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Abstract—ln this paper, a new conductivity _modulated power Cathod Gate Oxide Anode
transistor called the Lateral Trench-Gate Bipolar Transistor -
(LTGBT) is presented. This structure incorporates a trench-gate n+
in which the locations of the channel and source in conventional p* Lp+
LIGBT have been interchanged. This channel and source ar-
rangement results in significant improvement in latch-up current
density. Experimental results indicate that the static and dynamic
latch-up current densities are improved by 2.3 and 4.2 times, )
respectively, compared to those of the LIGBT at a i cathode  |P* SO
length of 5 um. Dependence of the latch-up current density of
the LTGBT on the design of the n" and p* cathode regions is p-substrate
examined both numerically and experimentally. The maximum
controllable current density is found to be increased when the (@)
space between the trench-gate and the™p cathode is reduced.
Specifically, as the space is decreased to /2m, no latch-up
phenomenon was observed. This nonlatch-up characteristic is
obtained at the expense of a slight increase (0.8 V) in threshold
voltage.
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I. INTRODUCTION p-substrate

OWER transistors to be used in Power Integrated Circuits
(PIC’s) are generally required to have low on-resistance, ()
fast switching speed, and high breakdown voltage. The latefig- 1. Schematic cross section of (a) the LIGBT and (b) the LTGBT.
IGBT's (LIGBT's) [1] are commonly used power devices for
PIC applications because of their superior device charactgkaracteristics of the LIGBT has been carried out extensively
istics. In these devices, the high current handling capabilify]—[4].
relies on COI’ldUCtiVity modulation of the hlgh resistivity drift In this paper, a new Lateral Trench-Gate Bip0|ar Transistor
region. However, device latch-up, which leads to loss of gaeTGBT) structure [5] for improved latch-up characteristics
control, may occur at high current due to the existence f presented. The same structure has been implemented on
the parasitic thyristor. Since device failure due to Iatch—ugo| substrate for the same purpose [6] Since SOl is an
prevents the device to be used in practical applications, itdgtirely different technology (better isolation and much more
very important to improve the latch-up characteristics of th&pensive) compared with bulk silicon technology (less perfect
LIGBT. Modification of the structure to improve the latch-upsolation and very economical), it is important to find out

he device characteristics of the LTGBT on bulk silicon.
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ment of the MOS gate region and thé /p* cathode regions.
In the LTGBT, the MOS gate is formed using a vertical trench = -‘-‘-"-‘-"—"-"-"-'~"-"y"~'~ . o
with the contact of the p-well region located in front of the n oxide ranode
cathode. The p-well is connected with the oathode through _
the p" cathode. Existing of the p-well between the channel ang o
the anode regions facilitates the collection of holes by the ps
cathode contact so that holes will have less tendence to flof\g’
through the area underneath th€ nathode to cause device §
latch-up. At the on-state, the vertical channel depletion regiog
can also divert holes to flow away from that region and reduce
the number of holes to flow underneath thé cathode. All

of these allow the holes to be collected effectively by the p
cathode through the p-well before reaching the eathode,
and latch-up of the structure can be prevented.

Operation of the LTGBT is identical to that of the LIGBT. @
In the forward active mode of operation, a positive voltage
is applied to the anode relative to the cathode. Anode currenti
starts to flow at gate voltages higher than the threshold voltage
and an anode voltage higher than one diode drop. At a hlghero
anode voltage, the anode pn junction starts to turn on ari@
injects holes into the n-epi of the transistor. Some of thes§8
holes will recombine with the electrons flowing in from the& ™
vertical channel, and some of them will flow from the n-epi tog g
the p-well and be collected by the" wathode without flowing &« Y P TTTTTTY
through the area underneath thé nathode. So they do not AN : """'"""’jjjjjjjjjjjjjjjjjjjjjjﬁ}{:}ﬁ:f
cause latch-up.

