained forz(t), which allows negativity
determination for allt. In addition, we prove in Appendix B
that the density matrix is positive for allt if the temperature
is high such that 2n̄11.e2r .
-

-

To gain a better understanding of the density matrix e
lution in the whole time domain, we display in Fig. 1 th
auxiliary functionz(t) for g/v50.1, and three temperature
namely, zero temperaturen̄50 ~top panel!, n̄5(e21)21 ~or
T5v/kB , middle panel!, and the critical temperaturen̄
5(e221)/2 ~bottom panel!. The initial squeezed state has
real squeezing parameterj5r 51. The zero temperature cas
exhibits the worst density matrix negativity withz(t) re-
maining negative until approximatelyvt50.630 43. ForT
5v/kB , z(t) becomes positive at approximatelyvt
50.3745. The critical temperature allows no density mat
negativity, and neither do any higher temperaturesn̄.(e2

21)/2 as shown in Appendix B. We note that the duration
negativity has a slight dependence ong. For example, for
g/v50.2 and T5v/kB (T50), z(t) takes vt50.3763
(vt50.640 65) to recover from negativity. In general, f
low temperatures such that 2n̄11,e2r , density matrix
0-3
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negativity may recur for a period of time. This will be dis
cussed in detail in the next section.

IV. TWO PRIMARY OSCILLATORS

One of the most frequently mentioned examples in qu
tum optics and quantum information theories is the tw
oscillator squeezed state, which was also utilized in a rec
experimental realization of continuous-variable teleportat
@8#. In this section we shall investigate the time evolution
the density matrix of a system of two coupled harmonic
cillators in an Agarwal bath initially in a two-oscillato
squeezed state. Our focus is to solve a set of general e
tions for the time evolution of the Gaussian wave pack

FIG. 1. Negativity of the one-oscillator density matrix is illu
trated by the auxiliary functionz(t) plotted as a function ofvt for
r 51, g/v50.1, and three temperatures:n̄50 ~top panel!, n̄
51/(e21) ~middle panel!, andn̄5(e221)/1 ~bottom panel!.
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with arbitrary initial means and variances, and to investig
density matrix anomalies for the particular time evoluti
starting from an initial two-mode squeezed state. Results
be compared with the squeezed-state start of the o
oscillator case.

From the master equation for the reduced density ma
for the two oscillators one can derive an equation of mot
for the characteristic functionx(l1 ,l1* ,l2 ,l2* ,t):

]x

]t
1 (

i 51,2
F S 2 ivl i

]x

]l i
1 ivl i*

]x

]l i*
D

1g~l i1l i* !S ]x

]l i
1

]x

]l i*
D 1gn̄~l i1l i* !2xG

2 iJS l2

]

]l1
1l1

]

]l2
Dx1 iJS l2*

]

]l1*
1l1*

]

]l2*
Dx

50. ~4.1!

We assume that the characteristic function has the form

x~l1 ,l1* ,l2 ,l2* ,t !

5expF (
mnkl

Cmn,kll1
m~2l1* !nl2

k~2l2* ! l G .
~4.2!

The Gaussian wave packets are obtained by restrictingm
1n1k1 l<2 in the summation overm,n,k,l. Aside from the
on-site first and second order moments introduced for e
individual oscillator, four more cross moments, name
C10,01, C01,10, C10,10, andC01,01, are added to account fo
cross correlations of the two oscillators. In the absence o
direct coupling between the two oscillators, i.e.,J50, a case
which is of high relevance to the usual setups of quant
teleportation, on-site second order moments of each osc
tor evolve according to Eqs.~3.5!–~3.7!. However, quantum
correlations between the two oscillators from an init
highly entangled state~such as a two-mode squeezed sta!
will persist for a significant period of time with cross mo
ments playing an important role in determining the prop
ties of the two-oscillator system density matrix. Various o
erator averages can be calculated from the first and sec
moments; for example, for the first oscillator, one has

^a1&5C01,00, ~4.3!

^a1
†&5C10,00, ~4.4!

^a1
2&52C02,001~C01,00!

2, ~4.5!

^a1
†2&52C20,001~C10,00!

2, ~4.6!

^a1
†a1&5C11,001C10,00C01,00 ~4.7!

~similar relations exist for the second oscillator!; and for
cross correlations

^a1
†a2&5C10,00C00,011C10,01, ~4.8!
0-4
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^a2
†a1&5C01,00C00,101C01,10, ~4.9!

^a1
†a2

†&5C10,00C00,101C10,10, ~4.10!

^a1a2&5C01,00C00,011C01,01. ~4.11!

Equations of motion for the moments can be derived fr
Eq. ~4.1!. Although for our purpose in this paper only seco
order moments are important to the density matrix positiv
we nonetheless discuss in passing first order moments, w
are governed by four coupled differential equations:

Ċ10,005~ iv2g!C10,001gC01,001 iJC00,10, ~4.12!

Ċ01,005~2 iv2g!C01,001gC10,002 iJC00,01, ~4.13!

Ċ00,105~ iv2g!C00,101gC00,011 iJC10,00, ~4.14!

Ċ00,015~2 iv2g!C00,011gC00,102 iJC01,00. ~4.15!

