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Defect Detection in Textured Materials Using
Optimized Filters

Ajay Kumar, Member, IEEEand Grantham K. H. Pan&enior Member, IEEE

Abstract—The problem of automated defect detection in textured
materials is investigated. A new approach for defect detection using
linear FIR filters with optimized energy separationis proposed. Per-

TABLE |

METHODS FOR THEDETECTION OFDEFECTS INTEXTURED MATERIALS

formance of different feature separation criterion with reference o~ APProach Method References
fabric defects has been evaluated. The issues relating to the design - -
. . . . . ; 1. Fractal dimension [4]
of optimal filters for supervised and unsupervised web inspection ‘ :
are addressed. A general web inspection system based on the op- 2. Bi-level thresholding [5-71
timal fi]ters is proposed. The experiments on th_is new ap_proach 3. Gray-level statistics [81-[10]
have yielded excellent results. The low computational requirement T Moroholomeal _ NN
confirms the usefulness of the approach for industrial inspection. - Morphological operations | [8], [11]
. . - . . Statistical 5. Edge detection 12]-[13
Index Terms—Pefect detection, industrial inspection, optimized 8 ' i (t2113)
FIR filters, performance evaluation, quality assurance, textured 6. Normalized cross-correlation | [14]-[15]
defects. 7. Co-occurrence matrix [161-[19]
8. Eigenfilters [20]
|. INTRODUCTION 9. Local linear transforms [21]1-[22]
UTOMATED visual inspection of industrial materials 10. Rank-order functions [231-124]
such as textile, paper, and plastic requires adaptive soli 1. Discrete Fourier transform | [25]-[27]
tions that can be executed in real time. Currently, the qualit Spectral 2. Optical Fourier transform [28]-[30]
assurance of web processing_is mair_1ly garried o_ut by manu 3. Windowed Fourier transform | [311-[32]
!nspe_ct_lon. Howeyer, _mar_lual mspectmn is labor |nte_nS|ve an A Gabor filter 3315347
insufficient to maintain high quality standards at high-speet i
X . . 5. Real Gabor function [35]
production. For example, in the textile industry, only about
70% of defects are being detected by manual inspection ev 6. Wavelet transform (1-[2), [361-[37]
with the highly trained inspectors [1]. Therefore, automation o 7. Wavelet packets [38]
visual inspection tasks can increase the efficiency of productic 8. Wigner-distribution [55]
lines and_improve_ quality of product as well. _ _ 1. Gauss Markov random field | [391-[40]
InQUstrlaI web mspecnon has extremely h|gh requ[rement Model-based T Poissomian model a3
and is most challenging as compared to other inspection pro :
. : X . 3. Model-based clustering [43]
lems [2]. A typical web is 1.5-2 m wide and is processed at th

speed of 8-20 m per minute. Consequently, the throughput for

100% inspection is tremendous and therefore most feasible 80-proposed Approach
lutions require additional hardware components and reductionTh Gabor i d the infinite i | IR) fil-
in calculation complexity. At microscopic level, broad spectrum € &abor lers an the infinite impulse response (IIR) f
of different web inspection problems reduce to texture analy%‘lasrs are the filters with only a fgw free' parameterg and there-
problems. ore the search space for optimization is very restricted. Better

In last 20 years, defect detection in textured materials hggtl_mlzanon results can b_e ob_tamed when the ”‘?”?be_r of free
8|Iable parameters of a filter is large. A general finite impulse

been studied using several approaches (Table I). The detaffd ponse filter (FIR) has generally more free parameters than an

description of these approaches is beyond the scope of this pj ! . . .
(due to space limitations) and therefore only selective refer- k? rt"’:r? aborrl‘llitr](?]r.lT:qe iltngrlle li)r'r?geft a:jvantr::\ge OfrF\ll?dm;ei:Si
ences are provided. However, the detailed description of thé%(%. atthey ca plement any Impulse response, provided 1t 1S
approaches can be found in [3]. of finite length. Despite its several advantages, the design of FIR
filters for the defect detection has not been attempted, as can be
seen from the literature review presented in [3] or in Table I.
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explicitly detect the defects but can make the detection an easher energy of an image(z,v) in the local region, i.e., the local
task by greatly attenuating pixel value in the defect-free renergy estimate. This is accomplished by smoothing the image
gion relative to regions having defects. Ttlesedform solu- w?(z,y) as shown in Fig. 1. Unser [51] has suggested that the
tion suggested by Mahalanobis-Singh [44], [45] and related agguaring - | operation in conjunction withog | -| (second non-
proach by Unser [46] has been investigated for defect detectitinearity) after the smoothing gives the best operator pair, from a
The approximatelosedformsolution suggested by Randen andet of several other tested operators, for the unsupervised texture
Husgy [47], [48] for optimal energy separation using Fisher crsegmentation. The classifier used in this work is a thresholding
terion [49] will also be used. The main contributions from thisperator. Therefore the application of second monotonic trans-
paper [3] are summarized as follows. formationlog| - |, to the extracted features, will not have any

1) A new approach for the defect detection in textured m&ffect in the classification (thresholding) of features. Therefore
terials using linear FIR filters with the optimized energghe second nonlinearity has not been employed in this work.
separation is proposed. Inthis model, itis assumed that the fabric textures being mod-

2) The performance of three feature separation criteriofld are wide sense stationary and that they can be well de-
proposed by Mahalanobis—Singh [44], [45], Unser [463cribed by their autocorrelation functions. Letndy be the
and Fisher [49] has been evaluated on real fabric samplgBatial indices of acquired imagéz, ). As shown in Fig. 1,
Two quantitative measures, i.eajnimum sizenask and filtering of acquired imagd (z, y) with filter h,,(z,y) gener-
the misclassification ratehave been introduced in Sec-ates a new image(z, y):
tion - for the p'erfo'rmance e\(aluatlon 'of the optimal w(z,y) =hop(a,y) I(z,)
filters designed with different object functions. M1 Ne1

