IEEE TRANSACTIONS ON REHABILITATION ENGINEERING, VOL. 8, NO. 3, SEPTEMBER 2000 305

Fuzzy EMG Classification for Prosthesis Control

Francis H. Y. Chan, Yong-Sheng Yang, F. K. Lam, Yuan-Ting Zhang, and Philip A. Parker

Abstract—This paper proposes a fuzzy approach to classify TABLE |
single-site electromyograph (EMG) signals for multifunctional TyPICAL EMG CLASSIFICATION
prosthesis control. While the classification problem is the focus SYSTEMS
of this paper, the ultimate goal is to improve myoelectric system
g . . . . Classifier Features Channet | Data Correct | Ref | Year | Delay Comment

control performance, and classification is an essential step in the s Windo | Rate

. W
control. Time segmented features are fed to a fuzzy system for e [z 2 160ms |5 | [13] | 581 | Mol Data st ol from anpiies
training and classification. In order to obtain acceptable training =~ = | sosine pocified | bt fom immobied b
speed and realistic fuzzy system structure, these features are Jerinear | Cocfficients 11 doms 9% | W] 1982 ] 25 B compuer o ot
clustered without supervision using the Basic Isodata algorithm — fucion | model hours.

. . - . Fuzzy FFT results 1 Not B0%- 71 1991 Not Lower rate for test set;
at the beginning of the training phase, and the clustering results  syem specified | 90% specified | inference NOT robus.

P PR TR Neural MAV, ZC, 1 200ms T0%- [} 1993 | <300ms Rate is subjet-dependent
are used in initializing the fuzzy system parameters. Afterwards,  wewor | ec s8%

fuzzy rules in the system are trained with the back-propagation
algorithm. The fuzzy approach was compared with an artificial

neural network (ANN) method on four subjects, and very similar ) jie gifferent kinds of mathematical models and pattern
classification results were obtained. It is superior to the latter in

at least three points: slightly higher recognition rate; insensitivity eécognition techniques to the problem; however, they are not
to overtraining; and consistent outputs demonstrating higher yet commercially available. Table | gives a brief summary of
reliability. Some potential advantages of the fuzzy approach over some typical EMG recognition systems.

the ANN approach are also discussed. EMG classification systems as listed above suffer from one or
Index Terms—Classification, electromyography (EMG), fuzzy more of the following drawbacks: large number of electrodes;
logic, neural network, prosthesis. sensitivity to electrode displacement; low recognition rate; per-

ceivable delay in control (delay 300 ms; a 200 to 300 ms in-
l. INTRODUCTION terval is a clinically recognized maximum delay that users find
acceptable before they get frustrated with the slow response of

LECTROMYOGRAPHY (EMG) pattern recognition .
has been applied in cont_rolling prosthetic devices ftpaipsrglsvt Qgsrfo[sl:gg E‘ee;gg\t/zrg%gs%se? Ezv?eu\;jeg}mi?é[icog-
amputees [4], [6]. The control is based on the fact that am:- ' '

) i e : 0
putees still have the phantom of functions and hence are aﬁ‘téon rate is subject-dependent, ranging from 70 to 98%. We

to generate a repeatable (although perhaps gradually varyi e used the same ANN method as that in [5] with data sets
9 b . gn p ps gradually Varylii, e same four subjects and achieved similar classification
EMG pattern corresponding to each of the functions. In the

r.%sults to those reported by Hudgins’ paper. However, we noted

past decades, much research has been done on the reCOgNMMthe success of the method is chiefly due to the appropriately

of EMG signals [4]-[10], [13], [16], most of which has beensFlected features.

reviewed by Hudgins, etc. [5], [6] The main prosthesis contro : - . .
. . . ; Fuzzy logic systems are advantageous in biomedical signal
functions of interest were flexion and extension of the forearm : e . ; .
cessing and classification. Biomedical signals are not always

: o : . r
and pronation and supination of the wrist respectively. The haﬂfﬁctly repeatable, and may sometimes even be contradictory.

