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obtained by Kung's algorithm [8], which is the impulse response by
PCM's algorithm [9]. The absolute error of the truncated impulse
response for the above realization and the realization obtained by
Kung's algorithm is plotted in Fig. 1 to display the relative perfor-
mance. In addition, the squared errorJ between the FIR realization of
the original data sequence and each of the three realizations is shown
in Table II along with the squared error of the truncated impulse
response, i.e.,

J =

22

k=1

h(k)� crA
k�1

r br
2

The convergence of the proposed algorithm is clearly exhibited in
Fig. 2, where the squared errorJ as a function oft is plotted on the in-
terval[0; 50]. The variation of the elements ofU is displayed in Figs. 3
and 4. The variation ofV is similar.

V. CONCLUSION

Two convergent search algorithms have been proposed for the min-
imization of the integral squared impulse response error between a
full-order digital filter and a reduced-order model. These algorithms
are applicable to the general multi-input multi-output case and have
been shown to be effective by simulation studies. It is envisaged that
similar algorithms can be developed to deal with the case where the
reduction error is frequency weighted.
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A Matrix–Pencil Approach to Blind Separation of Colored
Nonstationary Signals

Chunqi Chang, Zhi Ding, Sze Fong Yau, and Francis H. Y. Chan

Abstract—For many signal sources such as speech with distinct, nonwhite
power spectral densities, second-order statistics of the received signal mix-
ture can be exploited for signal separation. Without knowledge on noise
correlation matrix, we propose a simple and yet effective signal extrac-
tion method for signal source separation under unknown temporally white
noise. This new and unbiased signal extractor is derived from the matrix
pencil formed between output autocorrelation matrices at different delays.
Based on the matrix pencil, an ESPRIT-type algorithm is derived to get an
optimal solution in least square sense. Our method is well suited for systems
with colored sensor noises and for nonstationary signals.

Index Terms—Beamforming, blind source separation, cancellation, in-
terference, nonstationary signal processing.

I. INTRODUCTION

Blind source separation has become a well-established research topic
in the signal processing community. It finds useful applications in prac-
tical scenarios involving multisources and multisensors. The key objec-
tive of blind source separation is to extract source signals from sensor
measurements without full knowledge of the signal propagation en-
vironment. Examples include antenna beamforming, multiple speech
separation, and multichannel biomedical signal separation.

Many papers concerning this topic have been published both on sep-
aration principles and specific algorithms. The most common assump-
tions are the following.

1) Sensor noises are white and mutually independent.
2) Source signals are stationary.
3) At most one source is Gaussian.
4) Multiple sensor outputs arelinearly independent.

Based on these assumptions, separation principles have been investi-
gated [1], [2] and algorithms exploiting higher order statistics have also
been proposed [3].

On the other hand, second-order statistics-based algorithms can be
exploited under the assumption that source signals for separation are
colored [4], [8], [10]. Second-order statistics-based methods do not re-
quire the non-Gaussian assumption. They may generate better perfor-
mance than algorithms based on higher order statistics for short data
length. For practical applications involving separations of speech and
music signals that are typically nonwhite and nonstationary, second-
order statistical methods can be more suitable and effective.
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However, existing second-order statistical methods often rely on sta-
tistical knowledge of sensor noise. To overcome this critical weakness,
we propose a second-order statistics-based matrix pencil approach in
this correspondence. The new approach yields unbiased signal esti-
mates from signal mixtures corrupted by additive white noise. In our
original work [18], we simply used a general eigendecomposition of the
matrix pencil to estimate the extractor directly. In this correspodence,
an optimization procedure is incorporated in least square sense to yield
an ESPRIT algorithm with better performance. This paper is organized
as follows. In Section II, the problem of blind source separation is de-
scribed along with relevant assumptions on second-order statistics of
signals for separation. Section III outlines a basic signal separability
result based on second-order statistics. Section IV presents an ESPRIT
algorithm based on the matrix pencil formed by two correlation ma-
trices at different nonzero lags. Monte Carlo simulations demonstrating
the performance of the proposed method are presented in Section V.