To further improve the latch-up characteristics of the struc-
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ture, it is required to make theTncathode region short. Ml Tl i
However, minimum length of the ™n region is limited by 00 100 200 Disﬁ’lﬁe (M‘i“?r‘:ns) 500 600
the photolithography capability. One way to avoid the need
of expensive photolithography is to overlap the and p" (b)

cathode regions, and with a differential junction depth betwe€iy. 2. Current vectors of (a) electron and (b) hole of the LTGBT for &n n
the it and pi— cathode regions. With the+pjunction depth cathode length of &m and at a forward voltage of 1.6 V.
deeper than that of thetnjunction depth and the'pconcen-

tration lower than that of the™n concentration, the Iong*n the p_substrate, and holes are injected from thapode into
cathode region needed will be provided at the surface, andtfig n-epi. Part of the holes flow from the n-epi into the p-
effect on latch-up can be minimized by the portion of thie pwell. And part of them recombines with electrons flowing
cathode which is situated underneath the cathode. In this in from the channel. These holes that flow into the p- -well
way, the device will have effectively a very short mathode, will be collected by the p cathode without causing latch-up.
depending on the amount of overlap. The reduced cathgdgr holes that flow underneath the p-well to recombine with
length and the location of the*pin front of the n* cathode electrons there, part of them will travel back to the p-well via
in the LTGBT ensures better protection against latch-up.  the path underneaths thé eathode. Thus, the area underneath
the " cathode is found to have some holes. It is noted that the
n-epi/p-substrate junction has been turned-on due to the fact
that the entire region is flooded with electron-hole plasma.
To analyze the on-state and latch-up performance of tBepending on the length of thetncathode, latch-up might
LTGBT, numerical simulations were performed using the twaccur if the - cathode is sufficiently long. At a longertn
dimensional device simulator MEDICI [7]. MEDICI allows thecathode (e.g., 12m), more holes are shown to flow in the area
on-state and off-state performance of such a complex structurelerneath the 1 cathode [Fig. 3(a)] with the same forward
to be simulated. The LTGBT used in the simulation is showpltage of 1.6 V. At a higher forward voltage (3.0 V), the hole
in Fig. 1(b) which is designed to have a drift region length afurrent eventually turns on the'rcathode/p-well junction, and
40 um. The thickness of the n-epi is;@n. The p-well has a holes start to flow into the'h cathode as shown in Fig. 3(b).
surface concentration of 10cm® and a depth of 2um. The In this situation, latch-up of the structure occurs.
channel length is approximately 1,8n. Conductivity modulation in the LTGBT has been designed
The electron and hole current vectors of the LTGBT at the occur not only in the n-epi drift region, but also deeper
on-state with an h cathode length of &m are shown in into the epi and the p-substrate. This is because electrons
Fig. 2(a) and (b), respectively. It is observed that electrofiswing through the vertical channel travel deeper into the
are flowing from the vertical channel to the n-drift region andulk. The holes recombining with the electrons there will

lll. TwO-DIMENSIONAL SIMULATIONS
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also take a vertical path. These electrons recombine with the Distance (Microns)
large population of holes injected from the anode. This makes Inversion Layer
conductivity modulation more effective in the epi and in the (@

bulk, resulting in a lower on-state resistance. However, this
will not occur until the bias at the anode is high enough so that
excess amount of holes can be injected into the bulk. Before
this happens, on-resistance of the device is indeed larger due

to the longer distance that the electrons have to travel deeperg S

into the bulk through the vertical channel. g
For comparison, the simulated current—voltage ¥') char- g =f

acteristics of the LIGBT and LTGBT are shown in Fig. 4. At &

a on-state current density of 155 A/érand at a gate bias of a

20V, the forward voltages of the LIGBT and LTGBT are the
same (2.6 V). As the anode voltage is less than 2.6 V, the
LTGBT has a lower current handling capability compared to
the LIGBT. This is due to the fact that the electrons flowing
in through the vertical channel travel a longer distance deep ®)
into the bulk before recombination as mentioned earlier. When
the anode voltage is larger than 2.6 V, the forward conducti@ﬁ" 5. Simulated current flow-lines in the LTGBT structure. (a) View closer
T . 0 the trench-gate. (b) View including substrate.
characteristics of the LTGBT is better than that of the LIGBT.
In this situation, electron injection from the channel will béy the current flow-lines of the LTGBT structure in Fig. 5,
significant and conductivity modulation in the n-epi and thimjection of electrons from the vertical channel is obvious
bulk will be much stronger than that in the LIGBT structureffFig. 5(a)] and more current flows to the bottom of the n-epi
resulting in higher current handling capability. As showifFig. 5(b)].
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It is noted that, from Fig. 4, the static latch-up current den- 100
sities of the LIGBT and LTGBT at the samé mathode length
of 5 um are approximately 300 A/chand over 700 Alcrh,
respectively. In the simulation, the LTGBT and LIGBT have 80
the same p-well length (1Q:m) and p~ to n*t cathode 70
overlap length (2um). This static latch-up current density
comparison exhibits a 2.3 times improvement in the LTGBT:E
The simulation results on the dynamic latch-up current densitg =~ %9
during the turn-off transient, with an inductive load of 2004 40
1tH connected at the anode, are 152 Afdor the LIGBT and
over 640 A/cnd for the LTGBT. The dynamic latch-up current
density is defined as the maximum current level that the device 20
can be switched off in the way described above without the 10
lose of gate control. The simulated dynamic latch-up current
density of the LTGBT exhibits a 4.2 times improvement
over the LIGBT. The simulated breakdown voltage of the Vds (V)
device is approximately 280 V without the use of an n-buffer _ _ o
surrounding the b anode and 540 V with the n-buffer. Fig. 6. Experimental —V characteristics of the LTGBT.
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IV. FABRICATION PROCESS 2000'05 rrrrrrE T ;5'0