actions such as ha_nd opening and grasping, "’?”d finger ben%}ge of the most useful properties of fuzzy logic systems is that
were also of some interest. In order to differentiate these control

functions. investiaators developed various EMG features WhicRntradictions in the data can be tolerated. Furthermore, using
! g P fainable fuzzy systems, itis possible to discover patterns in data

include EMG signal amplitude, zero-crossing [5], [13], [16], , . :
EMG frequency characteristics [7]-[9], and coefficients 0\4[}/h|ch are not easily detected by other methods, as can also be

an EMG autoregressive model [4]. The classification toofjsone with neural network. Finally, the experience of medical

: S . experts can be incorporated. It is possible to integrate this in-
covered linear discriminate functions [13], [16], neural net- | b luable k ledge i he f loai
works [5], [8], [9], and fuzzy systems [7]. Researchers have 1P ete but valuable nowledge mto_t € Tuzzy 10gic system

T ' Gue to the system’s reasoning style, which is similar to that of a

human being. This is a significant advantage over the artificial
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20, 2000. This work is supported in part by The University of Hong Kong RGF . e .
Grants. ution to the EMG classification problem, this paper proposes a
F.H.Y.Chan, Y.-S. Yang, and F. K. Lam are with the Department of Electricilew fuzzy approach for EMG recognition based on most of the
and EIectronic_Eng_ineering, The University of I_—long ang, Hong ang. same time-segmented features as used by Huegals[5]; the
Y.-T. Zhang is with the Department of Electrical Engineering, Chinese Uni- It dto th f the ANN thod 5
versity of Hong Kong, Hong Kong. results are compared to those of the method [5].

P. A. Parker is with the Department of Electrical Engineering, University of Hudginset al. [5] applied electrodes consisting of a single

New Brunswick, Fredericton, NB, Canada. o differential channel with an active electrode over each of the
Y.-S. Yang is now with Odyssey Software and Consulting in Federal Wa%,. . . .

Washington, USA. iceps brachii and triceps muscles (for further detail re elec-
Publisher Item Identifier S 1063-6528(00)07302-X. trodes see [5]). They used segmented features of EMG signals

1063-6528/00$10.00 © 2000 IEEE



306 IEEE TRANSACTIONS ON REHABILITATION ENGINEERING, VOL. 8, NO. 3, SEPTEMBER 2000

F uzzy Rule Base
Digitized Segmented|— | Z ﬁ
Singlesite | 3| Teat > ] State
E:\dé S"’ l; . eature 1% e ‘ s A X - i’Fuzzy Inference — N
A ignal ¥ | Analysis : . | x in U%(Fuszler > Engine "f) DefuzzifierW%Y inV
R — A, g e
Fuzzy seis in U Fuzzy sets in V

Fig. 1. EMG classification strategy by ANN approach. Fig. 2. Basic configuration of fuzzy logic system with fuzzifier and

defuzzifier.

and an ANN for one-site multi-functional prosthetic control.

The classification strategy is illustrated in Fig. 1. The four funANN. The fuzzy systems at first fuzzify inputs into member-
tions to be classified and controlled were: 1) elbow extension, &)ip degrees of fuzzy sets, and then infer by fuzzy logic through
elbow flexion, 3) wrist pronation, and 4) wrist supination. Theules which usually come from experience. Fuzzy systems have
system’s correct classification rate was between 70 and 98en widely applied in solving control problems. In short, soft
among 80 test patterns presented after an initial training of tbémputing approaches are good at coping with imprecisely-de-
network. The EMG signal was acquired by a single bipolar elefined situations in a model-free way, without having to model a
trode pair placed at the biceps and the triceps. The moving &ystem beforehand. In other words, they are sufficiently “soft”
erage of the signal was monitored. When a threshold was ex-be versatile models.