II. PROBLEM FORMULATION

A memoryless mixture of multiple signals is often modeled as

~x(n) = A~s(n) + ~w(n) (1)

in which~s(n) is a vector of source signals of dimensionN , and~x(n) is
the received signal vector of dimensionM . In (1), ~w(n) is the additive
white noise vector, andA is anM � N memoryless mixing matrix.
In order for all sources to be separable,A must have full column rank,
requiringM � N . WhenA is not full rank, then signals can only
be separated as classes [2]. In this correspondence, we only consider
systems in which the sources are individually separable, i.e.,A has full
column rank.

Our objective is to find a signal extracting matrixB =
[~b1 ~b2 � � � ~bN ] such that

B
H
~x(n) = B

H
A~s(n) +B

H
~w(n) = P~s(n) +B

H
~w(n) (2)

whereP = BHA is a permutation matrix that has only one nonzero
element in each row and column.

We assume that the source signals

~s(n) = [ s1(n) s2(n) � � � sN(n) ]T

are uncorrelated of one another but are not (temporally) white. Hence,
for stationary signals, we have

Rs(k) =E ~s(n)~s(n� k)H

=diag fr1(k); r2(k); � � � ; rN(k)g (3)

whereri(k) = Efsi(n)s
�

i (n� k)g and for deterministic signals

Rs(k) =Ef~s(n)~s(n� k)Hg

= lim
N!1

N
�1

n=1;N

~s(n)~s(n� k)H

= diagfr1(k); r2(k); � � � ; rN(k)g: (4)

Here, the same notationE is used for both ensemble averaging and
time averaging.

The additive noise~w(n) is supposed to be a stationary, temporally
white, zero mean complex random process uncorrelated of the sources.
Therefore

Ef~w(n)~w(n� k)Hg = �(k)Rw (5)

where�(k) is the Kronecker delta function, andRw is the covariance
matrix of the additive noise. However, here we do not require that the
noise be spatially white as assumed in many other approaches. Al-
lowing more freedom in array calibration,Rw can be an arbitrary un-
known matrix.

III. SIGNAL EPARABILITY BASED ONSECOND—ORDERSTATISTICS

Let Rs(k) be as defined in (3) or (4). Without loss of generality,
we can assume thatRs(0) = I . Given noise with known correlation
matrixRw, the covariance matrix of the mixtures can be shown as

Rx(0) = Ef~x(n)~x(n)Hg = ARs(0)A
H+Rw = AA

H +Rw: (6)

Thus, we can calculate

Rx(0)�Rw = AA
H (7)

which can be whitened using a whitening matrixW such that

I = W (Rx(0)�Rw)W
H = WAA

H
W

H
: (8)

It is, hence, clear thatU = WA is unitary.
We note that the assumption of known noise correlation matrix is

typically impractical. In the special case when the noise correlation
matrix is of the form�2I andM > N , then�2w can be estimated as
the smallest eigenvalue ofRx(0).

Denoting the whitened data vector as

~z(n) = W~x(n) (9)

then

Rz(k) =Ef~z(n)~z(n� k)Hg

=WARs(k)A
H
W

H

=URs(k)U
H
: (10)

Hence, columns ofU are eigenvectors ofRz(k).
If Rs(k) has identical eigenvalues, then their eigenvectors are not

unique. Hence, we cannot always use the eigenvector ofRz(k) to
achieve a complete separation. However, we can separate groups of
signals by exploiting eigenvectors corresponding to different eigen-
values. In a totally blind situation, letRs(k1) have onlyL distinct
eigenvalues; then, we can haveL subspaces that are orthogonal, and
hence,L subclasses of signals can be extracted by

U
H
i ~z(n); i = 1; 2; � � � ; L: (11)

The dimension ofUi is equal to the multiplicity of the corresponding
eigenvalue.

Once we extract a new signal vector with lower dimension~xi(n) =
UH
i ~z(n), its components can be extracted based onRs(k2) using iden-

tical steps. As we can clearly observe, to ensure that this procedure can
eventually extract all the sources, it is necessary that the sources have
different power spectral densities. In [10] and [11], the separation prin-
ciple is discussed in detail.

