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obtained by Kung's algorithm [8], which is the impulse response b4 Matrix—Pencil Approach to Blind Separation of Colored
PCM's algorithm [9]. The absolute error of the truncated impulse Nonstationary Signals

response for the above realization and the realization obtained by

Kung's algorithm is plotted in Fig. 1 to display the relative perfor- Chungi Chang, Zhi Ding, Sze Fong Yau, and Francis H. Y. Chan
mance. In addition, the squared ertbbetween the FIR realization of

the original data sequence and each of the three realizations is shown ) o )
in Table Il along with the squared error of the truncated impulse APStract—For many signal sources such as speech with distinct, nonwhite
. power spectral densities, second-order statistics of the received signal mix-
response, I.e., ture can be exploited for signal separation. Without knowledge on noise
29 correlation matrix, we propose a simple and yet effective signal extrac-
, - k-1, |? tion method for signal source separation under unknown temporally white
J = Z h(k) = cr Ay by noise. This new and unbiased signal extractor is derived from the matrix
k=1 pencil formed between output autocorrelation matrices at different delays.

The converaence of the proposed algorithm is clearly exhibited Based on the matrix pencil, an ESPRIT-type algorithm is derived to get an
g prop g y %timal solution in least square sense. Our method is well suited for systems

Fig. 2, where the squared errdras a function of is plotted on the in-  ith colored sensor noises and for nonstationary signals.
terval[0, 50]. The variation of the elements bfis displayed in Figs. 3
and 4. The variation oV is similar.

Index Terms—Beamforming, blind source separation, cancellation, in-
terference, nonstationary signal processing.

V. CONCLUSION

. . |. INTRODUCTION
Two convergent search algorithms have been proposed for the min-

imization of the integral squared impulse response error between &lind source separation has become a well-established research topic
full-order digital filter and a reduced-order model. These algorithiiB the signal processing community. It finds useful applications in prac-
are applicable to the general multi-input multi-output case and halieal scenarios involving multisources and multisensors. The key objec-
been shown to be effective by simulation studies. It is envisaged titige of blind source separation is to extract source signals from sensor
similar algorithms can be developed to deal with the case where fheasurements without full knowledge of the signal propagation en-

reduction error is frequency weighted. vironment. Examples include antenna beamforming, multiple speech
separation, and multichannel biomedical signal separation.
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However, existing second-order statistical methods often rely on steheres (k) is the Kronecker delta function, ardél, is the covariance
tistical knowledge of sensor noise. To overcome this critical weaknessatrix of the additive noise. However, here we do not require that the
we propose a second-order statistics-based matrix pencil approachadise be spatially white as assumed in many other approaches. Al-
this correspondence. The new approach yields unbiased signal detiing more freedom in array calibratio®,. can be an arbitrary un-
mates from signal mixtures corrupted by additive white noise. In oknown matrix.
original work [18], we simply used a general eigendecomposition of the
matrix pencil to estimate the extractor directly. In this correspodence]|. SIGNAL EPARABILITY BASED ON SECOND—ORDER STATISTICS
an optimization procedure is incorporated in least square sense to yiel i . . .
an E%PRIT aIgoFr)ithm with better pgrformance. Thisqpaper is organiie et B, (k) be as defined in (3). or (4)'. W|thput loss of genergllty,
as follows. In Section I, the problem of blind source separation is d '€ can assume thiﬁ;*(o) = I _leen noise with known correlation
scribed along with relevant assumptions on second-order statisticmtr'x R, the covariance matrix of the mixtures can be shown as
signals for separation. Section Il outlines a basic signal separabilit}t{ (0) = E{it’('n),?(n)”} — AR.(0)A" + Ry = AA” 4 R, ©)
result based on second-order statistics. Section IV presents an ESPRIT ' i
algorithm based on the matrix pencil formed by two correlation ma- Thus, we can calculate
trices at different nonzero lags. Monte Carlo simulations demonstrating
the performance of the proposed method are presented in Section V. R,(0) = R, = AA" (7)

Il. PROBLEM FORMULATION which can be whitened using a whitening mafifix such that

A memoryless mixture of multiple signals is often modeled as I =W(R.(0)— Rp)W" = waalwh, (8)

#(n) = A3(n) + @(n) (1) Itis, hence, clear thdf = W A is unitary.