3) The perfqrmance qf t_he _proposgd defect dgtectiqn ap- _ Z Z hop(m,n)I(z — m,y — n) 1)
proach with the variation in the size of 1) optimal filter

and 2) smoothing filter is investigated. where () denotes the 2-D convolution ang,,(z, ) is anM x

4) One of the important conclusions of this work is that th . . . ey
size of optimal filter has appreciable effect on the perﬁj optimal filter to be designed. For every pixelir(z, y), the

formance for the defect detection. Prior work [47], [48fJUtpUt can be rewritten as
on texture segmentation has not accounted for the size of w(z,y) = hoTpi(a:, y) (2)
optimal filter mask and therefore some of the conclusions

in prior research have been subjective to the size of OWherEh‘”’ andi(z, y) are the vectors of length = M x N,

timal filter masks used (more details in Section IlI-E an§btamed by I_exmographlcal ordering .Of COIumnSIQg’(JF’ v) )
Section V). andM x N window of I(z,y) around pixel £, i) respectively:

5) Anotherapproach forunsupervised defectdetection forin- i I(z,y) i
spection ofweb materials using optimalfiltersis presented. -
Excellent fabric defect detection results, obtained using a
simple two-optimal-filter model, are demonstrated.
Prior texture segmentation work [47], [48] using optimal filters
has been concentrated on Brodatz album. However, the present
work on defect segmentation pertains to real meaningful pat-
terns from the textile industry. In this paper, the term “optimal

m=0 n=0

. Hay— N +1)
i) = fe— 1)

[ I(x —M+1,y— N +1)]

filter” refers to the linear FIR filter with the optimized energy i hop(0,0) T
separation. .
. MATHEMATICAL FOUNDATIONS h,, = hof;L(O’(jlv 0) 1) . 3)
The feature extraction model used to design optimal filters Opn ’
is illustrated in Fig. 1. This model was proposed by Jatial. B
[50] and has been used in several references [44], [45], [47], L Bop(M —1,N —1) |

[48]. The objective of the optimal filtek,,(x,y) is to extract . . 5
those frequencies where the defect-free texture has low sig-tl;QF squaring nonl_lnear qperatpr| computes the energy of
energy and the texture with defect has high signal energy. If tffi¢€"Y pixel in the filtered image(z, ):

is accomplished, the defective regions in the composite inspec- s(z,y) = wi(z,vy). 4)
tion image can be segmented by the analysis of the local text

e . . . . .
energy. l'Fhe energy of pixels in the imagéz, y) is now calculated with

reference to a local region (determined by the bandwidth of
smoothing filter) around pixels atz(%). The local energy es-

] ] ) . ] timate f(z, y) is obtained by smoothing the imagéz, y) with
The energy of pixels in a gray-level imag€z, y) is defined g filter a(z,y), i.e.,

as E{w?(z,y)}, whereE stands for the expectation. The de- .
fects in the inspection images are (assumed to be) local rather flz.y) =g(z. y)"s(z,y)
than global. Therefore, a local operator is needed to compute =g”'s(z,y). (5)

A. Local Energy Estimate
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2) The Feature VarianceThe variance of the feature image

image —» hop(x, ¥) f(z,y) is given by
I(x,y) i
optimal filter JJQC —B {(f(a:, y) _ Nf)Q}
w(x, y) :E{fQ(xvy)}_2NfE{f(x7y)}+uff
\
/ =E{f*(z,9)} — 1}
[.]? Using (5), the above equation can be written as
squaring nonlineariety
O—? =F { (gTS(‘Tv y)) (gTS(‘Tv y))} - u?
s(x,%) =g"R..g — 11} (11)
A4
where
a(x,y) L Features R. — E T . 12
smoothing filter J(x.3) > {S(-T, y)s (x’ y)} ( )

The Z x Z autocorrelation matri®,, can be readily con-
Fig. 1. Block diagram of the feature extraction model. structed from the autocorrelation function of the image, v).
By approximating the inspection images as separable autore-
The filtered imagef (i, y) is referred to as the feature image irgressive process [52] of order one, the simplified expressions
the following discussion. for the variance and its derivatives can be developed. These ex-
1) The Feature Mean:The inspection images are assumegressions have been derived in reference [47] and can be written
to be random process, which are wide sense stationary (W$8S)ollows:

over the (bounded) region of interest. Using the vector formu- 2 To. 2
lation for the filtering operation, the mean value of the feature O;f R 2As (hOPR”hOP) (13)
. . . ao_
image f(z,y) can be derived as follows [47], [48]: ahf ~8Xy (hl Rih,,) Rih,p (14)
py =E{f(z,y)} _ -
—E {s(a,y)" g(z, y)} . (6) where) is some scalar, such th@h ;/dh,, ~ 0.

