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Matching of Complex Patterns by Energy Minimization

C. H. Leung and Ching Y. Suen

Abstract—Two patterns are matched by putting one on top of the
other and iteratively moving their individual parts until most of their
corresponding parts are aligned. An energy function and a neighborhood
of influence are defined for each iteration. Initially, a large neighborhood
is used such that the movements result in global features being coarsely
aligned. The neighborhood size is gradually reduced in successive itera-
tions so that finer and finer details are aligned. Encouraging results have
been obtained when applied to match complex Chinese characters. It has
been observed that computation increases with the square of the number
of moving parts which is quite favorable compared with other algorithms.
The method was applied to the recognition of handwritten Chinese
characters. After performing the iterative matching, a set of similarity
measures are used to measure the similarity in topological features
between the input and template characters. An overall recognition rate
of 96.1% is achieved.

Index Terms—Elastic matching, handwritten Chinese character recog-
nition, pattern matching.

I. INTRODUCTION

The matching of structural patterns is a very difficult problem
when the patterns are complex and distorted. Since computational
complexity grows rapidly with the complexity of the problem, the
applicability of many algorithms is greatly limited. For example,
the relaxation labeling method has a complexity proportional toN

4

whereN is the number of feature points [1] or line elements [2]–[4]
in each pattern. Syntactic methods have also been proposed but their
applicability has only been demonstrated with simple patterns of
mild distortions [5], [6]. There is much difficulty in grammatical
inference and parsing when both the complexity and distortions are
considerable, e.g., with characters with broken, touching and missing
strokes, etc. Other methods include dynamic programming [7], elastic
matching [8], [9], and neural networks [10]–[13].

An alternative approach is to formulate the problem of template
matching as a minimization problem. The template pattern is elas-
tically deformed in order to match with the input pattern. The
objective is to achieve maximum similarity between the resulting
patterns while minimizing the deformation. This is achieved through
the minimization of a cost (or energy) function [11], [14]–[17]. A
variety of energy functions are employed with applications including
the matching of brain contours [14], character patterns [15], contours
of the mitral valve of the beating heart [16], stereo images [17], and
other miscellaneous shapes [11]. Methods along a similar direction
but different in details and interpretations have also been proposed
[18], [19].

In this article, the approach of pattern matching by energy min-
imization is adopted. A preliminary report has been given by the
author at a conference [15]. The present article contains a compre-
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Fig. 1. Illustration of pattern matching.

hensive account as well as its extension to complex handwritten
Chinese character recognition. The main features of this method
are the applicability to the matching of complex patterns and the
relatively low computational complexity.

In the proposed method, one pattern is put on top of the other
and the individual parts are iteratively moved until most of the cor-
responding parts are aligned. A neighborhood of influence is defined
for each iteration. Initially, a large neighborhood is used which results
in global features being coarsely aligned. The neighborhood size is
gradually decreased in successive iterations resulting in finer and finer
details being aligned. An energy function is defined for each iteration
so that optimal matching can be achieved by minimizing this function.
This top-down procedure is found to be quite effective in arriving at
good matches.

In the following sections, a brief review of the method proposed by
the authors in a previous conference [15] is given, as well as its exten-
sions to the recognition of complex handwritten Chinese characters.

II. THEORY OF THE METHOD

A. Iterative Matching

The patterns to be matched are assumed to consist of binary lines
and curves, e.g., the edge points of an object or the skeleton of a
character. The lines and curves are then approximated by fitting a
set of short straight lines of approximately equal lengths. Let us call
these short lines “Elements.” In the actual implementation, the pattern
was of size 64� 64 and each element was about 11 pixels long.
Furthermore, let us call the two patterns to be matched the “Template
Pattern” and the “Input Pattern.” An example for illustration is shown
in Fig. 1. Hence the pattern matching problem becomes that of
matching two sets of elements from the template and input patterns.
The number of elements in the two patterns need not be equal.