We note that the assumption of known noise correlation matrix is
inwhich3(n) is a vector of source signals of dimensidnandz(n) is  typically impractical. In the special case when the noise correlation
the received signal vector of dimensidfi. In (1), @ () is the additive Matrix is of the formo>I andM > N, theno?, can be estimated as
white noise vector, and is anM x N memoryless mixing matrix. the smallest eigenvalue @t.(0).

In order for all sources to be separablemust have full column rank, ~ Denoting the whitened data vector as
requiringM > N. When A is not full rank, then signals can only

be separated as classes [2]. In this correspondence, we only consider #(n) = Wi(n) ©)
systems in which the sources are individually separable A.bas full then
column rank.
_Our objective iﬁ rt]o find a signal extracting matriB = R.(k) = E{Z(n)Z(n — k)"}
[61 b2 --- bn] such that — WAR, (k) A" W
B"#(n) = B" A3(n) + B"i#(n) = P3(n) + B @(n) () =UR,(k)U". (10)
whereP = B' A is a permutation matrix that has only one nonzerb!€NCe, columns of are eigenvectors ok (k).
element in each row and column. If Rs;(k) has identical eigenvalues, then their eigenvectors are not
We assume that the source signals unigue. Hence, we cannot always use the eigenvectd®.¢k) to
achieve a complete separation. However, we can separate groups of
Z(n) =[si(n) s2(n) -+ sny(n)]" signals by exploiting eigenvectors corresponding to different eigen-

values. In a totally blind situation, leR,(%:) have onlyL distinct
are uncorrelated of one another but are not (temporally) white. Heneégenvalues; then, we can halesubspaces that are orthogonal, and

for stationary signals, we have hence,L subclasses of signals can be extracted by
R, (k) = E{3m)3(n — )"} vl'zn),  i=1,2,---, L (11)
=diag {r1(k), r2(k), - -+, rn(k)} (3) The dimension ol/; is equal to the multiplicity of the corresponding
eigenvalue.
wherer; (k) = E{si(n)s{(n — k)} and for deterministic signals Once we extract a new signal vector with lower dimensiom) =
UH 2(n), its components can be extracted base®ofi- ) using iden-
Ry(k) = E{3(n)3(n — k)™} tical steps. As we can clearly observe, to ensure that this procedure can
= lim N7! Z F(n)3(n — k)7 eventually extract all the sources, it is necessary that the sources have
Noes n=1,N different power spectral densities. In [10] and [11], the separation prin-
=diag{r: (k), ra(k), -+, ra(k)}. (4) ciple is discussed in detail.

The separability analysis shows that the sources are separable if they
Here, the same notatioR is used for both ensemble averaging anttave different power spectral densities. Note that this condition is also

time averaging. a necessary condition if only second-order statistics is used since any
The additive noiseii(n) is supposed to be a stationary, temporallynitary transform on two uncorrelated sources with identical power
white, zero mean complex random process uncorrelated of the soursgectral density will maintain the spectral density and the uncorrelated

Therefore property. A more rigorous proof is given in [11]. Of course, in practical

situations, it is unlikely that two sources will have same spectral density

E{@(n)®(n —k)"} = §(k)Ru (5) unless they are both white signals; therefore, in the above procedure,
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the eigendecomposition of the covariance matrix at only one time |&ffectively, the above equation can be rewritten as

is enough to separate the sources, and no further iteration is necessary;

this leads to the original AMUSE algorithm [8], [9]. However, when AA = AA0] A7 =0 (19)
some of the spectral densities are very similar, considering more time

lags willimprove robustness and accuracy of the separation in practiealequivalently for4 with full rank

situations. As an alternative to the iterative procedure described above,

[4]-[6] proposed the joint diagonalization [7] of covariance matrices di,1 = Ada,1 0 0
for different time lags to solve this problem and proposed the “SOBI” 0 di,2 = Ada,2 0
algorithm based on this concept. 0 0 0
The algorithms discussed above, including our iterative procedure, 0 0 s dy oy = Mo N
AMUSE, and SOBI, are all two-step approaches that require a oo o o 20)

whitening step under the assumption that the correlation matrix of the
noise is either known or can be fully estimated. However, when the . ) ) )
noise correlation matrix is either unknown or cannot be estimatedn€ trivial solution to the eigenvector problem is

these methods may no longer be effective. In view of this shortcoming, AHg 2
we present in the next section an alternative approach that is insensitive ¥ = 0. (21)

o additive (temporally) white noise. Note that the trivial solution will exist i/ > .