The smoothing filterg(z,%) is a unity gain low pass filter. B. Object Functions for Optimization
Therefore, the mean feature value at the output of this filter The opjective of designing optimal filters is to locate the

is equal to mean feature value at the input. Assuming that éfects in the textured images under inspection. The response
filter coefficients are such that_,  g(z,y) = 1, (6) can be of such an optimal filter to the inspection image with defects

written as should be strong, i.e., highy,. On the other hand, when a
o o 2 defect-free inspection image, is presented to this optimal filter,
1f —E{S(%Ty.)} =k {wT Q,y)} its response should be low i.e., lgw, . Thus the obvious aim
:E{(hopl(xvy)) (hopl(xvy))} of the optimal filter is to achieve the maximum separation
=hl E {i(z, )i’ (z,4)} h,, (7) between the average local energies, i, and uy,, at the
o filter output.
defining Mahalanobis and Singh [44], [45] have proposed thatatie

between the expected energies (average feature values) of the
filter response can be used as a quality measure for the separa-
tion of features. The criterion function

Equation (7) can be written as

Hiy
Ji (hyy) = 15

whereR,;; defined in the (8) is the autocorrelation matrix of thevas used in [44] and [45] for the optimization of a linear FIR
imagei(z,y). The autocorrelation matrix of the vectifee,y) filter, i.e., selection of an optimal filter. The measure of relative
can be easily constructed from the two-dimensional (2-D) adistancebetween the average feature values can also be used for
tocorrelation function of the imag€z, v) [47]. Since theR;; the optimization of a single filter with respect to the discrimina-
in (8) is symmetric, the derivative of mean feature vaiyeis tion between two textures. The object function
given by ( )2
Jo (h,,) = \Hfe — Hfr) 16
My _ 9 (h7,Rih,,) — 2Rh,,. (10) 2 (o) Pofalbf, 5

Ihop Ihop was originally suggested by Unser [46] for the design of op-
Equations (9) and (10) will be used, in the designing of optiméimal texture transforms. The design technique suggested by
filters using theclosedformoptimization, in the subsequent secUnser [46] cannot be directly used for the filter design, since the
tions. texture transform corresponds to the sub-sampled filter-bank.
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However, Randen and Husgy [47], [53] have adapted this alsing (23) and the chain rule of the differentation, the above
ject function for the designing of optimal filters for the textureequation yields
segmentation.

The main disadvantage of the object functioh$h,,,) and 8J; (Bop) gﬁﬁ‘ an (hop) gﬁf =0. (22)
J2(h,,) is that the variances of the featureg, ando _, are not Hta or bt °r
taken into account. Consequently, the optimal filters design&dibstituting from (9) and (10) in (22), we get
with res_pect to these object functions can only ac_:hieve large Ri_ilRiidhop =4y, (23)
separation of feature meapg, and;:, . But if the variance of i
local energy estimate;, ando, are large, then the feature dis-where again
tribution can considerably overlap. Therefore an optimal filter [,
should not only produce large separation of mean local energy Y= ﬁ (24)
estimate, but also yield low varianceg, andoy, . An object ) _ ’ ) )
function that is commonly used in the pattern recognition litethe (23) is the same eigenvalue problem as (21) in the previous
ature is theFisher criterion[49], which also takes variances ofoptimization approach. Thus in this approach also, the eigen-

the feature distributions into account. vector yielding the maximum object function is selected as the
2 coefficients of the required optimal filtér,,,.
Jz(h,,) = M (17) SinceJ>(h,,) =¥ + ¢~ — 2, the eigenvalues in (23)—(24)
9% T 95, are used for the selection of corresponding eigenvector. In gen-

The mathematical framework for designing the optimal filtereral /1 (h,,) # Ja2(h,,), therefore the eigenvector selected by
with respect to these three criterion functions will be reviewedlis approach, as the optimal filtér,,, can bedifferent from
in the following three sections. those computed by the previous approach in Section 11-B1.

1) Optimization Using J;(h,,) as the Object Func- 3) Optimization Using/s(h,,;,) as the Object Function:As
tion: From (9) it can be noted that the average feature valuig,the previous two cases, the optimal filter that maximizes the
17, and iy, , is a function of the filter coefficient vectds,,. object function./;(h,,) can be found by equating the partial

Therefore, (15) can be written as derivative ofJ3(h,,;) to zero, i.e.
hT Rh‘ ho aJ3 ho
T () = Bt e (18) % =0, or
py. hERi; hoy op
fmdmg the f|IFer coefﬁqent vectorh(,p,_ corresponghng to the o (62, +02) ahfd — (g, — 1s) ahfd
maximum object functiory; (h,,;,), entails the solution of op op
o2
dJy (h,y) Lo (p2 4,2 M _ Fr
Topf’ =0, or (o}, + %) ah,, T =) G
2Riidh0p 2thRii4hopRiirhop -0 19 (25)
hZ Ri; h,, B [hT R, h, ]2 e (19) Randen and Husgy [47] have developedasedform solution
opT TR for the above equation using the approximate expressions of
Let variance and its derivative. By substituting the expression for
thRiidhop mean and its derivative from (9) and (10) and variance expres-
Y= WI R, b, (20)  sions from (13) and (14), (25) can be simplified as
T 2 T
Equation (19) yields ()\fr (hg,Rii hop)” + Ay, (hg,Rii hop)
Ri,_v‘,}Riid hop =1 - hop. (21) ’ (hZ;JR”r hop)>Riidh0p
This is an eigenvalue equation where the filigy, is the eigen- :()\fd (hoTpRndhop)Q
vector andy is the eigenvalue. The expression for eigenvatue -
is identical toJ; (h,,), i.e.,4» = J1(h,,), the object function to + Ay, (h, Rz hp)
be optimized. Therefore, the optimal filter is the eigenvehtgr . (hoTpRii hop))Rii h,,

that yields maximum object functioh (h,,). The choice of the
weakest eigenvector corresponding to smallest eigenvalue (8titich can be further simplified as

ject function) generates inverse solution, i.e., gray levels in fil- (hT R. h )
tered image are interchanged from maximum to minimum [44]. (R;;'Rii,) hop :Mhop, or
2) Optimization Using/>(h,,;,) as the Object Function:The (bZ,Rii, bop)
filter optimization with respect to the object functiol(h,,) R 'Ri;,h,, =t - by, (26)

ma>§|m|zesthe squared difference of average feature Valugs'_@cﬁhation (26) is identical to the eigenvalue problem discussed
mahzgd by the product of average feature \(alues. The OptiMiZa+he previous approaches, i.e., (21) and (23). Thus the coeffi-
tion with respect t6/(h.,,) entails the solution of cients of the optimal filter can be obtained from the eigenvectors
9Jy (hop) 0 of (R;jRiid) which generates the maximum object function
o, Ja(h,p).
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To sum up, the optimal filters corresponding to three objecbnvolution masks are used as smoothing filter. As proposed by
functions suggested by Mahalanobis—Singh [44], [45], Unséainet al.[50] the choice
[46] and Fisher [49] are computed as follows. 1