The separability analysis shows that the sources are separable if they
have different power spectral densities. Note that this condition is also
a necessary condition if only second-order statistics is used since any
unitary transform on two uncorrelated sources with identical power
spectral density will maintain the spectral density and the uncorrelated
property. A more rigorous proof is given in [11]. Of course, in practical
situations, it is unlikely that two sources will have same spectral density
unless they are both white signals; therefore, in the above procedure,
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the eigendecomposition of the covariance matrix at only one time lag
is enough to separate the sources, and no further iteration is necessary;
this leads to the original AMUSE algorithm [8], [9]. However, when
some of the spectral densities are very similar, considering more time
lags will improve robustness and accuracy of the separation in practical
situations. As an alternative to the iterative procedure described above,
[4]–[6] proposed the joint diagonalization [7] of covariance matrices
for different time lags to solve this problem and proposed the “SOBI”
algorithm based on this concept.

The algorithms discussed above, including our iterative procedure,
AMUSE, and SOBI, are all two-step approaches that require a
whitening step under the assumption that the correlation matrix of the
noise is either known or can be fully estimated. However, when the
noise correlation matrix is either unknown or cannot be estimated,
these methods may no longer be effective. In view of this shortcoming,
we present in the next section an alternative approach that is insensitive
to additive (temporally) white noise.

IV. M ATRIX PENCIL ALGORITHMS

A. Basic Statistical Information

Matrix pencil methods, including the well-known ESPRIT algo-
rithms, were first proposed in the field of array signal processing
to estimate the directions of arrival. For array signal processing, if
the array manifold is completely unknown, it is equivalently a blind
source separation problem. However, many approaches assume that
the exact array manifold is known, as in MUSIC, or that the array
manifold has a rotational invariance, as in the ESPRIT algorithm.
These methods exploit only the spatial information of the signals.
We will show that when source signals have nonwhite second-order
temporal information, matrix pencil methods can be adopted to
separate sources blindly.

Second-order statistics of the signals are contained in their autocor-
relation matrices at all time delays. In the remaining part of this paper,
we use the statistics contained in

Rx(k) = Ef~x(n)~x(n� k)Hg = ARs(k)A
H ; k 6= 0 (12)

that are insensitive to additive temporally white noises. In particular,
we choose the matrix pencil to be

fR1; R2g = fRx(k1); Rx(k2)g (13)

wherek1 6= k2 and propose two matrix pencil-based algorithms.

B. Generalized Eigendecomposition

Denote

R1 =Rx(k1) = ARs(k1)A
H = A�1A

H (14)

R2 =Rx(k2) = ARs(k2)A
H = A�2A

H (15)

where

�1 =Rs(k1) = diagfd1; 1; � � � ; d1;Ng (16)

�2 =Rs(k2) = diagfd2; 1; � � � ; d2;Ng: (17)

Consider the generalized eigenvalue problem

R1~v = �R2~v: (18)

Effectively, the above equation can be rewritten as

A [�1 � ��2]A
H~v = 0 (19)

or equivalently forA with full rank

d1; 1 � �d2; 1 0 � � � 0

0 d1; 2 � �d2; 2 � � � 0

0 0
. . . 0

0 0 � � � d1;N � �d2;N

� AH~v = 0: (20)

One trivial solution to the eigenvector problem is

AH~v0 = 0: (21)

Note that the trivial solution will exist ifM > N .
SinceA has full column rank, any other nontrivial solution requires

the corresponding eigenvalue to satisfy

d1; i � �id2; i = 0 or �i =
d1; i
d2; i

(22)

and if the ratio�i is unique (i.e., the eigenvalue is unique), the corre-
sponding eigenvector must satisfy

AH~vi = �iei (23)

whereeeei is theith column of the identity matrixI . In general, if the
ratio of d1; i=d2; i is not unique and

d1; i
d2; i

= 
; 8 i 2 I = fi1; i2; � � � ; img (24)

then letV
 consist of all eigenvectors for eigenvalue


V
 = [~vi ~vi � � � ~vi ] : (25)

We have

AHV
 = �
 [ eeei eeei � � � eeei ]U
 (26)

in whichU
 is anim � im unitary matrix. LetV be the generalized
eigenvector matrix of the matrix pencilR1; R2; hence, we have

V HA =

I 0 � � � 0 0

0 U
 � � � 0 0

0 0
. . . 0 0

0 0 � � � U
 0

0 0 � � � 0 0

DP (27)

where each element represents a matrix,P is a permutation, andD is
a diagonal matrix.