SinceA has full column rank, any other nontrivial solution requires
IV. MATRIX PENCIL ALGORITHMS the corresponding eigenvalue to satisfy

A. Basic Statistical Information di

dl,i — /\idz‘i =0 or X\ =
: dzJ

Matrix pencil methods, including the well-known ESPRIT algo- (22)

rithms, were first proposed in the field of array signal processing

to estimate the directions of arrival. For array signal processing,and if the ratio; is unique (i.e., the eigenvalue is unique), the corre-

the array manifold is completely unknown, it is equivalently a blingPonding eigenvector must satisfy

source separation problem. However, many approaches assume that -

the exact array manifold is known, as in MUSIC, or that the array AT = aje; (23)

manifold has a rotational invariance, as in the ESPRIT algorithm. ] ) ) ) )

These methods exploit only the spatial information of the signal¢neree: is theith column of the identity matrix. In general, if the

We will show that when source signals have nonwhite second-ord@f0 0f i, i/dz i is not unique and

temporal information, matrix pencil methods can be adopted to dy

separate sources blindly. d_ =, VieTl="{_i, iz, ", 0m} (24)
Second-order statistics of the signals are contained in their autocor- 2

relation matrices at all time delays. In the remaining part of this pap@ken letV’, consist of all eigenvectors for eigenvaltie
we use the statistics contained in '

Vi =I[dy @y, - @] (25)
R.(k) = E{Z(n)@(n —k)"} = AR, (k)A”, k#0 (12)
We have
that are insensitive to additive temporally white noises. In particular, "
we choose the matrix pencil to be ATVy =y e e, or e, |Uy (26)
in which U, is ani,, X i,, unitary matrix. LetV" be the generalized
Ry, Ry} = {Re(ky1), Re(ka 13 . 7 ) .
(R, Ro} = {Re(k) (kz)} (13) eigenvector matrix of the matrix pendd;, R-; hence, we have
whereky # ko and propose two matrix pencil-based algorithms. I 0 - 0 0
o U, -+ 0 O
B. Generalized Eigendecomposition , .
g P via=|y o . o o|DP 27)
Denote o 0o - U, 0
- = 0 0 -+ 0 0
Rl = Bx(lq) = .ARS(kl)fl = A.AlA (14)
Ry =R, (ks) = AR, (ko)A = AN, A" (15) Where each element represents a maffixs a permutation, and is
a diagonal matrix.
where Note that although we do not estimate the original parameter matrix
A, we can get a matriX” that transformst to a block diagonal matrix
. | multiplied by a permutation. In many practical applications, we do not
A =R, (k1) = diag{d1,1, ---, d1,~ 16 - . .
! (k) ?ag{ b ) 61N } (16) always need the parameter matfixtself, and this block diagonal form
Ay = Ro(k2) = diag{dz,1, - -+, d2, n }. (17) s very useful for blind signal separation. If all ratips, } are unique,
. . ) then the block diagonal form f” A becomes purely diagonal, and all
Consider the generalized eigenvalue problem signals are completely separatedibyOtherwise)’ separates source

signals into disjoint groups that can be further separated by using ad-
R = AR,0. (18) ditional matrix pencil formed by correlation matrices at different lags.
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SinceV satisfies (27), we have and
Jo(n) Dodo(n) + Vi iii(n) v=r£loE. (35)

g1(n) dq Ufl Fi(n) + \ @(n)
J(n) = V”f(n) = = :

7o(n) d, U5, (n) + V[ i (n)