An energy functionE1 is defined for guiding the movements of
template elements toward the input elements. It consists of two terms.
Qualitatively speaking, the first term measures the distances between
each input element and the nearby template elements and thus serves
as an overall distance measure between the two patterns. The template
pattern is moved in successive steps to align with the input pattern.
This introduces distortions in the template pattern and the second term
of the energy function is a measure of this distortion. The objective
is to align the two patterns as much as possible without excessive
distortion. This can be achieved by guiding the movements in such
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a way that the energy function is minimized. A size parameter is
incorporated so that large scale features are aligned at the beginning
and finer details at later stages. Details of the energy function are
as follows:

E1 = � �K2

1

N

i=1

ln

N

j=1

�(jTTT j � IIIij; K1)f(�Tj;Ii)

+ �

N

j=1

N

k=1

wjk(dTj;Tk � d0Tj;Tk)
2 (1)

where

NT number of template elements;
NI number of input elements;
Tj position vector of the midpoint of thejth

template element;
�Tj direction of thejth template element;
Ii position vector of the midpoint of theith input

element;
�Ii direction of theith input element;
�(jTTT j � IIIij; K1) = exp(�jTTT j � IIIij

2=2K2

1 )
�Tj;Ii angle between template elementTj and input

elementIi; restricted within 0–90�;
f(�Tj;Ii) = max(cos �Tj;Ii; 0:1)
dTj;Tk current value ofjTTT j � TTT kj
d0Tj;Tk initial value of jTTT j � TTT kj

wjk = �(jTTT j�TTT kj; K2)=
N

n=1
�(jTTT j�TTTnj; K2)

K1&K2 size parameters of the Gaussian windows
which establish neighborhoods of influence,
and are decreased monotonically in successive
iterations;

� and� coefficients used to weigh the importance of
the two terms.

The first term on the right-hand side of (1) is a measure of
the overall distance between elements of the two patterns. The
form of the expression is modified from the “elastic net method”
proposed by Durbin and Willshaw for solving the traveling salesman
problem [20]. For each elementIi of the input pattern, the summation
ln �

N

j=1 �(jTTT j � IIIij; K1)f(�Tj;Ii) is dominated by the contribution
from the nearest template elementTj with a similar slope. The value
of the multiplicative factorf(�Tj;Ii) is large for similar slopes and
small for slopes nearly perpendicular to each other. It is defined
as max(cos �Tj;Ii; 0:1) so that the minimum value is 0.1 instead
of 0. This provides the flexibility such that even if the slopes of
two elements are at 90� to each other, the chance of match is not
reduced to zero. As the sizeK1 of the Gaussian window decreases
monotically in successive iterations, in order for the energyE1 to
attain a minimum, eachIi should have at least oneTj attracted to it.

The second term consists of a weighted sum of all relative
displacements between each template element and its neighbors
within the Gaussian weighted neighborhood of size parameterK2:
Minimization of this term minimizes the structural distortion of the
template pattern while each element is being moved. Each template
element normally does not move toward its nearest input element but
tends to follow the weighted mean movement of its neighbors in order
to minimize the distortions within the neighborhood.K2 is initially
chosen to be large so that the distortions of large scale features are
kept small and the template elements move collectively to align with
the input pattern in a coarse (or global) manner. AsK2 is gradually
and monotonically decreased in successive iterations, finer and finer
details of the two patterns are aligned. ParametersK1 andK2 can
have the same initial values but different schedules for decrement in
successive iterations. This has the flexibility of controlling the rate of

distortion during the iterations. The actual schedules for decreasing
K1 andK2 are given by (6) and (7) in Section III.

Minimization of E1 is carried out by gradient descent. The
movement�TTT j applied toTj is equal to�@E1=@TTT j and is given by

�TTT j =�

N

i=1

uij(IIIi � TTT j) + 2�

�

N

m=1

(wmj + wjm)[(TTTm � TTT 0

m)� (TTT j � TTT 0

j )] (2)

where

uij =�(jIIIi � TTT j j; K1)f(�Ii;Tj)

N

n=1

�(jIIIi � TTTnj; K1)f(�Ii;Tn)

TTT 0

j = initial value ofTTT j :

Template elementTj thus moves according to the attraction from the
input elements as well as following the weighted mean movements of
all template elements within the neighborhood. The weightsuij are
normalized so that each input element has the same total influence
(attraction) on the template elements. This is important because if
an input element is far away from every template element and no
normalization is done, then its force attracting template elements will
be relatively weak and hence will probably fail to match to any
template element.