1) The correlation matriceR;;  andR.;, from fabric sam- T= 2v/2fo

ples are computed. . . _ : Lo
2) The eigenvectors o' R;;,) are computed is most appropriate and is used for all experiments shown in this
(. d )

3) The eigenvector yielding maximum object functiorParer. The choice of center frequenfgydepends on the number
(J1(hop), Jo(h,), O J3(h,,)) is selected of pixels occupied by one yarn in an image. For all twill fabric
4) Optimgl filterhop(a: y)is ob];ained from elements bf, ,, samples shown in this paper, one yarn occupies approximately
by inverse Iexigog;aphical reordering P eight pixels and thereforf, = 1/8 is chosen. While filtering
' the image near the image boundary, the image is assumed to be

extended by its mirror image, i.e., with even reflections.

(28)

I1l. SUPERVISEDDEFECTDETECTION .
C. Experimental Setup

In most industrial inspection problems, the priori knowledge Samples of the most commonly occurring fabric defects in
of defect to be detected is available. Inspection of such knowse twill and the plain weave fabrics were gathered from a
defects can be regarded as supervised defect detection [3], [R§dm. The images of all these fabric samples were acquired
For some known category of defects in textile webs, specific ognder backlighting condition and covered 1:28.28 ir? area
timal filters can be dESigned to detect those defects. The Sel@ﬁthe fabric Samp|e_ The acquired images were d|g|t|zed into
tion of parameters for designing these optimal filters and theise x 256 pixels, with eight-bit resolution. While evaluating
performance on the defect detection has been investigated inh performance for the defect detection, those images were

following sections. preferred in which the defects were hidden in the background
texture and therefore the defect detection was expected to be
A. Size of the Optimal Filter difficult. In all the experiments, the analyzed images have zero

. . . . ... mean and were histogram equalized. A Gaussian low pass filter
The dimensions of an FIR filter are related to its bandmdﬂ&. 9 d P '

Filters for large bandwidth require smaller dimension and vic > described in Section Ill-B, was used for smoothing. For
9 q &l the experimental results reported in this paper, the spatial

versa [44]. Appropriate dimensions _of_opnmal f|!te_r can be d_e- tent of the Gaussian low pass filter is empirically fixed as
termined from the spectral characteristics of fabric image, whi ; e
x L =11 x 11, unless otherwise explicitly stated.

is related to yarn density and weaving pattern. For a plain WeAVe: . ropic defects in each of the gathered images are local-

fabric, if the yarn density is high, then its image pixels will be- ) S i
come uncorrelated rapidly. This means that the spectrum ofsmlqu%d in @ small region, i.e., they are not global. If the com

. . . ete 256x 256 pixels image is utilized for designing the op-
fabric has prob ab_ly h_|gh frequency conte_,-nt ‘h‘."‘t require Iarﬁﬁwal filter, the discriminating effect of defect from its large de-
bandwidth or spatial filter of lower dimension. Similarly, f||tersf

L . . ! ect-free background diminishes due to the inherent averaging
of large spatial dimension are needed for the fabrics with lowgr . S .
at takes place while computing its correlation mat;, .

yamn density. However, the spectral characteristics of a fabr'—L(L:thhermore, the computational time for computing the corre-

defect can be entirely different from its defect-free backgroun%,tion matricesR.;, andR;; , for the complete image is sig-
€., yarm dens[ty. Thereforg, aboye all, as will be seen in Sen‘ificantly high. Thérefore, oﬁly a small image pitch from the re-
tion 1lI-E, the size of an optimal filter depends on the spectraIon of image having defect (and equal sized image pitch from a

characteristics of the defect to be detected. A symmetric regign ' A o : .
. . 7 efect-free image) is utilized for designing optimal filters. The
of support is required for accurate edge localization and therse—

; ! . ize of this image pitch is empirically determined and it depends
fore, only odd sized filter masks are designed. on the spatial extent of the defect in an image.

B. Selection of a Smoothing Filter D. Results

An important element in optimal filter design is the choice Fig. 2(a) shows the sample of a twill weave fabric with the
of smoothing filter. The objective of a smoothing filter is todefect commonly referred to asispick Using J; (h,,) as the
transform areas of high local band pass energy to strong geject function, a % 7 optimal filter was designed to segment
level distributions. Among several candidate filters, Gaussiée defecmispick Fig. 2(h) shows the possible eigenvalues of
low pass smoothing filter is commonly used [47], [48], [50](21). The eigenvector corresponding to the largest eigenvalue
[51] since it is separable and offers optimal joint resolution i#.419) was picked up as the optimal filter. Fig. 2(g) shows
spatial frequency and spatial domain: the magnitude frequency response of this optimal filter. It can

be seen that the magnitude frequency response exhibits pass-
gz, y) = L @2+, @7) bands where local energy estimate is high (corresponding to de-
2y fect) and stopbands elsewhere. The filtered image is shown in
Fig. 2(b). As seen from this image, the standard deviation of
The choice of bandwidth determines the frequencies to be inindividual pixels corresponding to defect is much higher than
cluded for local energy estimation at the output. Finite approttiose due to defect-free region and, therefore, defect can be seg-
imation of the above filter (in (27) implemented as separabieented by any two class linear discriminant function, typically
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Fig. 2. (a) Fabric sample witispick (b) after filtering with 7x 7 optimal filter, (c) local energy estimate of image in (b), (d) segmented defect after thresholding

image (c), (e) segmented defect after thresholding (b), (f) 2-D mesh plot of local energy estimate, (g) amplitude frequency responsgptimal filter, and
(h) object function for each of the 49 eigenvectors.