Then (33) can be rewritten as

2

, min |:Rl:| — |: B :| . (36)
Gp+1(n) Vitid(n) B9 || r.) T |BY,

Solving the minimization problem in (36) results in a total least

Therefore, the signals can be partitioned inte2 groups, with the first A piEVIEn
$quares estimate [15] &f, which is given by

groupyo (n) as separated sources corrupted by additive noises and

last groupy,+1(n) purely as noises. For the grougn) - - - #,(n), . o
they are still linear combinations of the sources corrupted by additive Prrs = —Via Vs, (37)
noises. The sources containedyjirin), i = 1, ---, p can further be R . L ) . .
extracted fronyj,(n) by applying the same procedure on its autocorré’yhere" 12 andVas are implicitly defined by the eigendecomposition
lation matrices RH Vii Vis VH oy
|:R}{:| [Bl RZ] = |:VH Vl‘:| { |:V1111 VQF]I:| (38)
N N H H 2 21 /22 12 22
Ry, (k) = E{7:(n)7i(n = )"} = US R, (U, (29)
andA = dianh RN )\gjw], A > A > 2> Ao

for a pair of different delayss andk.. Alternatively, sincd’., is uni- Alternatively, a least squares estimatelofs obtained from (36) by

tary, its estimate can be obtained directly as the eigenvectdts. 0k).  setting the first block to zero, i.e., letting = ;. This results in
Here, we note that the groups(n) --- #,(n) can be easily de- . )

termined by the generalized eigendecomposition of the matrix pencil min [|[Rz — B[ (39)

since they are associated to the nonunigue eigenvalues. However, we

must separate the all noise (last) output signals from other groups Wéth the solution given by

cause for a vectal, that satisfiesd” 7, = 0, we always have . +

¥ s =R Ry (40)

AA(E)AT 7 = NAA(k2)AT 8% =0 forany A.  (30)

whereRir = [RY R\]7'RY is the Moon—Penrose pseudo-inverse of

In other words;,, can be eigenvector of any eigenvalue. To identifyi?1. This implicitly assumes that there are no measurement errors in

these eigenvectors that generate all noise outputs, notice that sigdals Similarly, by letting B = R,¥~', a solution that assumes no

in 7,+1(n) are pure noises that have the smallest power. Thus, WEOrS inR; is obtained as

can always discard th&/ — N output signals that have the smallest ) i

power. The determination of pure noise output can also be processed Urs = Ry Ri. (41)

without explicitly computing the output signals if we utiliz@.(0)

since#™ R, (0)7 equals the output signal power. Given noisy measurements, bath and R» contain errors. The LS

estimate will, thus, be biased. It is better to treat the errors in these two
matrices symmetrically. This leads to the TLS solution in (37) and (38).

C. ESPRIT Algorithms . .
9 Equation (35) can be rewritten as

The ESPRIT algorithms utilize the rotation invariance structure of

the data. Rewritd R;, R} in the form U = (A”)TRI(h)(PRS(k])A" = (A”)T@A”, (42)
Ry =AF (31) Assume thatb can be written as
Ry = ADE (32) o1l 0 - 0
i r 0 ool - 0,
where ' = R.(k)A”, and ® = R.(ko)RI(E)) = & = Pp®oPy = Po P; (43)
diag{(dg,l/dl,l), dg,l\r/dl,l\r}. Here, we assume thd{s(kl) 0 0 0
has full rank; otherwise, the above relationship may not be satidfied. 0 0 o oply,

has full row rank asi is of full column rank. There are three VerSionSWhereP is a permutation matrixf.. is an identity matrix for an
of ESPRIT algorithms: @ p i y y

i=1---p,andd; > ¢2 > -+ > ¢,. Correspondingly, we define

1) the direct formulation [16]; that

2) the least square formulation [12]-[14];

3) the total least square formulation [15]. di Uy, o - 0

The total least squares (TLS) version of the ESPRIT algorithm solves 0 d2Usg oo 0
the following minimization problem: D=FPpDo=Pp B (44)

0 0 . 0
. Ry A 2 0 0 - Bl
Al {RJ B {A@} E B (33) whereU,, is unitary for anyi = 1 --- p, and Pp is a permutation
matrix. LetP = Py P} ; then, it is easy to see that the eigenmatrix of