The above procedure moves the template elements toward the input
elements. The minimization of energyE1 tends to find a matching
template element for each input element. However, it does not take
an active role to find a matching input element for each template
element. To correct this, the roles of the template and input patterns
are swapped during each iteration and there are two passes in each
iteration. In the first pass, the template elements are attracted to the
input elements, and in the second pass, the input elements are attracted
to the template elements. A second energy functionE2 which is
similar to E1 is thus defined for guiding the movement of input
elements toward template elements

E2 = � �K2

1

N

i=1

ln

N

j=1

�(jIIIj � TTT ij; K1)f(�Ij;Ti)

+ �

N

j=1

N

k=1

xjk(dIj;Ik � d0Ij;Ik)
2 (3)

where

xjk = �(jIIIj � IIIkj; K2)

N

n=1

�(jIIIj � IIInj; K2):

The negative of the gradient gives the movement�IIIj applied toIj

�IIIj =�

N

i=1

vij(TTT i � IIIj) + 2�

�

N

m=1

(xmj + xjm)[(IIIm � III0m)� (IIIj � III0j )] (4)

where

vij = �(jTTT i � IIIj j; K1)f(�Ti;Ij)

N

n=1

�(jTTT i � IIInj; K1)f(�Ti;In)

K1 andK2 in (3) are the same asK1 andK2 in (1) above.
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B. Pattern Recognition

After all the iterations, the template and input elements will have
moved toward each other. Hopefully most of the corresponding
elements will overlap or have at least moved closer to each other. The
input pattern is matched with every member of the set of template
patterns and the “best matched” template is taken as the recognized
class. Hence we need to device a measure for the “goodness of
match.” The most natural candidate for this measure is the energy
function itself which measures the degree of closeness between the
elements of the two patterns and also the amount of distortion
suffered by each pattern. A small value indicates good match and vice
versa. However, it turned out that this function failed to serve as a
reliable classification criterion in practical experiments. An alternative
function for measuring the amount of distortion was also tried but
the result was again not satisfactory.

Besides this, six other distance measures proposed in [21] and
[22] were tested to check whether they can be used for measuring
the goodness of match. The first two are nearest neighbor distances.
For each black pixel of the template elements, the nearest black
pixel belonging to the input elements is identified and the Euclidean
distance is measured. The procedure is repeated with the roles of
the template and input elements interchanged. The mean distance
obtained gives the first measure, while the square root of the mean
square distance forms the second measure.

The third measure is the Hamming distance. Each pixel in the
template is compared with the pixel at the same position in the input.
If they do not agree (i.e., one is black while the other is white),
the distance is increased by one. The fourth measure is a similarity
measure. Each black pixel in the template is compared with the
pixel at the same position in the input. If they are both black, the
similarity measure is increased by one. The fifth and sixth measures
are modified versions of the fourth one.

Experimental results show that all these measures do not give
satisfactory recognition results. The failure may be due to the fact
that patterns are often classified according to topological features,
e.g., there are two loops for the digit 8. Even though the distortion
of the loops may be very severe, we still would classify it as digit 8.
Hence if we only use the geometric distortion measure in Euclidean
space for classification, the classification will be not be very reliable.

In view of this, the approach finally adopted was to use the
matching result as a starting point, and then check the topological
features of the two patterns for agreement. A measure of goodness
of match is then evaluated. The steps involved are discussed below.