ceeded, 200 samples (at 1 kHz sampling rate) of EMG sampleghe kernel of a fuzzy system is the fuzzy inference engine.
were stored. The EMG signals were divided into several timghe knowledge of an expert or well-classified examples are ex-
segments to preserve pattern structure, and features werepegssed as or transferred to a set of “fuzzy production rules” of
tracted from these segments. The features included mean thle-form IF-THEN, leading to algorithms describing what ac-
solute value (MAV), mean absolute value slope (MAVSLP}jon or selection should be taken based on the currently observed
number of zero-crossings (ZC), slope sign changes (SSC), amdrmation. In the fuzzy method, nothing is done at random. In-
wave length or wave complexity (WC) [5]. These time-sedermation containing a certain amount of vagueness is expressed
mented features were fed to a three-layer ANN which was aklg faithfully as possible, without the distortion of forcing it into
to generalize from a small training data set (typically 20 trials “crisp” mold, and it is then processed in a proper manner.

of each function for training). The hidden-layer contained eight

nodes, as derived from the performance vs. hidden node numgerrhe Structure and Training of Fuzzy System

curve acquired via experiments. Each output in the output layer

corresponded to one function. The required output was set tol N€ fuzzy system used in the present paper has been reported

0.9 for function selected and 0.1 for others in the training phad®, Wang [18]. Fig. 2 shows the basic configuration of a fuzzy
Based on experiments, we use 0.4 as the activation thresholdP§iC System with a fuzzifier and a defuzzifier. The fuzzy logic
that the maximum output of the network has to exceed 0.4 fSystem with center average defuzzifier, product-inference rule,
the activated function. The ANN method was successfully r@onsingleton fuzzifier, and Gaussian membership function can
produced so that our fuzzy approach can be compared to it. P& desc.:nbed by the follgwmg function [18]:

Section Il of this paper introduces the trainable fuzzy system,iNPUt = (1;-..,xa)" = output f(x) by
presents our fuzzy EMG classification scheme, and details
why and how we have improved the fuzzy system. Section llI M " i\ 2
presents experimental results with fuzzy EMG classification Z il H alexp | — Ti =
and comparative analysis with the ANN method. Section IV
presents analysis of the fuzzy system’s superiority, training f(z) = v T 2
time comparison, and the overtraining problem. Z H j <$z - fﬁ)

a;exp | —

j=L1 i=1

j=1 |i=1

Il. EMG CLASSIFICATION WITH A TRAINABLE Fuzzy LoGIC

SYSTEM This system is used in the present paper. It has been shown

that the system can be a "universal approximator" in a manner
In the last decade soft computing, mainly composed of fuzzymilar to the ANN [18].

logic, neural networks, and genetic algorithms, has achievedThe fuzzy system described above can be represented by a
great success in many applications. Unlike traditional hard cothwee-layer feed-forward network (but different from the MLN)
puting, soft computing exploits tolerance of imprecision, unceas depicted in Fig. 3. It resembles a radial basis neural network
tainty, and partial truth to achieve tractable, robust, and low-cd&BN) [11]. However, both the fuzzy set definition (represented
solutions to decision problems. The neural network is able Iy centroid and width) and the rules (represented by the con-
learn through the acquired data and to make generalizationsn@tting weights) are trained by the back-propagation algorithm
new in-coming data, and thus mimic human decision processthe fuzzy system, while usually only the weights are trained
to some extent. The multilayer network (MLN) has been su@ the RBN. The training formulation has been thoroughly dis-
cessfully applied in solving pattern recognition problems, usirayissed in [18].
the back error propagation algorithm in training. Fuzzy logic In our implementation (Fig. 4), the mean-squared-error
systems emulate human decision-making more closely than {MSE) over the four subfuzzy systems, with the output of each



CHAN et al: FUZZY EMG CLASSIFICATION FOR PROSTHESIS CONTROL 307

For comparison the reproduction of the ANN approach is also
based on six segments of EMG.

C. System Structure, Training, and Classification

The schematic structure of the fuzzy approach is similar to
that of the ANN approach as in Fig. 1, except that the ANN
block is replaced with the fuzzy logic system. Fig. 4 illustrates
the fuzzy approach. The block “Fuzzy Logic System” is com-
posed of four parallel subsystems similar to that in Fig. 3 gener-
ating OUT_EX, OUT_FL, OUT_PR, and OUT_SP, which rep-
resent the activation level of each function, respectively. The
output logic generates the final classification result.