Let v is

B = AE (34) v = ((4apPD)")l. (45)
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In fact, it can be verified by ¢ TLS-ESPRITComplete the eigendecomposition of
TV = (AT)H@AH ((A]"D)h{)Jr R{! _ |V Vi Vit Vil
BH [Bl BQ] - Vs V- A ‘,rH ‘/'H .
—(AT)H@PPD(DT)H 2 21 Vo2 /12 22
4 0
= (AT)HP(p Plops (DJ:)H Compute the eigendecompositioniah V,,* . Denote the eigenvectors
_ (AT)NPPD(DT)N% corresponding to nonzero eigenvalues as a matrix
ote that for LS- , We can compute thi¢h-order pseudo in-
- THO Note that for LS-ESPRIT, Feh-ord doi
=(A4")"P(D")" @0 verse ofR, (k) directly. We also note that TLS-ESPRIT has a close
=V®,. (46) relation to joint diagonalization. Assume thiaf; = LjDiUH fori =
1, ---, L,wherel/ is unitary, andD; is diagonal. Lefl/; be an approx-
Thus, we have imation of M;; then, the joint diagonalization ¢fA;|i = 1, ---, L},

as proposed by Cardoso [6], solves the optimization problem
g(n) = v Z(n)

L
= piPatasm) + a(m)) min Y J(UMALU) (49)
= D (Psn) + PAT&(n)) =
- -1z / :'; . . N . .
Dq5o(n) + wo(n) where the matrix functiod (-) is given by the off-diagonal elements as

d7! Uﬁ Fi(n) + 151(71)
: J(M) = |M - diag M)||7 (50)

_dljllrﬁ Z,(n) + wp(n) _ .
where diag}M ) denotes the diagonal of matrii . In fact, Waxet al.

[ jo(n
ZL?E"; proved in [17] that (49) coincides with the least squares criterion
= 5 : 47) s
Lip(n) min > 1AL = UDU (5)
: =1
If all the diagonal entries ob are unique, then Note that the TLS-ESPRIT (33) can be effectively rewritten as
#(n) = D~ P3(n) + D' PAT@(n) (48) >

i R [AR,(k)A"
AR, (k) Ralke) || | Ra AR, (ko)A

r

the sources are completely separated. In general, the sources are sepa- )
rated into groups, as stated in (47). For those groups where the signals _ Z IR — AR, (kl_)AH”?. (52)
are still linear combination of the original sources, the sources can be

further separated with a procedure, as described in Section IV-B.

=1

In the practical caséy is estimated fromPrrs or ¥ys. This shows that our TLS-ESPRIT algorithm is also a joint diagonaliza-
tion solution of two nonwhitened correlation matrices.
V. SUMMARY AND DISCUSSION We should note, however, that our solution of (36) is not the optimal

solution to the TLS-ESPRIT formulation (33) since our solution is op-

In the previous section, we proposed two matrix pencil approache:i-lmal if and only if the parameterB and¥ are independent variables.

blind source separation using second-order statistics. We avoided UM o rrelation betweeR and ¥ is obvious since they are both a com-
the information contained i®..(0), which is sensitive to temporally hination of A, R, (k1), andR. (k2). Thus, our TLS solution is only a
white sensor noise. Compared W'_th qther approaches such as AMuﬁlFboptimal solution of our orikginal least square optimization problem
and .SOBI‘ Wh!Ch relyona prewhltenlng st.ep, our approachl IS Slmpﬁrated in(33). Despite this, the relationship between our TLS approach
anq is well suited for pracucgl systems with temporally white Sens%djoint diagonalization is interesting and useful. In particular, we see
noises that are not mutu_ally Ind_ependent. ., that our TLS-ESPRIT approach is inherently an approximation of the
of course, the matrix pencil methgds can also be appllgd Bint diagonalization approach such as SOBI [4]. Further, the TLS ap-
prewhitened d_ata. It can b_e shown that in this case, all th_e Version; P(Sach has two advantages over the joint diagonalization approach. The
ESPRIT algorithms will give the same result if the matrix pencil it ig that no prewhitening step is required, and the second is that a

chosen as a pair of correlation matrices at c_hfferent delays. closed-form solution is obtained without any iterative procedure.
For all three methods, the separated signals are generated from

#(n) = VHZ(n). In short, these algorithms can be summarized as
follows.