Equations~4.12!–~4.15! obey the Ehrenfest theorem, whic
connects the time dependence of expectation values of
nonically conjugate variables with the Hamiltonian equatio
of classical mechanics:

d

dt
~C10,001C01,001C00,101C00,01!

5 i ~v1J!~C10,002C01,001C00,102C00,01!. ~4.16!

The equations that govern the time evolution of second o
moments were first derived in Ref.@4#:

Ċ20,0052~ iv2g!C20,002g~ n̄2C11,00!1 iJC10,10,
~4.17!

Ċ11,0052g~ n̄2C11,00!12g~C02,001C20,00!

1 iJ~C01,102C10,01!, ~4.18!

Ċ02,00522~ iv1g!C02,002g~ n̄2C11,00!2 iJC01,01,
~4.19!

Ċ10,1052ivC10,1012iJ~C20,001C00,20!

1g~C10,011C01,1022C10,10!, ~4.20!

Ċ10,015 iJ~C00,112C11,00!1g~C01,011C10,1022C10,01!,
~4.21!

Ċ01,1052 iJ~C00,112C11,00!1g~C01,011C10,1022C01,10!,
~4.22!

Ċ01,01522ivC01,0122iJ~C02,001C00,02!

1g~C10,011C01,1022C01,01!, ~4.23!

Ċ00,2052~ iv2g!C00,202g~ n̄2C00,11!1 iJC10,10,
~4.24!
05612
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Ċ00,1152g~ n̄2C00,11!12g~C00,021C00,20!

2 iJ~C01,102C10,01!, ~4.25!

Ċ00,02522~ iv1g!C00,022g~ n̄2C00,11!2 iJC01,01.
~4.26!

For a state with initial zero first order moments, the dissip
tive dynamics and the properties of the Gaussian den
matrix as a function of time are completely determined
the above ten coupled equations. Solutions for on-site m
ments were already listed in Ref.@1# for all initial Gaussian
wave packets including that of the two-mode squeezed s
For zero direct couplingJ50, analytical solutions for the
cross moments are given in Appendix D.

To further understand the physical significance of the s
ond order moments, let us defineSas the sum of four out of
the ten second order moments:

S[C10,101C01,011C11,001C00,11, ~4.27!

and A as the sum of the remaining six second order m
ments:

A[C20,001C02,001C00,021C00,20

1C10,011C01,10. ~4.28!

Consider two Einstein-Podolsky-Rosen type operatorsû and
v̂:

&û5a11a1
†1a21a2

† , ~4.29!

i& v̂5a12a1
†2a21a2

† . ~4.30!

The variances of the operatorsû and v̂ can be conveniently
expressed in terms ofS andA:

^~Dû!2&511S1A, ~4.31!

^~D v̂ !2&511S2A. ~4.32!

From the set of coupled equations for second moments
can derive equations of motion forS in Eq. ~4.27! andA in
Eq. ~4.28!:

Ṡ522g~S22n̄!12gA

12iJ~C20,002C02,001C00,202C00,02!

12iv~C10,102C01,01!, ~4.33!
0-5
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Ȧ522gA12g~S22n̄!12iJ~C10,102C01,01!

12iv~C20,002C02,001C00,202C00,02!. ~4.34!

It follows thatSasymptotically goes to 2n̄ at long times, and
A to zero. Adding the above two equations,

d

dt
~S1A!52i ~J1v!~C20,002C02,001C00,20

2C00,021C10,102C01,01!. ~4.35!

Our initial state here is the highly entangled two-oscilla
squeezed state

e2s~a1
†a2

†
2a1a2!u0& ~4.36!

with s a real number andu0& the vacuum state for both osci
lators. The characteristic function at timet50 has the form

x~l1 ,l1* ,l2 ,l2* ,0!5exp@2 1
2 sinh 2s~l1l21l1* l2* !

2sinh2 s~ ul1u21ul2u2!#. ~4.37!

Details of the derivation of Eq.~4.37! can be conveniently
found in Appendix C. Att50 there are only four nonzer
second moments, namely,

C11,00~0!5C00,11~0!5sinh2 s, ~4.38!

C10,10~0!5C01,01~0!52
1

2
sinh 2s. ~4.39!

For zero direct couplingJ50, analytical expressions of a
nonzero second order moments can be obtained for an in
two-mode squeezed state~cf. Appendix E!. Those expres-
sions will be used to derive an analytical criterion for dens
matrix negativity for two uncoupled oscillators. Analytic
expressions ofS andA for an initial two-squeezed state an
zero couplingJ50 are also listed in Appendix E.
05612
r
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The criterion for density matrix positivity is best illus
trated in the matrix forms of the second order moments. T
second order terms in the exponent of Eq.~4.2! can be writ-
ten in a matrix form:

1

2
~l1* l1 l2* l2!

3S 2C11,00 2C02,00 2C10,01 C10,10

2C20,00 2C11,00 C10,10 2C10,01

2C10,01 C01,01 2C00,11 2C00,02

C10,10 2C01,10 2C00,20 2C00,11

D S l1

l1*
l2

l2*
D .

~4.40!