Note that although we do not estimate the original parameter matrix
A, we can get a matrixV that transformsA to a block diagonal matrix
multiplied by a permutation. In many practical applications, we do not
always need the parameter matrixA itself, and this block diagonal form
is very useful for blind signal separation. If all ratiosf�ig are unique,
then the block diagonal form ofV HA becomes purely diagonal, and all
signals are completely separated byV . Otherwise,V separates source
signals into disjoint groups that can be further separated by using ad-
ditional matrix pencil formed by correlation matrices at different lags.
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SinceV satisfies (27), we have

~y(n) = V H~x(n) =

~y0(n)

~y1(n)
...

~yp(n)

~yp+1(n)

=

D0~s0(n) + V H
0 ~w(n)

d1U
H

 ~s1(n) + V H

1 ~w(n)
...

dpU
H

 ~sp(n) + V H

p ~w(n)

V H
p+1 ~w(n)

:

(28)
Therefore, the signals can be partitioned intop+2 groups, with the first
group~y0(n) as separated sources corrupted by additive noises and the
last group~yp+1(n) purely as noises. For the groups~y1(n) � � � ~yp(n),
they are still linear combinations of the sources corrupted by additive
noises. The sources contained in~yi(n); i = 1; � � � ; p can further be
extracted from~yi(n) by applying the same procedure on its autocorre-
lation matrices

Ry (k) = Ef~yi(n)~yi(n� k)Hg = UH

 Rs (k)U
 (29)

for a pair of different delaysk3 andk4. Alternatively, sinceU
 is uni-
tary, its estimate can be obtained directly as the eigenvectors ofRy (k).

Here, we note that the groups~y1(n) � � � ~yp(n) can be easily de-
termined by the generalized eigendecomposition of the matrix pencil
since they are associated to the nonunique eigenvalues. However, we
must separate the all noise (last) output signals from other groups be-
cause for a vector~v0 that satisfiesAH~v0 = 0, we always have

A�(k1)A
T~v0 = �A�(k2)A

T~v0 = 0 for any �: (30)

In other words,v0 can be eigenvector of any eigenvalue. To identify
these eigenvectors that generate all noise outputs, notice that signals
in ~yp+1(n) are pure noises that have the smallest power. Thus, we
can always discard theM � N output signals that have the smallest
power. The determination of pure noise output can also be processed
without explicitly computing the output signals if we utilizeRx(0)
since~vHRx(0)~v equals the output signal power.

C. ESPRIT Algorithms

The ESPRIT algorithms utilize the rotation invariance structure of
the data. RewritefR1; R2g in the form

R1 =AE (31)

R2 =A�E (32)

where E = Rs(k1)A
H , and � = Rs(k2)R

y
s (k1) =

diagf(d2; 1=d1;1); � � � ; d2;N=d1;Ng. Here, we assume thatRs(k1)
has full rank; otherwise, the above relationship may not be satisfied.E
has full row rank asA is of full column rank. There are three versions
of ESPRIT algorithms:

1) the direct formulation [16];
2) the least square formulation [12]–[14];
3) the total least square formulation [15].