» Generalized Eigendecomposition (GED) AppraacBom- Before presenting our simulation results, we need to define our per-
pute the generalized eigendecomposition of the matrix penéidirmance measure. The algorithms give out an extraction nidtrike
{R.(k1), R-(k2)}. Denote the eigenvectors corresponding taill use the signal to interference ratio (SIR) in the extracted signals as
nonzero eigenvalues as a matfix the performance measure more relevant to source separation.

« LS-ESPRITCompute the eigendecomposition@}}?z. Denote  Assume that the sources are extracted by

the eigenvectors corresponding to nonzero eigenvalues as a ma- R
trix V. 3n) =V En) = (VI A)3(n) + VT (n). (53)

VI. SIMULATIONS
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(a) Signal length: 100

(b) Signal length: 1000
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Fig. 1.

Input SNR (dB)

Performance for the situation where sensor noises are uncorrelated.

905

We denotes;, (n) as the estimation of; () ifithas the largest SIR for  The algorithms used in this simulation include the generalized eigen-
s;(n) among all the estimated sourcé(@). LettingC' = V*' A, the decomposition (GED) method and the TLS-ESPRIT algorithm. For the
SIR of 5,(n) can be computed as TLS-ESPRIT algorithm, we use matricé®..(1), R.(2)}. For com-

|Cigil parison purposes, the AMUSE and SOBI algorithms are also applied.
SIR; = ﬁ (54)  In AMUSE, the time delay is selected &s= 1. In SOBI, we con-
; [Cs] sider two cases: One is to jointly diagonaliZe(1) andR. (2), which
JF0

. ) is denoted as SOBI (2), and the other is to jointly diagonalizék),
For the overall system, the performance measure is defined as the;av= 1 ... 5 \which is denoted as SOBI (6). The sigritih) is the

eraged value of SIR for all the sources, which is

N
1
Tyert = 10 log,, (V ZSIR,-) dB. (55

=1

whitened version of original data signé(r ). Therefore, there are five
algorithms for comparison.

Simulation results are plotted in Figs. 1 and 2. In the figures, the av-
. . . ) ) __erage SIRT,..r) as defined in (55) is plotted against input SNR. Note

In the simulation setup, we consider a five-element uniform linegf + the performance index is averaged over 100 independent Monte
array (ULA) with half Wavelgngth SENsor spacing receives o Sigsa g ryns. In Fig. 1, the additive noises at the sensors are mutually in-
nals in the presence of stationary complex white noise. The sour endent, and in Fig. 2, these additive noises are correlated. In both
are generated by filtering complex circular white Gaussian _proces%%%reS the resultis plotted for signal sample length of 100, 1000, 5000
through first-order AR filters with poles @85¢/°- and0.85¢7°->%, and, 10 000, respectively, in (a)—(d). ' ’ ’
respectll/ely. Th_e sources arrive from dn‘fergnt anglg&at: 10° and The following observations can be made from the simulation results.
o2 = 30°. The simulation is performed for different signal lengths and ) For short data length and/or low input SNR, GED outperforms
signal-to-noise ratio (SNR). The signal lengths of 100, 1000, 5000, and’ other methods un%er both indepe};dent ar;d correlatzd sensor
ilni(r)eor(r)]:r:tes.used, whereas the SNR varies fro0 to 30 dB at 5-dB noises. In fact, as we can see, when the output SIR for AMUSE

For additive sensor noises, we tested both independent noises and cor- 2nd SOBI are less than 2 dB, the GED method generates output
related noise. For correlated noise, the correlation matrix is chosenas ~ S!R of 5 dB. The reason is that for short date length and low

1, 2t SNR, estimates of data correlation matric_es are inaccu_rate.
1 2 3 The AMUSE algorithm and the SOBI algorithm both require
'02 pr pg prewhitening of the data and are more prone to the presence of
Ro=1p , b Lopop (56) large noise and short data effects.
/’4 p3 pz 1 [1) b) For long data length and/or high input SNR, correlation matrices
popopp

become more accurate, and GED does not perform as well as

with p = 0.5. other more complex algorithms.
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(a) Signal length: 100
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Fig. 2.