One can also write the second order exponent in the for

1

2
~l1

R l1
I l2

R l2
I !M ~l1

R l1
I l2

R l2
I !T, ~4.41!

where the new basis is related to (l1* l1 l2* l2)T by

S l1
R

l1
I

l2
R

l2
I
D 5S 1

2

1

2
0 0

2
i

2

i

2
0 0

0 0
1

2

1

2

0 0 2
i

2

i

2

D S l1

l1*
l2

l2*
D ~4.42!

andM is a real symmetric matrix

M5S V1 V12

V12
T V2

D ~4.43!

with
V152S C20,001C02,002C11,00 i ~C20,002C02,00!

i ~C20,002C02,00! 2C02,002C20,002C11,00
D , ~4.44!

V252S C00,201C00,022C00,11 i ~C00,202C00,02!

i ~C00,202C00,02! 2C00,022C00,202C00,11
D , ~4.45!

and

V125S C10,101C01,012C10,012C01,10 i ~C10,102C01,011C10,012C01,10!

i ~C10,102C01,012C10,011C01,10! 2C10,102C01,012C10,012C01,10
D . ~4.46!
0-6
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The corresponding Wigner characteristic functi
xW(l1 ,l1* ,l2 ,l2* ) can also be written in the matrix form

xW~l1
R ,l1

I ,l2
R ,l2

I !5expF2
1

2
~l1

R l1
I l2

R l2
I !

3~ I 2M !~l1
R l1

I l2
R l2

I !TG
~4.47!

with I the identity matrix.
The criterion for density matrix positivity can be writte

in the form @9#

Z~ t !.0 ~4.48!

where the auxiliary functionZ(t) is defined as

Z~ t ![Det@ I 2V1#Det@ I 2V2#1~12Det@V12# !2

2Tr@~ I 2V1!KV12K~ I 2V2!V12
T K#2Det@ I 2V1#

2Det@ I 2V2# ~4.49!

with the matrixK

K5S 0 1

21 0D . ~4.50!
,
n-

e
es

w

05612
For Gaussian states, which are the focus of the discus
here, Eq.~4.48! is a necessary and sufficient condition f
density matrix positivity @9#. Since the determinant ofI
2M can be written as

Det@ I 2M #5Det@ I 2V1#Det@ I 2V2#1Det2@V12#

2Tr@~ I 2V1!KV12K~ I 2V2!V12
T K#,

~4.51!

the positivity criterion is equivalent to

Det@M2I #12Det@V12#2Det@V12I #2Det@V22I #,1.
~4.52!

For an initial two-mode squeezed state the auxiliary fu
tion Z(0) equals zero. Unlike the case of one primary osc
lator, it turns out thatŻ(0) vanishes as well~cf. Appendix F!.
Therefore, for the density matrix to exhibit negativity
small t, one needs to show that

Z̈~0!,0. ~4.53!

Fortunately, for the set of initial conditions with four nonze
second order moments~4.38! and~4.39!, and zero direct cou-
pling J50, an analytical expression forZ(t) can be obtained
from the ten second order moments after some effort:
Z~ t !516$n̄~ n̄11!1e24gt@ n̄22~2n̄11!sinh2 s#

1e22gt~2n̄11!~sinh2 s2n̄!~v22g2!21@v22g2 cos~2tAv22g2!#%2

24g2e24gt~v22g2!21~2n̄11!2 sinh2 2s sin2~2tAv22g2!. ~4.54!
ity
r-

de-

te

-

This analytical expression forZ(t) is one of our main results
and allows positivity determination of the two-oscillator de
sity matrix for all t. Expanded up to third order int around
t50, the auxiliary functionZ(t) has a surprisingly simple
form:

Z~ t'0!516g2t2~124gt !~2n̄112e22s!

3~2n̄112e2s!. ~4.55!

The criterion~4.53! based on the second derivativeZ̈(t) at
t50 reads

~2n̄112e22s!~2n̄112e2s!.0. ~4.56!

For s.0 (s,0), this implies that 2n̄11.e2s (2n̄11
.e22s) in order to maintain density matrix positivity at th
beginning of the time evolution. For any lower temperatur
density matrix negativity will be encountered at smallt. In
the remainder of the section, without loss of generality
shall assumes.0.
,

e

The next question is how long density matrix negativ
lasts and if it recurs for low temperatures. To obtain info
mation on the duration and recurrence of negativity, we
note the roots ofZ(t)50 by t0 :

~sinh2 s2n̄!~v22g2!21@v22g2 cos~2t0Av22g2!#

1n̄~2n̄11!21@~ n̄11!e2gt01n̄e22gt0#

5e22gt0 sinh2 s6
1

2
g sinh 2s~v22g2!21/2

3sin~2t0Av22t2!. ~4.57!

Note the second term on the left hand side of Eq.~4.57!
which containse2gt0 and are hence unbounded. For fini
temperatures,n̄Þ0, this term makes sure that Eq.~4.57! can-
not be satisfied for larget0 . Therefore, for finite tempera
tures, the density matrix retains positivity~with no cross-
overs to negativity! at long times sinceZ(`)516n̄2(n̄
11)2.0. At zero temperature, the equation fort0 can be
simplified as
0-7
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v22g2 cos~2t0Av22g2!

v22g2

5e22gt06
g coths

Av22g2
sin~2t0Av22g2!. ~4.58!