The total least squares (TLS) version of the ESPRIT algorithm solves
the following minimization problem:

min
A;�; E

R1

R2

�
A

A�
E

2

F

: (33)

Let

B = AE (34)

and

	 = Ey�E: (35)

Then (33) can be rewritten as

min
B;	

R1

R2

�
B

B	

2

F

: (36)

Solving the minimization problem in (36) results in a total least
squares estimate [15] of	, which is given by

	̂TLS = �V12V
y
22 (37)

whereV12 andV22 are implicitly defined by the eigendecomposition

RH1
RH2

[R1 R2] =
V11 V12
V21 V22

�
V H
11 V H

21

V H
12 V H

22

(38)

and� = diag[�1; � � � ; �2M ], �1 � �2 � � � � � �2M .
Alternatively, a least squares estimate of	 is obtained from (36) by

setting the first block to zero, i.e., lettingB = R1. This results in

min
	

kR2 �R1	k
2
F (39)

with the solution given by

	̂LS = R
y
1R2 (40)

whereRy1 = [RH1 R1]
�1RH1 is the Moon–Penrose pseudo-inverse of

R1. This implicitly assumes that there are no measurement errors in
R1. Similarly, by lettingB = R2	

�1, a solution that assumes no
errors inR2 is obtained as

	̂LS = R
y
2R1: (41)

Given noisy measurements, bothR1 andR2 contain errors. The LS
estimate will, thus, be biased. It is better to treat the errors in these two
matrices symmetrically. This leads to the TLS solution in (37) and (38).

Equation (35) can be rewritten as

	 = (AH)yRys (k1)�Rs(k1)A
H = (AH)y�AH : (42)

Assume that� can be written as

� = P��0P
T
� = P�

�1I
 0 � � � 0

0 �2I
 � � � 0

0 0
. . . 0

0 0 � � � �pI


P T� (43)

whereP� is a permutation matrix,I
 is an identity matrix for any
i = 1 � � � p, and�1 > �2 > � � � > �p. Correspondingly, we define
that

D = PDD0 = PD

d1U
 0 � � � 0

0 d2U
 � � � 0

0 0
. . . 0

0 0 � � � dpU


(44)

whereU
 is unitary for anyi = 1 � � � p, andPD is a permutation
matrix. LetP = P�P

T
D ; then, it is easy to see that the eigenmatrix of

	 is

V = ((APD)H)y: (45)
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In fact, it can be verified by

	̂TLSV =(Ay)H�AH((APD)H)y

=(Ay)H�PPD(D
y
0 )
H

=(Ay)HP�P
T
��P�(D

y
0 )
H

=(Ay)HPPD(D
y
0 )
H�0

=(Ay)HP (Dy)H�0

=V �0: (46)

Thus, we have

~y(n) =V
H
~x(n)

=D
y
PA

y(A~s(n) + ~w(n))

=D
y(P~s(n) + PA

y
~w(n))

=

D�10 ~s0(n) + ~~w0(n)

d�11 UH

 ~s1(n) + ~~w1(n)

...
d�1p UH


 ~sp(n) + ~~wp(n)

=

~y0(n)

~y1(n)
...

~yp(n)

: (47)

If all the diagonal entries of� are unique, then

~y(n) = D
�1
P~s(n) +D

�1
PA

y
~w(n) (48)

the sources are completely separated. In general, the sources are sepa-
rated into groups, as stated in (47). For those groups where the signals
are still linear combination of the original sources, the sources can be
further separated with a procedure, as described in Section IV-B.

In the practical case,V is estimated from̂	TLS or 	̂LS.

V. SUMMARY AND DISCUSSION

In the previous section, we proposed two matrix pencil approaches to
blind source separation using second-order statistics. We avoided using
the information contained inRx(0), which is sensitive to temporally
white sensor noise. Compared with other approaches such as AMUSE
and SOBI, which rely on a prewhitening step, our approach is simpler
and is well suited for practical systems with temporally white sensor
noises that are not mutually independent.

Of course, the matrix pencil methods can also be applied to
prewhitened data. It can be shown that in this case, all the versions of
ESPRIT algorithms will give the same result if the matrix pencil is
chosen as a pair of correlation matrices at different delays.

For all three methods, the separated signals are generated from
~y(n) = V H~x(n). In short, these algorithms can be summarized as
follows.

• Generalized Eigendecomposition (GED) Approach: Com-
pute the generalized eigendecomposition of the matrix pencil
fRx(k1); Rx(k2)g. Denote the eigenvectors corresponding to
nonzero eigenvalues as a matrixV .