thresholding. The segmented defect in the thresholded imaaggy for region corresponding to defect is 4.419 times (greater
is shown in Fig. 2(e). The local energy estimate for the imaglean one) that of defect-free region, the defect can be easily be
in Fig. 2(b) is shown in Fig. 2(f). Since the average local ersegmented by simple thresholding [Fig. 2(d)]. The optimal fil-
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TABLE I The images shown in Fig. 4 depict four different kinds of
MAXIMUM OBJECT FUNCTION AS A FUNCTION OFMASK SIZE FOR THE  fapyric defects. The detection results for these images, using the
MISPICK SHOWN IN FIG. 2(a) . . . . . -
optimal filters designed witt¥z(h,,,,) are shown in Fig. 4. The
Optimal size of optimal filters used for these images is kept small and
filer Mask | Jy(h,,) | Jy(h,) | J5(h,,) is mentioned in the figure captions. The small sized optimal
size filters, in the range of % 3 to 9x 9, have been used with
3x3 1.4082 0.1183 0.4063 the marginal compromise in the performance (Section IlI-E).
ixi i'ii’g é‘éi‘;g (1)82(8)2 The thresholding limit for these images is computed from a
X . . : defect-free (reference) fabric image sample [3]. The maximum
9%x9 5.5855 3.7645 1.0117 . .
value of local energy estimate from the reference images,
11x11 6.6410 47916 1.0602 imilar t i (30) i d as thresholding limit
Bx13 > 3826 6.0094 09260 similar to as in (30), is used as thresholding limit.
15% 15 8.8267 6.9399 1.1859
17 x 17 9.8922 7.9932 1.6401 E. Performance
19 x 19 10.8588 8.9509 1.3436

The lack of an appropriate criterion for defect detection
makes it very difficult to compare the performance of a defect
ters designed in this experiments were found to be robust @gfection technique on various defects. However, a commonly
will be shown in Section IlI-E) and have successfully detectatsed criterion for the quantification of image segmentation
defects of similar nature lying anywhere in the image undegsults is the percentage of misclassified pixels. In this work,
inspection. The magnitude of the three object functions, i.¢he misclassification ratéMR) is defined as: the total number
Ji(hyy), Ja(h,y), Ja(h,,), for the different optimal filter size of misclassified pixels in the defect-free region (noise), which
(M x N), for the defect in Fig. 2(a) is shown in Table Il. Withare expressed as the percentage of the total detected pixels
the increase in mask size fromx33 to 19x 19, the maximum in the defect region. This measure is directly related to the
eigenvalue of (21) or the object functioh(h,,) increases lin- false alarm in the inspection process. However, a ngiszlas-
early. The high magnitude of (h,,,) results in higher attenu- sification rate (MR) does not necessarily mean good defect
ation of the defect-free region relative to the region having dgetection unless it is accompanied by a large number of pixels
fect, but is computationally expansive. For the image shown if the region of image corresponding to the defect. Therefore,
Fig. 2(a), the optimal filters (eigenvectors) selected by using thgenever required, the total number of pixaR)in the region

object function/; (h,,,) were same as those fdi(h,,), forall - of image having defect and the total number of pixéfs)(in
the different mask sizes shown in Table II. Therefore, as digie gefect-free region can be used for the comparison.

cussed in Section 11-B2, the object functida(h,,,) in Table II

. The size of the optimal filter mask required to detect a defect
can be computed directly from (h,,), e.g.,for 7 x 7 mask

- RN . is an important parameter. The smaller value of this mask size
.]2(}_10],) = 4.4187 + (4.4187)_ 2= 2'64‘_’0' ) M x N) permits higher computational savings during the on-
Fig. 3 shows some fabric samples with different defec Sle

d their detecti ing th giff ¢ obiect functi inspection and therefore should be kept as small as possible.
and their detection using three different object functions. owever experimental results in Table 1l have suggested that in
plain weave fabric sample with a defect, commonly referre

ost cases, the optimal filters designed with the object func-

to aswrong-draw, IS shown in F|g. 3(). Three>55 qpnmal tionsJi (h,,) andJz(h,,), the performance improves when the
filters, corresponding to three different object functions, were . e .
e of optimal filter is increased (in the range 7 to 19x 19).