1) Derivation and Refinement of the Matching List:After the it-
erations are over, the positions of the template and input elements are
examined and the pairs mutually closest to each other are identified
and entered into a matching list. For example, template elementb is
matched to input elementn; as shown in Fig. 1. There will be some
unmatched elements, such as template elementa: However, due to the
variations in size and distortions, the template and input patterns will
often have different numbers of elements. Hence one element should
sometimes be matched to two and vice versa. For example, template
elementsa and b should be matched to input elementn: Hence the
matching list should be refined. The algorithm works by examining
each unmatched element (such as a in Fig. 1) to see whether it forms
an approximate straight line with its connected neighbor (b). If yes,
it should be considered as a match to the same element(n) as its
neighbor. After this refinement, the remaining unmatched elements
can be considered as truly unmatched. A matching scoreSmatch can
be evaluated as

Smatch = 1�Nu=min(NT ; NI)

whereNu is the number of unmatched elements.

2) Evaluation of Directional Conformity:Although there are
variations in the directions of strokes in human handwriting, the
variations in the majority of cases should not deviate too much from
the expected range of values. Hence a measure of the directional
conformity can serve as a measure of match. Specifically, the
direction of theith template elementTi is compared with its matched
input element. An allowance of 15� is adopted. If the difference in
direction ��i (absolute value) is greater than the allowance, a
matching scoreSi

dir is deducted by an amount proportional to the
excess deviation. An overall score for directional conformitySdir is
then obtained by taking the mean of the individual scores of each
element

Si
dir =1�max(0;min(��i � 15; 60))=60

Sdir =E[Si
dir]:

The expression forSi
dir above maps��i within [0�; 15�] to the single

output value of 1.0, while deviations within [15�, 75�] are mapped
to [1, 0], and that within [75�, 90�] are mapped to 0. The rationale is
that a deviation of less than 15� in stroke direction is an acceptable
value for handwritten Chinese characters and no penalty should be
imposed, while a deviation of more than 75� is considered extremely
unlikely and should be given the full penalty (for Chinese characters,
the stroke directions are quite significant).

3) Evaluation of Connectivity Conformity:A continuous stroke
should be matched to a continuous stroke and a crossing point
should be matched to a crossing point. Although there may be
occasional breakage due to noise, we can still get a reasonably
reliable measure if we examine many elements and take the overall
statistics. For each pair of connected template elements such asg
andh in Fig. 1, we examine the corresponding matched pairr and
s in the input pattern to see whether they are also connected. If
connected, a score of 1 is given. Otherwise a 0 is recorded. After
examining all connected pairs, we can arrive at a mean score for the
conformity of connectivitySconn:

Unfortunately, this measure may not be reliable. In handwriting,
some strokes which normally do not touch each other are sometimes
drawn in such a way that they touch by pure chance. For example,
input elementt in Fig. 1 does not touch the junction formed byn; p;
and r; but the corresponding template element i is drawn to touch
with the junction. Hence if the template is taken as the reference, this
will contribute to a negative score.

One solution is to build a knowledge base which specifies whether
each connection is mandatory or not, and only the mandatory con-
nections are examined for conformity. Another way is to collect a
large number of sample characters and compute the statistics on the
probability of connectivity. The former method is labor intensive
while the latter requires a large number of samples for each character
category which may be difficult to realize for Chinese characters
having more than 5000 character categories in daily use. If no action
is taken to avoid this pitfall, we may have to reduce the weighting of
this score (for the conformity of connectivity) in the final matching
score calculation in order to reflect its inherent uncertainty.

4) Evaluation of Curvature Conformity:Chinese characters are
made up of both straight and cursive strokes. For the cursive
strokes, some are drawn in a clockwise direction while others are
counterclockwise. Hence the degree of match in curvature can serve
as some indication of the similarity of the matching characters. For
each pair of connected template elements such asj andk (in Fig. 1),
the corresponding input pairu andv are examined to check whether
the angular deviation in going fromj to k is about the same as that
fromu to v: Depending on the difference in curvature�Cjk (absolute
value in degrees), a matching scoreSjk

cur can then be computed

Sjk
cur = 1�max(0;min(�Cjk � 15; 30))=30:
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(a) (b)

(c) (d)

Fig. 2. (a) Template image, elements are labeled by alphanumeric characters, (b) input image, (c) overlapped images of (a) and (b) before pattern matching,
and (d) overlapped images of template and input images after matching.