] o ) ] The “Basic Isodata for Initialization” block is activated in
standing for the activation level of one function, is used tgqer 1o initialize the system’s fuzzy sets before the training

decide whether or not to stop training. The MSE is defined a$hase. The desired outputs of OUT_EX, OUT_FL, OUT_PR,
and OUT_SP are set to 0.9 for the selected function and 0.1 for

Fig. 3. Network representation of fuzzy logic systésf = ; is the gaussian
fuzzfier, wheref = 1,2,...,M,i =1,2,...,n. See text for details).

Nio De others in the training phase. The four sub-systems are trained si-
MSE = Z Z (Ot = di,c)?/Ne multaneously with presentations of the whole training set. When
=1 o=l MSE is lower than a preset threshold [usually 0.1-0.3, refer to
where Fig. 5(b)], the training stops. S _
N. number of categories (= 4); A_fter the system is trained, the _|n|t|aI|zat|on block. is d_e—
N, number of trials (= 80): activated, and the whole system is ready for classification.

O,. activation outputlevel of trial of thecth category com- 1€ _“output logic” block finds the maximum value among
ponent, for example the case= 1 corresponds to the OUT_EX, OUT_FL, OUT_PR, and OUT_SP. If this value is

function of supination, s@, . is OUT_SP in Fig. 4 at greater than 0.3, then the corresponding function is selected,;
trial £: ’ - otherwise, no function is activated. This threshold was opti-
d, . is the desired output a; , (= 0.1 or 0.9). mally determined with many experiments by the following
Here N, is not included under the denominator because tRtimality criteria: there is one but only one output among
word “mean” in MSE is indicating averaging the error acrodbe four that exceeds the threshold. It should be noted tha_t the
trials only and we have calculated the MSE in neural netwof@UT_EX, OUT_FL, OUT_PR, and OUT_SP have relative
counterpart in the same way. According to the tests performBtganing rather than absolute, and they should not be regarded
on the system, the stopping MSE is ususally set to 0.1-0.3. Rlj intérpreted as probabilities.
four outputs are used in order to generate the “selected function”
although the subfuzzy systems are independent before theyreConvergence Problem and Initialization of the Fuzzy
fed to the “output logic.” In practice the MSE values are noeyStem
necessarily the same across outputs and hence an average @enerally speaking, the ANN is able to converge well due

total MSE is used. to the global nature of the sigmoid neuron-activation function
_ used. However, with a Gaussian-shaped function no quick or
B. Feature Selection good convergence is guaranteed without appropriate initializa-