• LS-ESPRIT: Compute the eigendecomposition ofR
y
1R2. Denote

the eigenvectors corresponding to nonzero eigenvalues as a ma-
trix V .

• TLS-ESPRIT: Complete the eigendecomposition of

RH
1

RH
2

[R1 R2] =
V11 V12

V21 V22
�

V H
11 V H

21

V H
12 V H

22

:

Compute the eigendecomposition ofV12V
�1
22 . Denote the eigenvectors

corresponding to nonzero eigenvalues as a matrixV .
Note that for LS-ESPRIT, we can compute theN th-order pseudo in-

verse ofRx(k1) directly. We also note that TLS-ESPRIT has a close
relation to joint diagonalization. Assume thatMi = UDiU

H for i =
1; � � � ; L, whereU is unitary, andDi is diagonal. LetM̂i be an approx-
imation ofMi; then, the joint diagonalization offM̂iji = 1; � � � ; Lg,
as proposed by Cardoso [6], solves the optimization problem

min
U

L

i=1

J(UH
M̂iU) (49)

where the matrix functionJ(�) is given by the off-diagonal elements as

J(M) = kM � diag(M)k2F (50)

where diag(M) denotes the diagonal of matrixM . In fact, Waxet al.
proved in [17] that (49) coincides with the least squares criterion

min
U;D

L

i=1

kM̂i � UDiU
Hk2F : (51)

Note that the TLS-ESPRIT (33) can be effectively rewritten as

min
A;R (k ); R (k )

R1

R2
�

ARs(k1)A
H

ARs(k2)A
H

2

F

=

2

i=1

kRi � ARs(ki)A
Hk2F : (52)

This shows that our TLS-ESPRIT algorithm is also a joint diagonaliza-
tion solution of two nonwhitened correlation matrices.

We should note, however, that our solution of (36) is not the optimal
solution to the TLS-ESPRIT formulation (33) since our solution is op-
timal if and only if the parametersB and	 are independent variables.
The correlation betweenB and	 is obvious since they are both a com-
bination ofA, Rs(k1), andRs(k2). Thus, our TLS solution is only a
suboptimal solution of our original least square optimization problem
stated in(33). Despite this, the relationship between our TLS approach
and joint diagonalization is interesting and useful. In particular, we see
that our TLS-ESPRIT approach is inherently an approximation of the
joint diagonalization approach such as SOBI [4]. Further, the TLS ap-
proach has two advantages over the joint diagonalization approach. The
first is that no prewhitening step is required, and the second is that a
closed-form solution is obtained without any iterative procedure.

VI. SIMULATIONS

Before presenting our simulation results, we need to define our per-
formance measure. The algorithms give out an extraction matrixV . We
will use the signal to interference ratio (SIR) in the extracted signals as
the performance measure more relevant to source separation.

Assume that the sources are extracted by

~̂s(n) = V
H
~x(n) = (V H

A)~s(n) + V
H
~w(n): (53)
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Fig. 1. Performance for the situation where sensor noises are uncorrelated.

We denotêsi (n) as the estimation ofsi(n) if it has the largest SIR for
si(n) among all the estimated sources~̂s(n). LettingC = V HA, the
SIR of si(n) can be computed as

SIRi =
jCi ij

2

j 6=i

jCi j j2
: (54)

For the overall system, the performance measure is defined as the av-
eraged value of SIR for all the sources, which is

Iperf = 10 log10
1

N

N

i=1

SIRi dB: (55)

In the simulation setup, we consider a five-element uniform linear
array (ULA) with half wavelength sensor spacing receives two sig-
nals in the presence of stationary complex white noise. The sources
are generated by filtering complex circular white Gaussian processes
through first-order AR filters with poles at0:85ej0:5 and0:85ej0:55,
respectively. The sources arrive from different angles at�1 = 10� and
�2 = 30�. The simulation is performed for different signal lengths and
signal-to-noise ratio (SNR). The signal lengths of 100, 1000, 5000, and
10 000 are used, whereas the SNR varies from�10 to 30 dB at 5–dB
increments.