The form of the expression is similar to that ofSi
dir discussed

previously. The choice of the threshold values is based on our
experience. For those elements connected to a multi-element junction
such as the junction comprisingb; c; e; i; and g; the pairs most
similar in slope are identified. For example,g and c form one pair,
b ande form another, andi is alone. The corresponding pairs in the
other pattern are then checked for similarity in curvature. After an
exhaustive checking, a mean score for the conformity in curvature
Scur can be evaluated.

Scur = E[Sjk
cur]:

5) Incorporation of Preclassification Statistics:Since iterative
matching is time consuming, it is suitable as a validation tool in the
final-stage of recognition. There should be a preclassification stage to
screen out a small set of most probable classes from the thousands of
candidate classes. Usually, a statistical classifier is employed which
gives some figures to indicate how similar a template is to the input. In
our experiment, we used the conventional Bayes classifier assuming
Gaussian statistics. The output of the classifier is proportional to the
logarithm of the probability of the template being the same class as
the input. This log probability can contribute to measuring how good
the match is. In our experiment, the most probable ten candidate
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(a) (b)

(c) (d)

Fig. 3. (a) Template image, elements are labeled by alphanumeric characters, (b) input image, (c) overlapped images of (a) and (b) before pattern matching,
and (d) overlapped images of template and input images after matching.

classes from the preclassifier are sorted out. Their log probabilities
P (k); k = 1; � � � ; 10 are converted into a matching scoreSk

pre for
the kth candidate as follows:

Sk

pre = 1�max(0;min(P (1)� P (k)� 5; 30))=30:

Again, the form of the expression is similar to the previous measures.
The threshold values were chosen after some analyses on the output
values of the preclassifier had been carried out.

6) Evaluation of Overall Score for Recognition Decision:Each
of the five scores is not always reliable. However, by combining

them into an overall score, the reliability tends to be higher. The
simplest way is to use a linear combination of each scoreSi with
an attached weightwi: The set of weights can be the same for
all classes. Alternatively, some scores may be more effective in
classifying some patterns. For example, if a pattern contains a lot
of curve strokes, the curvature score may be more significant. Hence
a different set of weights for the five scores may be adopted for
different classes. Alternatively, a neural network may be used to
combine the scores [18], [23].

In practice, the optimal approaches require a large number of
training samples. In the present experiment, most of the available
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(a) (b)

(c) (d)

Fig. 4. (a) Template image, elements are labeled by alphanumeric characters, (b) input image, (c) overlapped images of (a) and (b) before pattern matching,
and (d) overlapped images of template and input images after matching.

samples were used up for training the statistical preclassifier and
only a small portion was left for testing. Hence a simple approach
was taken. The variances of the scores as well as the reliability of
its classification output were examined and a set of weights was
adopted by taking these into consideration. A large weight does not
necessarily mean that it is more important than others. It may be due
to the small variance of the particular score compared with others so
that a larger weight is needed to restore its effect on the classification
decision. The set of weights are the same for all classes. Specifically,

the total score is computed according to

Stotal = w1Smatch + w2Sdir + w3Sconn + w4Scur + w5Spre (5)

wherew1; w2; � � � ; w5 are given values of 0.4, 0.4, 0.2, 0.1, and 0.5,
respectively.

III. EXPERIMENTAL RESULTS

The proposed algorithm was first evaluated by applying it to the
matching of complex handwritten Chinese characters. It was subse-
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quently incorporated into a handwritten Chinese character recognition
system for further evaluation.

A. Pattern Matching

In the matching experiment, each character was first normalized to
a 64� 64 binary matrix. Preprocessing steps included thinning and
approximation of the thinned pattern by straight lines. Each straight
line was then divided into equal-length elements of about 11 pixels
long. The midpoint and slope of each element was computed and
stored into a data structure. This data structure constituted the input
to the present matching algorithm.