designed to detect these fabric defects. The detection resi] fore it | A te thini af
for these defects are shown in Fig. 3(b)—(d). Fig. 3(e) and 3(rtn erlef_ﬁre ' tlhs ?ecessary_ odctompl:Te eimum S|zebnl cip— | of
shows twill weave fabric sample with defemtlored-yarnand Imal fiters that are required to achieve a reasonable 1evel o

dirty-yarn respectively. The resuits for these defects with tHRerformance. Table Il shows tieinimum sizeof the optimal
corresponding % 7 optimal filters are shown in Fig. 3(f)—(h) filter mask required to achieve the misclassification rM&) of

and 3(n)—(p). The results for the fabric defecloredyarn in less than 1% while detecting the corresponding defects. While
Fig. 3(e) shows that the 7 7 optimal filter selected by using obtai.ning the minimum optimal filter §ize required in Table II!,
the object functionJs(h,,) emphasizes on the defect-fredhe size of the Gaussua_n smoothing fllt(_arwas kept constant, i.e.,
background, while the optimal filter selected by using the othéd x 11. Itwas also noticed that (and will be shown in Table IV)
two object functions emphasize on defect and gives bettbe size of the smoothing filter does not have any effect on the
results. Another twill weave fabric sample in which the defe¢gquiredminimum sizeof the optimal filter. f MR < 1% is
brokenendis visible with great difficulty appears in Fig. 3(i). achieved by the optimal filters designed by using more than one
As shown in Fig. 3())—(k) % 7 optimal filters designed with object functions, than the object function achieving higher (if)
object functions/; (h,,,) andJ(h,,) fails to detect any defect. value of Py is mentioned in Table IIl.

However, the use of th&isher criterion (J5(h,,)) has suc-  The results in Table Il suggests that the optimal filter
ceeded, as can be seen in Fig. 3(l). The optimal filters desigmadsk of size 3« 3 is sufficient to detect thenispick shown

for the four images in Fig. 3 were same for the object functiadn Fig. 2(a). With the increase in mask size fronx3 to
J1(h,p) andJz(h,,). However, this may not be the case alwayS x 5 (7x 7) computational time for the filtering increases
and the different optimal filters can be obtained with these tway 77 (340)% but the object functiok (h,,), or the relative
object functions as will be shown in Section IlI-F. attenuation of defect-free background, only increases by 1
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{m} (n) (@) (p)

Fig. 3. Fabric samples withrong-draw colored-yarn broken-endanddirty-yarnin (a), (e), (i), and (m) respectively; corresponding local energy estimates with
the optimal filters designed using object functibi(h, p) in (b), (f), (), and (n); object functiorz(h, p) in (c), (), (k) and (0); object functiod; (h,p) function
(d), (h), (1), and (p).

(114)%. The detection ahispickwith the 3x 3 mask is shown tion using the required & 5 masks has already been shown in
in Fig. 5. The usage of ¥ 7 mask shown in Fig. 2 offers higherFigs. 3(a) and 4(b). The twill weave fabric sample also required
attenuation of defect-free background as compared to thdse 5 optimal filter for the detection albig-knot with the MR
for 3 x 3 mask and therefore permits less chance of generatinig0%. However, the detection of this defect using the 3
false alarm. Fig. 5 shows the robustness of theBmask used optimal filter mask with theMIR of 1.24% has been shown in
to obtain the results in Fig. 5(b)—(c), for the detection of othéfig. 4(b)—(d). The detection results for the defetbngdraw
mispickdefects in the same direction. anddirty-yarn with the minimum required mask size ofx<77
Table 11l shows the high yarn density plain weave fabric sanftas been shown in Fig. 3(f)—(g) and Fig. 3(n)—(0), but without
ples require only & 5 optimal filter masks. The defect detecthe thresholding operation.
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Fig. 4. Fabric samples withig-knot double-weftbroken-yarn andtripe-warpin (a), (e), (i), and (m) respectively; corresponding filtered image with optimal
filter of size (b) 3x 3, () 5x 5, (j) 7x 7, and (n) 9x 9; the corresponding local energy estimates in (c), (g), (k), and (0); corresponding segmented defects with
the misclassification rate (as defined in Section IlI-E) of (d) 1.24%, (h) 0.03%, (I) 8.26%, and (p) 7.62%.