The LTGBT’s were fabricated on p-type substrate with '~ > F & Experiment . E
a 3um thick n-type epi layer. Resistivities of the epi and_16000F g o } Latehup current density J40
substrate are 2®-cm and 45Q-cm, respectively. A drift £ j4000F , ]
implant of approximatelyl x 10*2 cm~2 of phosphorus was < g X Simuated onstate voltage at i s
used to achieve the RESURF (reduced surface field) conditiog.”**°F P
After the p-well implantation and drive-in, the anode and 1000.0F 1 3
cathode regions were formed by boron and arsenic diffusions, 4, £ x x 1o &
respectively. LTO and photoresist were used as mask for tren§h : ] o"é
etching. The trench was produced using the RIE, and tie ®°° [ E
trench depth is 5um. The trench gate oxide was formeds 4o0.0 | J1.0
using the double oxide process, and the first gate oxide was,,, | A/,,A//A E
treatgd as sacrificial oxide. After a gate oxide growth of : o ]
800 A, polysilicon in situ doped with phosphorus is used to %0 20 20 50 80 o
refill the trench. The LTGBT's has a drift length of 40n, p+ to n+ overlap length (um)

a channel length of about 1.bm, and a p-well length of _ . . . .
Fig. 7. Experimental and simulated latch-up current density as a function of

21 pm. Threshold voltage and breakdown voltage of thgeriap lengths of the h and p- cathodes.

LTGBT's were approximately 1.5 V and 270 V, respectively.

The breakdown voltage of 270 V is due to the fact that the n- = . L . .
buffer surrounding the b anode was not incorporated in th esulting in a smaller biasing resistance underneath for causing

device. This breakdown voltage agrees with the simulati %t(;:h—ug.tSpeC|f|caIIy,|€/vhhen trf ?effe?utvi cathode Iengtr:j ItSh
result. The thin epi layer used for the LTGBT fabrication igeauced to 2:m, result show that no late “up occurs, and the
for process compatible to low voltage CMOS process. current in the structure tends to saturate with increasing anode

voltage, even at an anode voltage of 100 V. Along with the
experimental results, the simulation results are also shown.
The experimental results agree well with the simulations.
Fig. 6 shows the measurefl—V characteristics of the Furthermore, threshold voltage of the experimental LTGBT is
LTGBT with an nt cathode length of 1@m and a p to n™ increased from 1.5 V to 2.3 V. The remarkable improvement
cathode overlap length of Zm. Onset voltage of the deviceon the latch-up performance is obtained at the expense of an
is at approximately 1.2 V. The onset voltage is defined he@e8 V increase in the threshold voltage. From the simulation
as threshold at which the drain diode is turned on. results shown in Fig. 7, the latch-up current density is at
To characterize the latch-up sensivity to the overlap lengttegproximately 1100 A/céh for the overlap length of 8:m.
LTGBT with different p- and nt cathode overlap lengths The corresponding anode voltage is 225 V. In addition, it is
have been designed. The measured static latch-up curneotted that the latch-up current density increases rapidly when
densities for different overlap lengths with a gate bias of 2fe overlap length increases to more thanr8. It is believed
V and a constant h cathode length of 1g:m are shown in that the rapid increase in latch-up current density is due to
Fig. 7. It is shown that the latch-up current density increastf®e electric field shielding formed between the trench-gate
as the amount of overlap increases. This is expected simtEpletion region and thetpcathode, which prevents holes to
the effective I cathode length reduces at larger overlaglow into the area underneath theé mathode to cause latch-

V. EXPERIMENTAL RESULTS
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injection from the vertical channel enhances the conductivity
modulation effect in the n-epi and p-substrate regions which
in turn improves the forward conduction characteristics of the
LTGBT over the LIGBT.
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VI. CONCLUSION
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