For additive sensor noises, we testedboth independent noises and cor-
related noise. For correlated noise, the correlation matrix is chosen as

Rw =

1 � �2 �3 �4

� 1 � �2 �3

�2 � 1 � �2

�3 �2 � 1 �

�4 �3 �2 � 1

(56)

with � = 0.5.

The algorithms used in this simulation include the generalized eigen-
decomposition (GED) method and the TLS-ESPRIT algorithm. For the
TLS-ESPRIT algorithm, we use matricesfRx(1); Rx(2)g. For com-
parison purposes, the AMUSE and SOBI algorithms are also applied.
In AMUSE, the time delay is selected ask = 1. In SOBI, we con-
sider two cases: One is to jointly diagonalizeRz(1) andRz(2), which
is denoted as SOBI (2), and the other is to jointly diagonalizeRz(k),
k = 1 � � � 6, which is denoted as SOBI (6). The signal~z(n) is the
whitened version of original data signal~x(n). Therefore, there are five
algorithms for comparison.

Simulation results are plotted in Figs. 1 and 2. In the figures, the av-
erage SIR (Iperf ) as defined in (55) is plotted against input SNR. Note
that the performance index is averaged over 100 independent Monte
Carlo runs. In Fig. 1, the additive noises at the sensors are mutually in-
dependent, and in Fig. 2, these additive noises are correlated. In both
figures, the result is plotted for signal sample length of 100, 1000, 5000,
and, 10 000, respectively, in (a)–(d).

The following observations can be made from the simulation results.

a) For short data length and/or low input SNR, GED outperforms
other methods under both independent and correlated sensor
noises. In fact, as we can see, when the output SIR for AMUSE
and SOBI are less than 2 dB, the GED method generates output
SIR of 5 dB. The reason is that for short date length and low
SNR, estimates of data correlation matrices are inaccurate.
The AMUSE algorithm and the SOBI algorithm both require
prewhitening of the data and are more prone to the presence of
large noise and short data effects.

b) For long data length and/or high input SNR, correlation matrices
become more accurate, and GED does not perform as well as
other more complex algorithms.
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Fig. 2. Performance for the situation where sensor noises are correlated.

c) When sensor noises are uncorrelated, the performance of ESPRIT
algorithm is comparable with that of the AMUSE but is inferior
to SOBI (2) and SOBI (6). This is because only two correlation
matrices are used in ESPRIT and AMUSE, whereas SOBI ex-
ploits the additional information inRx(0).

d) When sensor noises are correlated, performances of AMUSE and
SOBI degrade greatly, especially when the input SNR is low, and
the whitening procedure does not perform well. However, for the
matrix pencil approach, both GED and ESPRIT perform almost
the same as the case where noises are uncorrelated since they
both use correlation matrices at nonzero lags that are inherently
insensitive to the correlation among sensor noises.

e) For the case where sensor noises are correlated and moderate
input SNR and data length, ESPRIT outperforms all the other
methods.

To summarize simulation results, it can be pointed out that GED
is very useful for short data length or the high noise level. When the
sensor noises are correlated, ESPRIT performs better than GED under
moderate level of SNR.

VII. CONCLUSIONS

In this correspondence, we present a new matrix pencil approach
to blind source separation based on second-order statistics. Both the
generalized eigendecomposition algorithm and the ESPRIT algorithm
exploit statistical information contained in the output autocorrelation
matrices at different delays that are insensitive to noise correlation. The
method relies only on second-order statistics of the received signals
and, thus, performs well in short data cases. It can separate colored
Gaussian sources, in contrast with higher order statistical methods. It
allows flexible array calibration of sensors since it does not require that

sensor noises be mutually independent. It does not require signals to be
stationary.
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Transmitter Optimization for Noisy ISI Channels in the
Presence of Crosstalk

Naofal Al-Dhahir

Abstract—Transmitter optimization techniques for maximizing the
throughput of linear ISI channels impaired by additive-Gaussian noise
and crosstalk are presented. Transmitter ends of both single carrier
and multicarrier transceiver structures are optimized subject to a fixed
average input energy constraint. The effect of transmitter optimization
on channel throughput is quantified by comparison with scenarios where
both the desired user and the crosstalker use a flat energy distribution
across the transmission bandwidth.