The initial neighborhood sizesK1 andK2 in (1)–(4) were chosen
to be ten pixels. The coefficients� and � were equal to 0.12 and
0.21, respectively, and were kept constant throughout the iterations.
The choice of� and � was based on a separate experiment in
which a number of patterns were matched using different values
of � and � and the detailed iterative sequences were interactively
examined. The values which gave the best results were adopted.
It was observed that the exact values of� and � were not crit-
ical. The second significant digit had only a slight impact on the
matching result.

To reduce the frequent computation of weight matricesu; v; w; and
x; their values as well as the values ofK1 andK2 were not updated
until ten iterations had been performed. Each iteration consisted of
two passes, one pass for moving the template segments and another
for the input segments according to (2) and (4), respectively. After
each set of ten iterations, the values ofK1 andK2 were decreased
according to the following formulas:

K1 :=K1 �max(0:4; 0:15K1) (6)

K2 :=K2 �max(0:4; 0:10K2): (7)

Iterations were stopped whenK1 was reduced to below 1.5 pixels.
With K1 equal to ten to start with, 120 iterations were needed. The
schedules for decreasingK1 and K2 were made different. It was
found that if they were made the same, distortions during the last few
iterations (whenK1 andK2 were about two pixels) would be too
much. By decreasingK2 at a lower rate thanK1; the neighborhood
size governing the distortion terms in (1) and (2) would be larger so
that more neighboring elements would interact among themselves to
preserve the local shape better.

Regarding the problem of local minima and stability, extensive
trials showed that the algorithm is quite stable. Usually the local
minima reached are reasonably good solutions (i.e., the patterns are
quite well matched). The patterns are observed to approach each
other smoothly, with greater movements during the initial iterations
and less movements later on. Only on rare occasions will the pattern
get stuck in a local minimum which represents a poor solution.
Moreover, oscillations between the input and template patterns have
not been observed.

Examples of matching are shown in Figs. 2–4 and Tables I–III. In
each figure, the template and input characters (after thinning and
approximation by straight elements) are shown in Figs. 2(a)–4(a)
and 2(b)–4(b), respectively. Each element is given an alphanumeric
label. The characters are overlapped and shown in Figs. 2(c)–4(c).
Iterative pattern matching was performed and the results are shown
in Figs. 2(d)–4(d). After matching, the pairs of template and input
elements closest together were sought and put into the matching lists.
The lists were then refined according to the algorithm discussed in
the Section II-B1. The refined matching lists for Figs. 2–4 are shown
in Tables I–III, respectively.

TABLE I
MATCHING LIST FOR THE TEMPLATE AND INPUT

IMAGES SHOWN IN FIG. 2(a) AND (b), RESPECTIVELY

Inspection of the figures shows that the algorithm succeeds in
finding the correct match pairs most of the time. The failures are
often due to the lack of correspondence between the template and
input elements. Timing statistics shows that the computational time
is roughly proportional to(NT+NI)

2 (excluding preprocessing time,
such as the time taken for thinning). It takes about 1 s to match two
patterns of 20 elements each (or 4 s for patterns with 40 elements
each) on the VAX-6320 computer. About 30% of the total time is
spent on updating the weight matricesu; v; w; andx (only updated
once in every ten iterations) in (1)–(4), and the rest of the time is
on updating the coordinates of each element according to (2) and (4)
in each iteration.

B. Character Recognition

In the recognition experiment, the Chinese character set consisted
of the 240 most frequently used character categories (classes). A
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TABLE II
MATCHING LIST FOR THE TEMPLATE AND INPUT

IMAGES SHOWN IN FIG. 3(a) AND (b), RESPECTIVELY

training set with 7680 handwritten samples (32 samples per class with
each sample within the same class written by a different author) was
used to train a statistical preclassifier which was a conventional Bayes
classifier assuming Gaussian statistics. The feature extraction method
was given in [24] and the feature dimension was 28. To make up for
the insufficient number of training samples, a distortion model was
employed to generate 600 samples per class (total 144 000 samples)
by applying random shearing and local expansion and contraction
distortions to each training sample [25]. The test set consisted of 960
samples (4 samples/class, each sample from the same class is written
by a different author). Authors writing the training set were not the
same as those writing the test set. The recognition rate was 86.6%
which was rather low. However, if the best ten candidates were taken
as the output, the rate of including the correct class in the output was
98.6% which was rather high.