Depending on the size ofs relative to energiesv andg, the
equation admits one to an infinite number of solutions. T
becomes apparent if Eq.~4.58! is rewritten as

v2

v22g22e22gt05
g2

v22g2A11
v22g2

g2 tanh2 s

3sin~a62t0Av22g2!, ~4.59!

where

a5arctan
g tanhs

Av22g2
. ~4.60!

For a sufficiently small squeezing parameters, such that

tanhs<
g

Av21g2
, ~4.61!

there exist an infinity number oft0 that satisfy Eq.~4.59!. It
follows that at zero temperature density matrix negativ
recurs tot5` if Eq. ~4.61! is satisfied. For a large squeezin
parameters such that tanhs;1, there is at least one approx
mate nonzero solution

t0'A 1.5~coths21!

~v22g2!coths1g2. ~4.62!

The reader is referred to Appendix F for further discussio
on t0 andZ(t).

Since for an initial two-mode squeezed state the criti
temperature above which no density matrix negativity occ
is given by 2n̄115e2usu, a condition closely resembling
2n̄115e2r for the one-oscillator case with an initial one
mode squeezed state, we are tempted to compare as we
two auxiliary functions, namely,z(t) for one oscillator and
Z(t) for two oscillators. As it turns out, the equationz(t0)
50 for the one-oscillator case will have the same form
Eq. ~4.57! if the positive sign is taken for the second term
the right hand side of Eq.~4.57!, and the squeezing param
eters is simply replaced byr:

~sinh2 r 2n̄!~v22g2!21@v22g2 cos~2t0Av22g2!#

1n̄~2n̄11!21@~ n̄11!e2gt01n̄e22gt0#

5e22gt0 sinh2 r 1
1

2
g sinh 2r ~v22g2!21/2

3sin~2t0Av22g2!. ~4.63!

Therefore, the results we have obtained so far fort0 in this
section can be applied to the one-oscillator case provi
05612
s

s

l
s

the

s

d

that s is substituted byr, and only the positive sign is take
for the second term on the right hand side of Eq.~4.57!. The
number oft0 that satisfy Eq.~4.57!, however, is about twice
the number oft0 that satisfy Eq.~4.63! for the same bath
temperature and the same values fors and r.

The similarity betweenz(t) for one oscillator andZ(t)
for two oscillators can also be exploited to obtain a proof
the Z(t) non-negativity for two uncoupled oscillators an
2n̄11>e2usu which can be based entirely on the proof of t
z(t) non-negativity in Appendix B. It is then concluded th
for 2n̄11>e2usu andJ50, the two-oscillator density matrix
from an initial two-mode squeezed state does not encou
negativity for all t.

In Fig. 2 the auxiliary functionZ(t) of two uncoupled
oscillators is plotted fors50.1,g/v50.1, and two tempera
turesn̄50 ~upper panel! andn̄50.01~lower panel!. For zero
temperaturen̄50, density matrix negativity recurs for th
entire time interval displayed. Raising the temperature ton̄
50.01 drastically reduces the negativity recurrence so
density matrix negativity reappears briefly only once~near
vt52.3! as shown in the lower panel.

The case of nonzero interoscillator coupling has to
investigated numerically at this stage as analytical soluti
to the ten coupled equations remain elusive. In Fig. 3
display t0 as a function of the interoscillator couplingJ for
s51/2, g/v50.1, andn̄51/2. For this set ofs and n̄, only
one nonzerot0 exists. It is found that positiveJ’s reduce the
amount of timet0 the density matrix spends in negativit

FIG. 2. Negativity of the two-oscillator density matrix is illus
trated by the auxiliary functionZ(t) plotted as a function ofvt for
s50.1, g/v50.1, and two temperatures:n̄50 ~upper panel! and
n̄50.01 ~lower panel!.
0-8
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while negativeJ’s prolongt0 . The couplingJ, however, does
not change the critical temperature below which density m
trix negativity commences.

V. DISCUSSION

As an extension of our previous work@1# we have exam-
ined the detailed behavior of density matrices for two h
monic oscillators evolving under the influence of a form
dissipative bath first proposed by Agarwal@2#. The Agarwal
bath has the appearance of the perfect bath from the phy
perspective: it preserves the translational invariance of
system, and delivers the eventual thermal equilibrium to
dissipative process. For one primary oscillator the Agarw
bath model has been applied to a variety of fields despite
well-known fact that it violates the positivity requirement
the reduced density matrix for certain initial conditio
@3,10–12#. Recently, in the emerging literature of quantu
information and communication@8,9,13–17# an enormous
amount of interest has arisen in bipartite canonical syst
of continuous variables, which are often synonymous wit
pair of harmonic oscillators. The dynamics of a coupled p
of harmonic oscillators in a dissipative bath have also b
an important problem in physics and chemistry. In this pa
we have identified density matrix anomalies for two oscil
tors in an Agarwal bath initially in a two-mode squeez
state. Analytical criteria have also been developed for de
mining density matrix negativity.