Index Terms—Crosstalk, intersymbol interference, throughput, trans-
mitter.

I. INTRODUCTION

Limited bandwidth resources in many spectrally efficient digital
communications systems often result in having multiple users, who
typically have the same transmission power spectral density charac-
teristics, share the same frequency band, and, thus, interfere with each
other. Among the scenarios where this interference is performance
limiting is crosstalk (both near-end and far-end) in the emerging
high-speed digital subscriber line (DSL) systems [1], [5].

Effective signal processing techniques are implemented at the
receiverto mitigate crosstalk such asdecision-feedback equalization
(DFE) in single-carrier modulation systems [1] orFFT processingin
multicarrier modulation systems [5]. Full optimization of a commu-
nication system entails optimizing both the receiverand transmitter
ends, where the second task requires optimizing the transmission
bandwidth and the power spectral density shape of the input signal.
While transmitter optimization for multicarrier systems on noisy ISI
channels with crosstalk has received considerable attention recently
[4], [6], this has not been the case for single-carrier systems, where
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published studies either assume no crosstalk (see [3], [6], and the
references therein) or an infinite-length transmit filter, as in [8]. In
addition, previous transmitter optimization studies for multicarrier
systems are for the discrete multitone (DMT) implementation, where
channel spectrum partitioning is effected by using the IFFT/FFT
modulating vectors and adding a cyclic prefix to the input block. We
are not aware of any multicarrier transmitter optimization studies
in the presence of crosstalk for vector coding (VC) multicarrier
systems [9], where zero stuffing and optimum eigenvector-based
modulating/demodulating vectors are used.

In this correspondence, we present a unified framework for
optimizing the transmitter offinite-complexity single carrier and
multicarrier modulation systems on linear ISI channels impaired
by additive-Gaussian noise and crosstalk. Theperformance metric
assumed for transmitter optimization is channel throughput (in
bits/symbol) at a given symbol rate. The rest of this paper is organized
as follows. Section II formulates the general channel throughput
maximization problem and specializes it to single-carrier systems.
Application to VC-based and DMT-based multicarrier systems is
studied in Section III. Simulation results are given in Section IV, and
the correspondence is concluded in Section V.

A. Notation

Throughout this correspondence, vectors are denoted in lowercase
bold and matrices in uppercase bold. The transpose is denoted by(�)t,
the complex-conjugate transpose by(�)�, the determinant byj � j, and
the inverse by(�)�1: Furthermore,0 is a vector of all zeros, andIN is
theN � N identity matrix. When the components of a vector are to
be emphasized, the first and last components, separated by a colon, are
given as a subscript to the vector as inxk+N�1:k�� :

II. SINGLE-CARRIER MODULATION TRANSMITTER OPTIMIZATION

A. Input–Output Model

We adopt the following discrete-time representation of an additive-
noise dispersive channel impaired by crosstalk:

yk =

�

m=0

hmxk�m + nk +

�

i=0

gi~xk�i (1)

wherehm
def
= [hl�1;m � � � h0;m]t andgi

def
= [gl�1;i � � � g0;i]

t

are themth main channel and theith crosstalk channel (vector) im-
pulse response coefficients having memories of� and�x, respectively,
and oversampled by a factor ofl: We assume a continuous transmis-
sion bandwidth and perfect knowledge of the desired and crosstalker
channel and the noise characteristics at the transmitter and receiver
ends. The input sequencefxkg, the crosstalker sequencef~xkg, and
the noise sequencefnkg are assumed to be stationary, zero-mean, in-
dependent of each other, and have nonsingular autocorrelation matrices
denoted byRxx, R~x~x, andRnn, respectively.

The input and crosstalker sequences are generated by the same FIR
transmit filter according to

xk =

�

n=0

pn�k�n and ~xk =

�

n=0

pn�k�n (2)

wherefpig
�

i=0
are the transmit filter coefficients, andf�kg andf�kg

are zero-mean sequences with uncorrelated samples and unit variance.
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