The ten candidates at the output from the preclassifier were exam-
ined. For each candidate, the preclassifier gave a value proportional

TABLE III
MATCHING LIST FOR THE TEMPLATE AND INPUT

IMAGES SHOWN IN FIG. 4(a) AND (b), RESPECTIVELY

TABLE IV
RESULTS OFEXPERIMENTS ONHANDWRITTEN CHINESE CHARACTER RECOGNITION

to the logarithm of the probability of the unknown input belonging to
the candidate class. If the confidence level of the best candidate was
sufficiently high, it was taken as the recognized class. The decision
was based on the difference in the output of the preclassifier between
the best and the second best candidates. A threshold value of 20 was
adopted. If the threshold was exceeded, the best candidate was taken
as the recognized class. Otherwise the iterative matching algorithm
proposed in this article was called to evaluate the matching scores
for each of the ten candidates. With the threshold value of 20, about
85% of the cases required iterative matching. If a larger threshold
was adopted, the confidence level would increase. But more calls to
the iterative matching algorithm would take place and thus a longer
time would be needed for recognition.
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Only one template (reference) character was used for each class for
matching with the unknown input. In principle, it would be desirable
to have several templates per class, with one template to take care
of each distinctive style of writing. However, due to the complexity
of the characters, the variety of styles is great. Moreover, the time
needed for matching would be increased byN times if N templates
per class were used. With these considerations, only one template
per class was adopted.

As explained in the Theory Section, the four scores from iterative
matching and the 1 score from the preclassifier were linearly com-
bined according to (5) to produce one final score for each candidate.
The recognition decision was to select the candidate class with
the highest final score. The recognition rate of the final stage was
97.5%. The overall recognition rate was the product of this with the
preclassification rate of 98.6%. This gave the overall rate of 96.15%.
A summary of the results is given in Table IV. The results could be
considered satisfactory. Hence the incorporation of the iterative stage
has raised the recognition rate from 86.6 to 96.1%.

IV. DISCUSSION AND CONCLUSION

In this paper, a top-down elastic approach to pattern matching and
its application to complex handwritten Chinese character recognition
is discussed. The matching algorithm works satisfactorily. The el-
ements are not attracted to their nearest neighbors, but are moved
in order to preserve global structural relations. This results from the
multi-scale strategy adopted. A large neighborhood is used in the
beginning so that large-scale features are coarsely aligned. As the
neighborhood size shrinks in successive iterations, finer and finer
details are aligned also. Another mechanism worth mentioning is
the normalization of the weightsuij and vij in (2) and (4) which
gives each input element the same total attractive force on the set
of template elements and vice versa. Hence an isolated element
(remote from others) is still powerful enough to attract some elements
for matching.

The method has been tried on the recognition of handwritten Chi-
nese characters. Since the matching operation is based on Euclidean
distances while characters are recognized according to topological
or relational features, the original energy function cannot be used
as a measure for recognition. A set of measures for the “goodness
of match” is proposed which mainly concerns topological features.
Results of experiments are satisfactory. The use of iterative matching
with the proposed measures improves the recognition rate of a
statistical classifier from 86.6 to 96.1%.

The computation complexity of the present method is proportional
to N2; whereN is the total number of template and input elements.
This is determined from the updating equations for the coordinates
of the elements [(2) and (4)]. This compares favorably with other
methods, such as relaxation labeling [1]–[4] which has a computation
complexity proportional toN4. Hence for complex patterns involving
a large number of elements, the present method is more efficient.
With respect to recognition accuracy, experimental results show that
the two methods are about the same [2], [3].
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