The detection of fabric defebrokenend shown in Fig. 3(i), The optimal filters designed with all the three different object
requires the minimum mask size of ¥111. Thus the detec- function for the image in Fig. 4(i) generat®tR of 0%. How-
tion of this defect with the % 7 optimal filter mask, shown in ever, the number of pixels in the defect region, ifg, was
Fig. 3(i)—(f) withMR of 8.26%, can be made much better (noiserigher (almost double) for the optimal filters designed with the
less) if the optimal filter mask suggested in Table Il is usedkisher criterion, i.eJ3(h,,). Therefore only the object function
Similarly, the noise seen in the thresholded image of Fig. 4((h,,) is suggested in Table Ill. Another example of fabric de-
can be suppressed when an optimal filter of size®is used. fectwith very subtle intensity variations was shown in Fig. 4(m).
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MINIMUM MASK SIZE REQUIRED F-(;ﬁBTI;—iIIEEDIEI::ECTDETECTION WITH MR < 1%
Mask Size 3x3 5x§ Tx7 9%x9 11x11
FigureNo. | & E;; 3@ | 4@ | 4@ | 3@ | 3m | 40 | 3D | 4m
Fab{f’cpsa‘iple Twill | Plain | Twill | Plain | Twill | Plain | Twill | Twill | Twill
Yarn density Medium High | Medium [ High Medium | Medium | Medium | Medium Low
Warp X Weft 118%60 | 136x72 | 118x60 | 136x72 | 118x60 | 118x60 | 118x60 | 118x60 | 110x52
Per inch
MR (%) 0 0 0 0 0.228 0.981 0 0 0
Object . '((:"P))’ T B R e S o N IV B o8 ;‘ti‘l""))’
function e Dy | iy, o). A Jithep). o St |
TABLE IV
EFFECT ONDEFECT DETECTION WITH THE VARIATION IN THE SIZE OF SMOOTHING FILTER SIZE
Size of Gaussian filter 7x7 9%x9 11x11 | 13x13 | 15%x15 | 17x17 19x19
. Size of .
FRor® | optimal | U | Py | Py| Po | Po | Pa | Pa| Pa| Po| Pa| Pa|Pa|Pu| Pa|Pa
filter
Jith,,) | 2093 0 2375 0 2420 0 2460 0 2474 0 2489 0 2494 0
2 (a) 3x3 JZ(hop) 2093 0 2375 0 2420 0 2460 0 2474 0 2489 0 2494 0
Ji(h op) 2093 0 2375 0 2420 0 2460 0 2474 0 2489 0 2494 0
Jl(hop) 3735 0 3912 0 3994 0 4019 0 4039 0 4052 0 4059 0
8 (a) 3x3 JZ(hop) 3735 0 3912 0 3994 0 4019 0 4039 0 4052 0 4059 0
Ji(hy,) | 1914 | 10 | 2330 0 2412 2 2438 0 2482 0 2506 0 2513 0
Ji (hop) 978 0 1155 0 1335 0 1450 0 1504 0 1524 0 1534 0
3(a) 5%5 Ja(hyy) 978 0 1155 0 1335 0 1450 0 1504 0 1524 0 1534 0
J3(h0,,) 846 79 1255 109 | 1491 106 1595 99 1646 101 1658 99 1659 99
Jith op) 121 0 155 0 175 0 182 0 186 0 188 0 189 0
4 (a) 5%5 j2(hap) 121 0 155 0 175 0 182 0 186 0 188 0 189 0
Ji(h op) 494 40 558 40 578 35 588 29 594 28 594 28 596 28
Ji(hyp) [ 54776 | 32 | 55233 | 25 [ 55336 [ 16 | 55406 | 17 | 55423 15 | 55436 | 14 55435 13
4 (b) 5%5 J(h op) 54776 | 32 | 55233 | 25 | 55336 | 16 | 55406 | 17 | 55423 15 | 55436 | 14 55435 13
j3(hop) 47196 | 4393 | 53654 | S700 | 55206 | 6190 | 55727 | 6375 | 55939 | 6484 | 56006 | 6526 | 56025 | 6530
Ji (hop) 1593 | 12 | 1664 9 1751 4 1821 2 1866 0 1871 0 1874 0
3 Tx17 JZ(hop) 1593 12 1664 9 1751 4 1821 2 1866 0 1872 0 1874 0
Js(h,y) 157 | 6920 | 267 | 12267 | 362 | 16895 [ 370 | 18163 | 390 | 18055 | 385 | 18966 | 385 | 19081
J](hop) 890 14 1020 15 1121 1 1174 11 1193 1 1191 1 1201 1
3 (m) Tx7 JZ(hOp) 890 14 | 1020 15 1121 i 1174 1 1193 1l 1191 1 1201 1
Ji(hy,) 954 | 699 | 1384 | 1006 | 1769 | 1322 | 1957 | 1431 | 2049 | 1500 | 2091 | 1524 [ 2102 | 1532
Ji(h op) 226 1 272 0 311 0 330 0 337 0 339 0 341 0
4 () 9%9 Ja(hyp) 226 1 272 0 311 0 330 0 337 0 339 0 341 0
]3(h0p) 374 1 526 0 610 0 655 0 679 0 690 0 690 0
Jithy,) 286 3 343 0 365 0 390 0 405 0 414 0 414 0
33) 11x11 JZ(h()p) 286 3 343 0 365 0 390 0 405 0 414 0 414 0
J3(h0p) 762 13 1043 34 1102 33 1145 28 1161 27 1169 27 1171 27
Ji(hyp) 510 0 980 0 1125 0 1156 0 1171 0 1179 0 1187 0
4 (m) 11x11 Jz(hop) 510 0 980 0 1125 0 1156 0 1171 0 1179 0 1187 0
Ji(hy,) 510 0 980 0 1125 0 1156 0 1171 0 1179 0 1187 0
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Fig. 5. Detection of mispick with % 3 optimal filter mask. Fabric sample in (a) and (d); local energy estimate in (b) and (e); thresholded defects in (c) and (f).