Most of the features used in our fuzzy system are the samdigyg.
that of Hudginset al.[5], except that SSC was not adopted as it It has been determined by Lippman [14] that a three-layer
proved to be insignificant. In reproducing the ANN classifica®NN is able to have a decision region of convex-open or closed
tion scheme of Hudginst al. [5], we found that classification regions. Selected carefully, good features tend to gather the
performance was not improved and even deteriorated for solifns belonging to the same class into one or more clusters in
subjects with the involvement of the SSC. In this work, the EMhe feature space, such that they tend to reflect their similarities
signal is divided into several adjacent segments. Each time s@gantitatively. The basic Isodata algorithm [3] is able to cluster
ment duration is 40 ms and six segments are used, so that atws automatically. If cluster parameters are used to initialize
of 4 x 6 = 24 features are extracted from 240 ms of EMdhe fuzzy sets, each fuzzy set will be able to represent all or
signal. The features used are: MAV1, MAVSLP1, ZC1, wcpart of the items in the same class at the very beginning, so
MAV2, ..., WC2, MAV3, ..., WC3, MAV4, ..., WC4, MAVS5, that blindness to initial definition of fuzzy sets is avoided and
..., WC5, MAVS, . .., WC6. In comparison, five segments (i.e.convergence is accelerated in the next training stage. Based
totally 200 ms) of EMG signal were used by Hudgetsal.[5].  On this idea, the fuzzy set's centroid and width was initialized
To prevent any perceivable delay in real-time prosthesis cd#sing the results of the following Basic Isodata algorithm:
trol, the function action should be identified within 300 ms from 1) Randomly choose (24-dimensional) training data inputs
the onset of the EMG; hence feature extraction may not be per-  as initial values for the means;, ma, ..., m., wherec
formed over any longer period. In this paper, we use six seg- is the desired cluster number, usually varying from 8 to
ments (i.e., 240 ms) instead of five to collect more information. 14 in this problem.
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Fig. 4. Schematic diagram of fuzzy approach for EMG classification (MAV1 through \Af€ the 24 segmented features extracted; the initialization of fuzzy
sets in fuzzy logic system is activated only once with clusters generated from Basic ISODATA algorithm; fuzzy logic system is trained and ganetdafeggo
representing the possibility of each function; Output logic makes choice among these four outputs.)
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@ ® Fig. 6. Comparison of EMG recognition rates by SIG-ANN and ISO-FUZ.
Fig. 5. Mean squared error over training set and classification error rate over
test set vs. training epoch number. (a) SIG-ANN system, training step=size TABLE 1l
0.25; (b) ISO-FUZ system, training step size0.015. Isodata cluster number COMPUTATIONAL COMPLEXITIES OF SIG-ANN AND ISO-FUZ FER TRAINING
=12, rule= 12 x 4. Subject #: no. 1. EPOCH IN OUR OPTIMIZED IMPLEMENTATION (PENTIUM PC)
system Exponents Multiplications | Divisions | Time/Epoch
Loop SIG-ANN | P-(H+0) | P [H: (4'D+3-0)] | P- (H+O) | 482240T
2) Classify all then training samples by assigning them to _IS0-FUZ | P-OC 5P-0.CD  [3PO-CD) 6128640T
* P = total number of patterns = 80,
the class of the closest mean. H = total number of hidden neurons in SIG-ANN = 8,
3) Recompute the means through the averages of the samr O - total number of output newron =4,
. . D = total number of input neuron or feature dimension = 24;
ples in their class. C = total number of clusters in IS0 DATA = 12;
. i T = Time Unit ~ 0.05 microsecond,
4) If any mean changed value, go to Loop; otherwise, goto 7~ computation time couts on pentiu PC are:
Step 5) . Exponent ~180T, Multiplication~4T, Division~13T.
5) Assign the mean of each cluster (a1,75,...,7%),

::/eergzgtrgg”(gf t::cﬁoglﬁasstg?r;(ﬂgga;:ézg tﬁggec\?;fg%e{gposed in this paper é8O-FUZ, which is initialized with the
(0_{7 0_]2»7 ..., o), the widths of the fuzzy sets. asic Isodata algorithm and trained with the back-propagation

algorithm.

Initialization Ve prov very effective wi . . .
tialization as above proved to be a very effective way to Data sets from four subjects were used in the experiments;

ensure good convergence in the training process. Its strent%tgy are the same as those used by Hudginal. [5]. The

's demonstrated in Fig. 5(b). In this example, the fuzzy Syst(_}trr?alining vs. test set size was 20 vs. 20 for each function for

reached maximum classification performance level (lowest clas-

I . : each subject so that at least 160 trials composed of four func-
sification error rate) after only the fourth training epoch with th : T o
L ion categories were required in each subject’s data set. Both the
appropriate initialization.

. . SIG-ANN method and the ISO-FUZ method were applied to the
To decrease the chance of cluster crossing over d|ffered“|t i
ata sets. The (correct) recognition rates of the two approaches

classes, and to generate adequate rules in the fuzzy system i
! g q Y Sy e measured, and are compared in Fig. 6. The rates are close,

e
more than four clusters (four was the class total) were generate . . ) ;
. ( X ) 9 ith ISO-FUZ being slightly higher. As a matter of interest,

with several clusters assigned to the same class. However, X
| §-FUZ was also tested on the mean of the time-segmented

number of clusters has to be decided through experiments ?gatures (number of features reduced from 24 to 4); ISO-FUZ
experience. The larger the training set size, the more clusters e ' '

o . IN general, gave classification results comparable to SIG-ANN
that can be generated with little effect from n0|se-polluteg <ed on the same mean features

samples. The cluster number was set to be 8-14 according ?(?'hetraining speeds of ISO-FUZ and SIG-ANN are almost the

the class number (4 classes) and training set size (20 for eagh -~ 53"t S1G-ANN and 25 s for ISO-FUZ with our
class) in this problem.