(b) Signal length: 1000
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Performance for the situation where sensor noises are correlated.

¢) When sensor noises are uncorrelated, the performance of ESPBafsor noises be mutually independent. It does not require signals to be
algorithm is comparable with that of the AMUSE but is inferiorstationary.

d) When sensor noises are correlated, performances of AMUSE andf]
SOBI degrade greatly, especially when the input SNR is low, and 1,

e) For the case where sensor noises are correlated and moderafg]

to SOBI (2) and SOBI (6). This is because only two correlation
matrices are used in ESPRIT and AMUSE, whereas SOBI ex-
ploits the additional information if. (0).

the whitening procedure does not perform well. However, for the
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Naofal Al-Dhahir
A. Notation

Abstract—Transmitter optimization techniques for maximizing the Throughout. thls.correspondence, vectors are denpted in lowercase
throughput of linear ISI channels impaired by additive-Gaussian noise b0ld and matrices in uppercase bold. The transpose is denoted by
and crosstalk are presented. Transmitter ends of both single carrier the complex-conjugate transpose by, the determinant by- |, and
and multicarrier transceiver structures are optimized subject to a fixed  the inverse by-)~'. Furthermore is a vector of all zeros, arlbly is
average input energy constraint. The effect of transmitter optimization the N x N identity matrix. When the components of a vector are to

on channel throughput is quantified by comparison with scenarios where . .
both the desired user and the crosstalker use a flat energy distribution P€ €mphasized, the first and last components, separated by a colon, are

across the transmission bandwidth. given as a subscript to the vector asiny v —1.x—v-
Index Terms—Crosstalk, intersymbol interference, throughput, trans-
mitter. Il. SINGLE-CARRIER MODULATION TRANSMITTER OPTIMIZATION
A. Input—Output Model
. INTRODUCTION We adopt the following discrete-time representation of an additive-

Limited bandwidth resources in many spectrally efficient digitaf0ise dispersive channel impaired by crosstalk:
communications systems often result in having multiple users, who , .
typically have the same transmission power spectral density charac- h = -

Toti . . = mLhk—m +ng + 1 Lk—3 1
teristics, share the same frequency band, and, thus, interfere with each Yk Z k k ; itk @)
other. Among the scenarios where this interference is performance
limiting is crosstalk (both near-end and far-end) in the emerglngvherehm def et - hom]' ande def [gim1i - gou]'

e e o ehhente i 1/ ma chameland fah crossia chanvel (o) -
. » . o | ffici havi ies ahdv., ively,
receiverto mitigate crosstalk such aecision-feedback equallzatlonp se response coefficients having memories afds. , respectively

L : . T and oversampled by a factor bf We assume a continuous transmis-
(DFE) in single-carrier modulation systems [1]EFT processingn . . .
multicarrier medulation systems [S]. Full optimization of a commuSIOn bandwidth and perfect knowledge of the desired and crosstalker
I N Syslems (o). P - ; channel and the noise characteristics at the transmitter and receiver
nication system entails optimizing both the receiaed transmitter

ends, where the second task requires optimizing the transmissgeﬁnfreﬁJI 2.0;2eslenqpuu;nsq:]f}er;c§g,; }s ’stjhrﬁe(g(:(fstlel;?z;t;iilijnj:rg}-;naegi in-

ban_dW|dth an_d the power §pectra| der_lsny_shape of the |npu_t sian ependent of each other, and have nonsingular autocorrelation matrices
While transmitter optimization for multicarrier systems on noisy IS .
denoted byR ., Rz5, andR.,,,,, respectively.

channels with crosstalk has received considerable attention recent;f.he input and crosstalker sequences are generated by the same FIR
[4], [6], this has not been the case for single-carrier systems, Wh?rrgnsmit filter according to

m=0
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