Among our findings an analytical form ofZ(t) is obtained
for zero direct couplingJ50, which can be used to probe th
density matrix negativity of two-oscillator systems. For
initial two-oscillator squeezed state with a real squeezing
rameter s, density matrix negativity occurs for two un
coupled oscillators at temperatures lower th
\v/(kB ln cothusu). An analytical expression was also foun
for z(t) for a one-oscillator system initially in a one-mod
squeezed state with a real squeezing parameterr. Proofs of
sustained density matrix positivity have been given for b
temperatures higher than\v/(kB ln cothr) for the one-
oscillator system, and\v/(kB ln cothusu) for the two-

FIG. 3. The duration of negativityt0 as a function of the int-
eroscillator coupling strengthJ for s51/2, g/v50.1, andn̄51/2.
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oscillator system. The effects of the direct interoscillator co
pling J on density matrix negativity were studie
numerically.

The origin of the density matrix negativity documented
this paper lies in the Markovian approximation in the Aga
wal master equation@2#. Suárez, Silbey, and Oppenheim
have studied the validity of the Markovian approximation
the context of relaxation theory of two-level systems@18#. It
was shown that anomalies in the Markovian evolution in
weak coupling limit can be remedied by supplementing
slippage in the initial conditions. It is concluded that nonl
cal memory effects need to be taken into account at the
ginning of the evolution, and only after this transient tim
can the reduced dynamics be properly described by Mark
ian evolution with the density matrix free of negativity@19#.
The merits ~and shortcomings! of the Agarwal bath have
been recently compared in detail@20# with those of other
various relaxation approaches.

Entanglement~or inseparability! highlights quantum non-
locality, and is of great importance to quantum informati
theory. A separable density matrix can be represented b
mixture of direct-product states. Measurements made
states that are separable exhibit only classical correlation
bipartite density matrix is separable if it can be written in t
form

r5(
i

pirA
i

^ rB
i , ~5.1!

where pi.0, and( i pi51. An inseparability criterion con-
cerning positivity of the partial transpose~PPT! of the den-
sity matrix was proposed by Peres@13#, and later shown by
Horodeckiet al. to be a necessary and sufficient conditi
for inseparability of 232 or 233 systems@14#. When it is
applied to Gaussian states in a two-oscillator system,
density matrix is inseparable if and only if@9#

J~ t !,0, ~5.2!

where the auxiliary functionJ(t) is defined as

J~ t ![Det@ I 2V1#Det@ I 2V2#1~12uDet@V12#u!2

2Tr@~ I 2V1!KV12K~ I 2V2!V12
T K#

2Det@ I 2V1#2Det@ I 2V2#. ~5.3!

For an initial two-mode squeezed state with a real squee
parameters and zero direct couplingJ50,

Det@V12#52e24gt sinh2 2s<0. ~5.4!

It follows that in order for the two-oscillator system to b
separable, it is required that
0-9
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0<J~t!5Z~t!24e24gt sinh2 2s516$n̄~ n̄11!1e24gt@ n̄22~2n̄11!sinh2 s#

1e22gt~2n̄11!~sinh2 s2n̄!~v22g2!21@v22g2 cos~2tAv22g2!#%2

24e24gt sinh2 2s@11~2n̄11!2g2~v22g2!21 sin2~2tAv22g2!#. ~5.5!
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Therefore, as a by-product, our examination of the den
matrix negativity here has resulted in an analytical expr
sion for the determination of quantum separability of t
bipartite system.

Gaussian states evolving under the Agarwal bath are
equately described by normal-ordered characteristic fu
tions. Our approach can be readily extended to tripartite s
tems of harmonic oscillators. Trimode entanglement
attracted much attention lately with the advent of expe
ments of continuous-variable teleportation@14#. Separability
properties of multiparty systems are intrinsically more co
plex and intriguing. Work along this direction is current
underway.
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APPENDIX A: THE CHARACTERISTIC FUNCTIONS

The two-oscillator characteristic functio
x(l1 ,l1* ,l2 ,l2* ) @Eq. ~2.8!# is a direct generalization of th
characteristic function for one oscillatorx1(l,l* ) @21#:

x1~l,l* !5Tr~rela†
e2l* a!. ~A1!

For one oscillator, the quantum characteristic funct
x1(l,l* ) is the Fourier transform of the phase space dis
bution functionP1(z,z* ) of the density matrixr,

x1~l,l* !5E d2z exp~lz* 2l* z!P1~z,z* !. ~A2!

The phase space distribution functionP1(z,z* ) is also called
the Glauber-SudarshanP representation of the density matr
r, which plays the role of the quasiprobability:

r5E d2z P1~z,z* !uz&^zu. ~A3!

For the case of two oscillators similar relations exist betwe
the characteristic functionx(l1 ,l1* ,l2 ,l2* ) and the phase
space distribution functionP(z1 ,z1* ,z2 ,z2* ) of the density
matrix r:
05612
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n

x~l1 ,l1* ,l2 ,l2* !

5E d2z1 d2z2 exp~l1z1* 2l1* z11l2z2* 2l2* z2!

3P~z1 ,z1* ,z2 ,z2* !. ~A4!