software running on a Pentium PC (see Table Il for complexity

per epoch and Section IV-B for training epochs). The training

speed depends on the computational complexity of the training
We denote the EMG Neural Network classification methogrocedure, which will be further discussed.

with sigmoid activation function proposed by Hudgatsal. [5] Fig. 7 demonstrates the outputs from 1ISO-FUZ compared

asSIG-ANN; and the EMG fuzzy system classification methoavith SIG-ANN outputs for each test trial of the same subject’s

Ill. EXPERIMENTAL RESULTS
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Mextension TABLE 1lI
& flexion OUTPUT VARIATIONS OF CLASSIFIERS SIG-ANN vs. ISO-FUZ

Clpronation
Esupination

Subject No. 1 2 3 4
Variation of SIG-ANN | 0.0647 | 0.0797 | 0.0891 | 0.0836
Variation of ISO-FUZ | 0.0495 | 0.0677 | 0.0843 | 0.0664

Outputs of SIG-
ANN systemn

17%
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pronation o —+—30FUZ /
; ® ) MLl extension g =
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Fig. 8. Comparison of SIG-ANN and ISO-FUZ by classification error rate
versus decision threshold on outputs.

Outputs of ISO-
FUZ system

» In the example depicted in Fig. 7, the average varictioner
R . e atien subject no. 1 is 0.0647 for SIG-ANN, and 0.0495 for ISO-FUZ.
pestunite 028D 1w The average variations of subject no. 1 through no. 4 are givenin
Table IIl, and indicate better output consistency for ISO-FUZ.
Fig. 7. (a) Output of SIG-ANN system (learning rate: 0.25; training MSE When the decision threshold in the output logic is increased,
= 0.1). (b) Output of ISO-FUZ system (leaming rate: 0.015; training MSE the error rate of classification also increases due to more rejected
0.2). For both: Trial 1 20 are extension; 21-40 are flexion; 41-60 are pronatlﬁr}; Is. On the other hand. if the th hold i bitrarily d d
61-80 are supination. Subject: no. 1; Correct classification rate: 91.3% (7 tri jils. Onthe otner a_'n ’ Irthe threshola is arbi ranly ecreased,
misclassified or rejected in the category of pronation). to say less than 0.3, it will not make much sense since the lower

threshold is too close to the inactivate level (= 0.1). We investi-

data set. The categories are mutually exclusive, and as explaiggEFd the_ relqtlon between error rat_e _and decision threshold, as
in Section II-C the selected function corresponds to the larg picted in Fig. 8. F“’T“ the figure, it is Seen tha_t the thr_eshold
of the four outputs. In Fig. 7, trials 41 through 60 are pronatioﬂ,f ISO-FUZ can be varied f.rom 0.3t0 0.5 without increasing the
and there are quite a few misclassifications among these 20 tr jeor rate, while the range 1S only from 0.3 to 024 for SIG-ANN.

or samples. The features chosen for the classification algoritﬂ_ e results presented in Fig. 8 are ryepr(_asentatlve of the four sub-
have difficulty in distinguishing pronation, and these samplé%Cts' They demonstrate ISO-FUZ's wider threshold tolerance
are often misclassified. The figure suggests that ISO-FUZ ten%%mpared to S_K_;'ANN' . . .

to give more consistent and hence more “stable” results thanThe overtra_mlng pr(_)blem was_mve_shgated by experiments,
SIG-ANN does, since the former output variations over the Sar{%sults Of. which are .|I.Iustrated n F'g 5. It was found ‘hiit
class are obviously smaller than the latter. To support this, \}\%O'FUZ is less sensitive to overtraining when compared with
definew, an average variation over the correctly-classified tria@'G'ANN' In both methods, the mean squared error (MSE)

as the measure of output fluctuations (hence reflecting the C@Y—er the training set decreased as the training epoch increased,
ut the classification rate over the test set did not decrease

40

sistency): ; i . _ . .
) monotonically, with the rate increasing slightly after reaching
N N N its minimum point. We define B, the increased amplitude of
5= Z Z (O — W)Q/ <Z r, Nc>, error rate, as the measure of over-training side effect:
=t et =t B=  max  {Rg(3n)— Re(n)}
RE(n)is Minimum
where
N. total number of categories(= 4); where Rg(n) is the test error rate after n training epochs.
N, total number of trials (= 80); Greater B implies a more serious over-training effeén
7y 1 if trial ¢ is correctly classified or 0, otherwise; could be replaced witn. But with 2n, 1SO-FUZ would be

O, trial ¢'s activation output level ofth category compo- too good becaus® = 0. In reality, ISO-FUZ still has a little
nent, for exampleg = 1 corresponds to the function over-training problem. In the example of Fig. B,was 0.025
of supination, sa), . is OUT_SP in Fig. 4 at trial no. for SIG-ANN, and 0.013 for ISO-FUZ, i.e., the over-training
t; side effect of SIG-ANN is double that of ISO-FUZ. The results

O,. average activation output level of cth category compaf B for all the four subject are tabulated in Table IV. It can be
nent over all the correctly classified trials in the sameeen that ISO-FUZ involves less overtraining.
class of trialt, calculated by

IV. DISCUSSION

O .= Z 74, O4, Z T, - The ISO-FUZ method proposed in this paper was compared
t1 ESameClass t1,tESameClass with SIG-ANN over the same data set and the same feature
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TABLE IV TABLE V
ERRORRATE CAUSED BY OVER-TRAINING WITH B DEFINED IN TEXT STATISTICS OF ASAMPLE TRAINING PROCESS
Subject No. 1 2 3 4 System Epochs |Step size| MSE |Training Time (s)| Error Rate
B of SIG-ANN | 0.025 0.125 0.013 0.038 SIG-ANN 256 0.25 0.100 23 11.3%
B of ISO-FUZ | 0.013 0.100 0.000 0.025 ISO-FUZ 27 0.015 0.147 25 8.8%

space. Recognition rates of the two methods are comparableThe ISO-FUZ method requires human involvement at the
This result is consistent with the classifier's performance inveBasic Isodata initialization stage in order to get the minimum
tigation by Chen [1], [2], confirming that the radial basis neurahter-class cross-over. Hence it is not automatic to the same ex-
network (RBNN) has a recognition rate very similar to that aent as SIG-ANN. This drawback comes out of the trade-off be-
the multilayer perceptron using the backpropagation algorithieen performance and automation.

(BPN or ANN or SIG-ANN). In addition, both RBFN and BPN

are insensitive to the number of training samples, provided gf Training Time Comparison

course that each C'?‘SS is well repr_e_sen_ted in the training set. Th‘lq'he algorithms were implemented on a Pentium PC in Turbo
fuzzy system used in the our classification method is structuray:y The computational complexities of SIG-ANN and ISO-FUZ
similar to RBFN. Hence it is not surprising that ISO-FUZ re-

sulted in recognition rates comparable to those of S'G'ANN-2:]g\,av‘glﬁra??érg.Eﬁgczrﬁéectci?u@e:,;QcﬁaizlzgaJthfzinz:ﬁg

In thi_s _section, we discuss the superiority, training time, anads much as that of SIG-ANN to reach optimal classifica{tion re-
overtraining problem of the proposed fuzzy system. sult. ISO-FUZ, however, needs much fewer epochs to converge:
ISO-FUZ 6 epochs vs. SIG-ANN 80 epochs. Table V gives the
A. Superiority of ISO-FUZ statistics of a sample training process over the data set of sub-