The often-used Wigner distribution functio
W(z1 ,z1* ,z2 ,z2* ) is the Fourier transform of the Wigne
characteristic functionxW(l1 ,l1* ,l2 ,l2* ) which is related
to x(l1 ,l1* ,l2 ,l2* ) by a simple factor@22#:

xW~l1 ,l1* ,l2 ,l2* !

5E d2z1 d2z2 exp~l1z1* 2l1* z11l2z2* 2l2* z2!

3W~z1 ,z1* ,z2 ,z2* ! ~A5!

5e2ul1u2/22ul2u2/2x~l1 ,l1* ,l2 ,l2* !. ~A6!

The Wigner distribution functionW(z1 ,z1* ,z2 ,z2* ) gives a
description of quantum states in close resemblance to
phase space classical descriptions, which is related to
Weyl classical-quantum correspondence@23#.

APPENDIX B: DENSITY MATRIX NEGATIVITY FOR ONE
PRIMARY OSCILLATOR

In this appendix we describe derivations of the auxilia
function z(t) and its time derivative from the analytical so
lutions to Eqs.~3.5!–~3.7! @1#. A proof thatz(t)>0 for 2n̄
11>e2r is also given here.

The auxiliary functionz(t) can be written as

z~ t !5C11~C1111!24uC02u2. ~B1!

Making use of the expressions forC11 andC02 from Ref.@1#
with the initial conditions C11(0)5sinh2 r and C02(0)5
2sinh 2r/4, one quickly arrives at Eq.~3.26! after some
straightforward simplifications. The time derivative ofz(t)
which follows from Eq.~3.26! takes the form
0-10
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dz

dt
522ge24gt@112n̄~ n̄11!#12ge24gt~2n̄11!cosh 2r 22ge22gt~2n̄11!~sinh2 r 2n̄!~v22g2!21

3@v22g2 cos~2tAv22g2!#2g2e22gt~2n̄11!~2n̄112e2r !~v22g2!21/2sin~2tAv22g2!

2ge22gt~2n̄11!sinh 2r cos~2tAv22g2!. ~B2!

At t50, only C11(C1111) and Re2(C02) contribute todz(t)/dt as the time derivative of Im2(C02) vanishes att50. One
obtains a simple expression@Eq. ~3.27!# for dz/dt at t50.

At the critical temperature 2n̄115e2r , dz/dt adopts the simple form

dz

dt
5gv2e22gte2r sinh 2r ~v22g2!21@12cos~2tAv22g2!#. ~B3!

It is apparent that, for 2n̄115e2r , dz/dt>0. It then follows fromz(0)50 that at the critical temperature (2n̄115e2r)
density matrix positivity is guaranteed@or, equivalently,z(t)>0# for all t.

For temperatures higher than the critical temperature (2n̄11.e2r), we can writedz/dt in the form

dz

dt
52ge24gt~2n̄112e2r !~2n̄112e22r !1ge22gt~2n̄11!~2n̄112e2r1sinh 2r !~v22g2!21@v22g2 cos~2tAv22g2!#

2g2e22gt~2n̄11!~2n̄112e2r !~v22g2!21/2sin~2tAv22g2!2ge22gt~2n̄11!sinh 2r cos~2tAv22g2!

5gv2e22gt sinh 2r ~2n̄11!~v22g2!21@12cos~2tAv22g2!#1ge24gte22r~2n̄112e2r !1ge22gt~2n̄11!

3~2n̄112e2r !j~ t !, ~B4!
f

it

i-

ter-
zed
start,
where the auxiliary functionj(t) is defined as

j~ t !5
v22g2 cos~2tAv22g2!

v22g2

2
g sin~2tAv22g2!

Av22g2
2e22gt

5
gv

v22g2 @12sin~b12tAv22g2!#

1
v

v1g
2e22gt ~B5!

with

b5arctan
g

Av22g2
. ~B6!

For 2n̄11.e2r , in order to prove thatdz/dt is non-negative
for all t, it is sufficient to show thatj(t) is non-negative for
all t. This is obviously true fort>tc5(2g)21 ln@(v1g)/v#.
For small t, it is sufficient to look at a Taylor expansion o
j(t):

j~ t !5
4

3
gv2t32

2

3
g2v2t41O~ t !5. ~B7!

In order for the leading term, which is positive fort.0, to be
much greater than the absolute value of the second term,
required that
05612
is

gt!2. ~B8!

Obviously, the value oftc fulfills this requirement:

gtc5
1

2
lnS 11

g

v D!2 ~B9!

in the physical regime of weak couplingg,v. The auxiliary
function j(t) also has this peculiar property of having pos
tive first and second time derivatives for smallt. For ex-
ample,

j̇~ t !52ge22gt2
2gv

Av22g2
cos~b12tAv22g2!

54gv2t22
8

3
g2v2t31O~ t !4. ~B10!

Sincej(0)50, the fact thatj̇(t).0 for 0,t,tc also shows
that j(t)>0.

APPENDIX C: CHARACTERISTIC FUNCTIONS FOR
SQUEEZED STATES

In this appendix we derive expressions for the charac
istic functions for both one-mode and two-mode squee
states. For the one-oscillator case of a squeezed-state
the characteristic function att50 can be calculated from
0-11
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x~l,l* ,t50!5Tr~ uj&^juela†
e2l* a!