) ) ject no. 1, in which the error rate of ISO-FUZ is lower than that

The results of Fig. 6 show that for all four subjects thgf 51G-ANN, even when the MSE of the former is larger than
ISO-FUZ provides a small but consistent improvement ify; of the latter. Taking the example in Fig. 5, ISO-FUZ can be
classification performance. The small number of subjects agdyood classifier even with large training MSE (as large as 0.5).
differences make testing for statistical significance probIematp—:urther, practical training of ISO-FUZ is potentially quicker
and is left for a more extensive study. The major advantaggs, that of SIG-ANN.

of ISO-FUZ demonstrated in this work are better output
consistency, wider threshold tolerance, and lower overtrainigg Over-Training Situations
risk. Some further advantages are discussed here. ] ) o
ISO-FUZ helps to investigate the distribution in the feature In the example of Fig. 5, the S|de-effe(’:t 9f over-_tralnmg t_he
space, while SIG-ANN is unable to achieve the same due %G'ANN' measured by3, the error rate’s Increasing amph—.
its inscrutability. This is helpful in discovering which feature%_Udes’ IS twu;e_ that_of ISO-FUZ. Generally spe_akmg, there is
Etle over-training side effect for ISO-FUZ, while SIG-ANN

are effective and which ones are insignificant. In the ISO-FU i tor f inina. Wh ined
system, the training set is clustered so that the approximate cl(é@g r:l(zere ecii' yyiself d e;u::%mc?)\r/r?rr)-lgngggﬁ darizg %3;:;%?12) '

distribution of features is disclosed and utilized. The fuzzy se% o .
are then fine-tuned via the backpropagation algorithm. The lkg_‘\r-_;tween classes that the generalization performance is under-

fined class distributions can be better represented by the trairﬁ@'{i‘ed' Fuzzy systems approximate thg idee:l clafsifier (if it
fuzzy sets, allowing inter-class “fuzzy” overlap. exists) by many patches (Kosko) [12]. It is the “local” nature of

In step 1 of the Basic Isodata algorithm, the initial Valuetshese patches that makes a fuzzy system robust and insensitive

for the meansn,, m m. are chosen randomly from the'© OVe'-training.
| Clusters are Overtraining of SIG-ANN can also result from a small

training set, and clusters are formed iteratively according to tpr?i\ining set size relative to the number of hidden neurons. or
0 1

steps. Sometimes elements in the same cluster may belon . . . :
. L - . %ach class not being well represented in the training set. This
different classes, resulting in a longer training process and infe-

: e ) IS also true for ISO-FUZ, with the number of hidden neurons
rior classification performance. In practice, we select the clustér .
distribution to avoid the above-mentioned distribution. This ‘,Sur_eplaced with the number of rules.
pervising” procedure helps to further avoid the blindness in ini-
tialization, to achieve high training speed, a more reasonable
training result, and to avoid local minima. However, the weight This paper has proposed a new fuzzy approach for classifi-
initialization vector in SIG-ANN has to be chosen randomly. cation of EMG patterns. The training process and classifica-
The fuzzy system with Gaussian membership function is thien results of the proposed method are superior to those of
only network that can combine numerical and linguistic infora neural network-based approach, primarily in that the fuzzy
mation [11]. Itis possible to integrate expert experience into tisgstem gives more consistent classification results and is insen-
ISO-FUZ system by additional fuzzy units in parallel with thesitive to over-training. These features may be attributed to the
rules generated from training the numerical data set. This adructure of the ISO-FUZ system and the “supervised” selection
vantage is especially valuable in solving biological and medical fuzzy set initialization data by the Basic Isodata algorithm.

problems. More favorably, it can adopt expert experience at the same time

V. CONCLUSION
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by additional fuzzy units in parallel. The fuzzy approach de Francis H. Y. Chan received the Ph.D. degree from
scribed in this paper can be universally applied to other clas Bristol University, Bristol, U.K. , _
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ication pro ems as weill. . neering Department, The University of Hong Kong
The classification rates by ISO-FUZ are subject-depende in 1976. Currently, he is Professor and Director
as in the SIG-ANN method evaluated, although with slight irnr of the University of Hong Kong Biomedical Engi-
provement. We are aiming for 95% with appropriate feature s
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