5^0uS†~j!ela†
e2l* aS~j!u0&. ~C1!

Taking advantage of the fact thatS(j)S†(j)51, a pair of
S(j) andS†(j) can be inserted betweenela†

ande2l* a:

x~l,l* ,t50!5^0uS†~j!ela†
S~j!S†~j!e2l* aS~j!u0&.

~C2!

The right hand side of Eq.~C2! can be evaluated from

S†~j!ela†
S~j!5exp~la† coshr 2lae2 iu sinhr !,

~C3!

S†~j!e2l* aS~j!5exp~2l* a coshr 1l* a†eiu sinhr !,

~C4!

which follow from

S†~j!aS~j!5a coshr 2a†eiu sinhr , ~C5!

S†~j!a†S~j!5a† coshr 2ae2 iu sinhr . ~C6!

Therefore one obtains

x~l,l* ,t50!5expS 2ulu2 sinh2 r 2
1

4
l2e2 iu sinh 2r

2
1

4
l* 2eiu sinh 2r D . ~C7!

For the two-oscillator squeezed state the normal-orde
characteristic function reads by definition
05612
d

x~l1 ,l1* ,l2 ,l2* ,0!

5Tr@e2s~a1
†a2

†
2a1a2!u0&^0u

3es~a1
†a2

†
2a1a2!el1a1

†
e2l1* a1el2a2

†
e2l2* a2#.

~C8!

We first make use of the identity@24#

es~a1
†a2

†
2a1a2!5eGa1

†a2
†
e2 ln~coshs!~a1

†a11a2
†a211!e2Ga1a2,

~C9!

whereG5tanhs. Sinceu0& is the vacuum state for both os
cillators, i.e.,

e2 ln~coshs!~a1
†a11a2

†a211!e2Ga1a2u0&5e2 ln~coshs!u0&,

~C10!
one arrives at

x~l1 ,l1* ,l2 ,l2* ,0!5e22 ln~coshs!^0ue2Ga1a2el1a1
†

3e2l1* a1el2a2
†
e2l2* a2e2Ga1

†a2
†
u0&.

~C11!

We would like to move the two exponential operatorsel1a1
†

and el2a2
†

to the left of the double annihilation operato
e2Ga1a2. We need to apply to Eq.~C11! three times the iden-
tity

eAeB5e@A,B#eBeA, ~C12!

provided that

†@A,B#,A‡5†@A,B#,B‡50. ~C13!

It then follows from Eq.~C11! that
x~l1 ,l1* ,l2 ,l2* ,0!5e22 ln~coshs!^0ue2Gl1a2e2Ga1a2el2a2
†
e2l1* a1e2l2* a2e2Ga1

†a2
†
u0& ~C14!

5e22 ln~coshs!^0ue2Gl1a2el2a2
†
e2Gl2a1e2Ga1a2e2l1* a1e2l2* a2e2Ga1

†a2
†
u0&

~C15!

5e22 ln~coshs!^0ue2Gl1l2e2Gl1a2e2Gl2a1e2Ga1a2e2l1* a1e2l2* a2e2Ga1
†a2

†
u0&.

~C16!
We are now left to evaluate

^0uea* a1eb* a2e2Ga1a2e2Ga1
†a2

†
u0& ~C17!

with
a* 52Gl22l1* , ~C18!

b* 52Gl12l2* . ~C19!

Expanding all four exponential operators, one has
0-12
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^0uea* a11b* a2e2Ga1a2e2Ga1
†a2

†
u0&

5^0uea* a1eb* a2e2Ga1a2(
n50

`

~2G!nun,n& ~C20!

5^0uea* a1eb* a2(
n50

`

(
l 50

n
~2G! l 1nn!

l ! ~n2 l !!
un2 l ,n2 l &

~C21!

5^m,m8u (
m50

`

(
m* 50

`
~a* !m~b* !m8

Am!m8!

3 (
n50

`

(
l 50

n
~2G! l 1nn!

l ! ~n2 l !!
un2 l ,n2 l & ~C22!

5 (
m50

`

(
m* 50

`
~a* !m~b* !m8

Am!m8!

3 (
n50

`

(
l 50

n
~2G! l 1nn!

l ! ~n2 l !!
dm,n2 ldm8,n2 l ~C23!

5 (
n50

`

~2G!2n(
l 50

n

~21!n2 l S a* b*

G D n2 l

3
n!

l ! ~n2 l !! ~n2 l !!
~C24!

5 (
n50

`

LnS a* b*

G D ~G2!n, ~C25!

whereLn(x) is the Laguerre polynomial of ordern @25,26#.
The series in Eq.~C25! is just the generating function o
Laguerre polynomials:
05612
g~x,z!5~12z!21e2xz/~12z!5 (
n50

`

Ln~x!zn,

uzu,1. ~C26!

Therefore

^0uea* a11b* a2e2Ga1a2e2Ga1
†a2

†
u0&

5
1

12G2 expS 2
a* b* G

12G2 D , ~C27!

where the prefactor (12G2)21 exactly cancels out the pre
factore22 ln(coshs) in Eq. ~C14!. Substitutinga* andb* , one
finally obtains

x~l1 ,l1* ,l2 ,l2* ,0!5expS 2Gl1l22
a* b* G

12G2 D ~C28!

5expF2
G

12G2 ~l1l21l1* l2* !

2
G2

12G2 ~ ul1u21ul2u2!G , ~C29!

where the coefficients can be simplified as
G

12G2 5
1

2
sinh 2s, ~C30!

G2

12G2 5sinh2 s. ~C31!

APPENDIX D: CROSS MOMENTS FOR TWO
PRIMARY OSCILLATORS

From the four coupled equations for the cross mome
which are decoupled from the rest of the ten second or
moments (J50), one obtains solutions forC10,10, C01,01,
C10,011C01,10, and C10,012C01,10 applicable to all initial
Gaussian wave packets:
C10,105
e22t~g1Ag22v2!

4~g22v2!
$g2@B3~e2tAg22v2

21!21B1~e2tAg22v2
11!2#1gB2~e2tAg22v2

21!@Ag22v2~e2tAg22v2
11!

1 iv~e2tAg22v2
21!#22vB1@v~e4tAg22v2

11!2 iAg22v2~e4tAg22v2
21!#%, ~D1!

C01,015
e22t~g1Ag22v2!

4~g22v2!
$g2@B1~e2tAg22v2

21!21B3~e2tAg22v2
11!2#1gB2~e2tAg22v2

21!@Ag22v2~e2tAg22v2
11!

2 iv~e2tAg22v2
21!#22vB3@v~e4tAg22v2

11!1 iAg22v2~e4tAg22v2
21!#%, ~D2!

C10,011C01,105
e22t~g1Ag22v2!

2~g22v2!
$g2B2~e4tAg22v2

11!22v2B2e2tAg22v2
~e2tAg22v2

21!@ iv~B12B3!~e2tAg22v2
11!

3~e2tAg22v2
21!1~B11B3!Ag22v2~e2tAg22v2

11!#%, ~D3!

C10,012C01,105B4e22gt. ~D4!

Here theB’s are to be determined by the initial conditions.
0-13
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APPENDIX E: ANALYTICAL EXPRESSIONS FOR THE
JÄ0 CASE

For zero direct couplingJ50, analytical expressions o
nonzero second order moments are easily obtained fo
initial two-mode squeezed state:

C20,005C00,205C02,00* 5C00,02*

5
1

2
ge22gt~v22g2!21~2n̄112cosh 2s!

3sinh~ tAg22v2!@Ag22v2 cosh~ tAg22v2!

1 iv sinh~ tAg22v2!#, ~E1!

C11,005C00,115n̄2
1

2
e22gt~2n̄112cosh 2s!

3~v22g2!21@v22g2 cosh~2tAg22v2!#,

~E2!

C10,105C01,01* 52
1

2
e22gt sinh 2s@cosh~2tAg22v2!

1 iv~g22v2!21/2sinh~2tAg22v2!#, ~E3!

C10,015C01,1052
1

2
ge22gt~g22v2!21 sinh 2s

3sinh~2tAg22v2!. ~E4!

The above expressions are used to derive an analytical c
rion for density matrix negativity for two uncoupled oscilla
tors.

It follows that analytical expressions ofA andS can also
be obtained for an initial two-squeezed state and zero c
pling J50:

A5ge22gt~v22g2!21/2~2n̄112e22s!

3sin~2tAv22g2!, ~E5!

S52n̄2e22gt sinh 2s cos~2tAv22g2!

2e22gt~2n̄112cosh 2s!~v22g2!21

3@v22g2 cos~2tAv22g2!#. ~E6!
:

s

05612
an

te-

u-

APPENDIX F: NEGATIVITY CRITERION FOR TWO
UNCOUPLED OSCILLATORS

For an initial two-mode squeezed state with a squeez
parameters, there exists an analytical expression forZ(t) for
J50. A series expansion ofZ(t) for J50 aroundt50 up to
fifth order in t reveals that

Z~ t'0!516F ~gt !224~gt !31
28

3
~gt !4216~gt !5G

3~2n̄112e22s!~2n̄112e2s!

1
32

3
v2g2t4~2n̄11!~cosh 4s21!

1
64

3
v2g3t5~2n̄11!@2n̄2 cosh 2s

2~2n̄11!sinh2 s~719 cosh 2s!#1O~ t !6.

~F1!

Since the power series ofZ(t) starts from second order int,

Z(0)5Ż(0)50. If 2n̄11,e2usu, Z̈(0),0, and density ma-
trix negativity occurs at smallt. As t increases, the negativity
problem will be alleviated because the third time derivat
d3Z/d3t at t50 is positive, and the fourth time derivativ
d4Z/d4t at t50 can also be positive for weak couplin
v@g.

Taking Z(t) to zero puts a constraint ont0 . From Eq.
~4.57! the solutions fort0 often come in pairs. Two solution
with a pair labeled byt0

a andt0
b are related to one another b

t0
a~s!5t0

b~2s!. ~F2!

This means that one needs only to solve the problem
positives if J50. However, the symmetry no longer stan
when a finiteJ is introduced.
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