The detection results for this defect can be improved (noise darlarge for some defects such as in Fig. 4(m) (132%) while
be suppressed) with the optimal filter of sizex{11, instead of small for other defect such as negligible in Fig. 4(b) (1.2%). The
9 x 9is used in Fig. 4(n)—(0). number of pixels in the defect-free region does not have any ap-
1) Effect of Smoothing Filter Sizaédigh spatial resolution preciable effect on the variation of the smoothing filter size, i.e.
is required for the accurate preservation of edges; on the otl#&ris almost constant. With the variation in the smoothing filter
hand high spatial frequency resolution is required for the asize, the minimum value a#/R < 1% has been maintained
curate estimation of local energy. Since spatial and spatial ffer all the defects. The computational cost for increadthgby
quency resolution is inversely related (uncertainty principlepcreasing the size of smoothing filter is huge since the com-
accurate edge localization and accurate local energy estimattational load for filtering (smoothing) is proportional to the
are conflicting goals [54]. The size of smoothing filter detersquare of mask size. Therefore, a compromise between the per-
mines the tradeoff between the two conflicting goals. Howevdarmance and the computational load (smoothing filter size), in
in material inspection, the detection of defects, i.e. estimationthie favor of later, is justified.
local energy is more important than the localization of defects The detection results shown in Table IV for the defect in
or the edges. Therefore, the goal of accurate defect localizatiéig. 4(b) have shown a small amount of noise, althougtMRe
or edge localization has not been considered in this work. s still less than 1. The optimal filters designed for some of the
The size of smoothing filter used to obtain tiénimum size images, such asin Fig. 4(a), using the object funcfigh,,) or
masks in Table 1ll was aad-hoc choice. In order to observe J»(h,,) results in zero noise, i.E, = 0. But the total number
the effect of variation of the smoothing filter size on perforef pixels detected as defedtB,) from these optimal filters are
mance, the experiments conducted in Section 1lI-D were exxuuch smaller (less than one third) than those for optimal filter
tended. The size of Gaussian smoothing filter was varied fratiesigned by using the object functiog(h,,). Therefore, for
7 x 7t0 19x 19 as shownin Table IV. The total number of pixelsuch fabric defects, as in Figs. 4(a), 3(i), and 4(i), the optimal
in the defect-free regionf{;) and the region corresponding tofilters designed using the Fisher criteriafy (h,,,)) may be pre-
the defect f,,) were observed for each of the smoothing filteferred due to the higher detection rate, i/8;, Another obser-
sizes, while the size of optimal filter was fixed to minimum asation can be observed from the Table IV for the detection re-
computed in Table Ill. The thresholding limit for each of the desults of defect in Fig. 3(e). The unusual detection results for the
fect was kept constant and was determined from the defect-fggtimal filters designed with the Fisher criterion, i.&;(h,,,),
images. The results of the experiments, for all the three objatiow that in all case#),, > P;. These results should be seen
functions, are summarized in Table IV. in conjunction with the image in Fig. 3(h), which suggests that
With the increase in the size of smoothing filter fronx 7 to  this optimal filter emphasizes on defect-free region rather than
19x 19, the increase in pixels corresponding to defeE§s ¢an on defect. Therefore the behavior Bf and P,, has been inter-
be observed for every defect in Table IV. However, this increashanged.
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— J;(h) J2(h,,) among all the 49 eigenvectors. The local energy esti-
~e— J2(h) mate for these two object functions is shown in Fig. 6(b)—(c).
These results suggests that the optimal filter designed by using
J1(h,,) emphasizes on the defect while that usifgh,,)
emphasizes on the defect-free region. Thus the results from
the two object functions/; (h,,) and Jz(h,,) are different.
The Fisher criterion in this experiment selected the second
eigenvector as the optimal filter, which emphasizes on the
defect.

The modeling and optimization of extracted features using
any of the three criterion functions do not guarahtesy
specific feature response at defect boundaries. Therefore,
depending on feature response at the boundaries of defects, the
segmented defect may be severely biased with respect to their
original position. Generally, this biasing was observed to be

Onject function

5 1 15 20 25 30 35 40 45

Eigenvector index low and neglected for the reasons of computational simplicity.
However, measures suggested by Randeal. [54] can be
(@) used to avoid this biasing. Table 1V suggests that the detection

results with the Fisher criteriods(h,,) have generated most
of the noise i.e..F,,. One of the plausible reasons for poor
performance of Fisher criterion function in some of the defects
is the assumption used in derivietpsedform solution for the
optimization [47].

Why does the performance change when the size of the
optimal filter mask is varied? It is to be noted that the large
(or small) eigenvectors (optimal filter) in (21) utilizes larger
(or smaller) lags in the autocorrelation function. Thus the au-
tocorrelation function of different size is required to compute

®) ©) the optimal filters of different sizes, which can have two dif-
ferent kinds of effect on the performance. In some cases, the
Fig. 6. (a) Object_ functions for the % 7 optimal filters design_ed to detect small Iags in the autocorrelation function may not be suffi-
the double-wefin Fig. 4(e). The corresponding local energy estimate from the. . .
optimal filter using designed by using (h,p) in (b) and by using/>(h,p) Cient to model a texture or a defect. This may be a possible
in (c). reason for the poor performance of thex3 or 5x 5 masks
in several cases. On the other hand, (too) larger lags in the
autocorrelation function can be more susceptible to the noise
due to the size of training data (image pitch) and/or due to

The results in Table IV suggests that the performance #fe inhomogeneities. The optimal filters using such a large
optimal filters based o, (h,;,) and J2(h,,) for the detec- |ag in the autocorrelation functions have not been designed
tion of defects is same, i.¢; and P, for these two object to support any such conclusion. However, the results suggest
functions are exactly the same. However this may be onlyttgat the size of optimal filter used to detect the defects have
co-incidence that the results from these two object functiosgynificant effect on the performance. The sizenoihimum
for the minimum sizemask were the same. The optimal filtersnasksuggested in Table Il depends on the size and the na-
(and the detection results) designed by using these two objgge (spectrum) of image pitch used to model the defect or the
functions, J1(h,,) and .J>(h,,), can be entirely different as defect-free texture.
shown in Fig. 6. How subjective are the results? The optimal filters designed

Instead of 5< 5 masks suggested in Table I11X77 optimal to detect the defects (in Table Il) were found to be robust for
filters masks were designed to detect the defimibleweft the detection of same class of defects in other fabric sample
shown in Fig. 4(e). Fig. 6(a) shows the object functiongin Fig. 5). As long as the defect-free texture background does
Ji(h,p) andJ>(h,,), for each of the 49 eigenvectors analyzedlot change, the optimal filters designed to detect a class of
to select the respective optimal filter. The first and the sevendigfects are expected to perform well. However, the same class
eigenvector produces highest magnitude of the object functignhdefectsmaylook differently at the different positions on the
Ji(h,,) and Ja(h,,) respectively and is therefore the corweb, therefore some variation in the performance is intuitively
responding optimal filter. It can be noted that the magnitudspected.
of object function J;(h,,) for the seventh eigenvector is
the smallest of all and is less than one. However, the Same'I'he texture in the images can be best approximated as wide sense stationary
eigenvector produces the highest score for the object functigmncesswithin the texture, not at image boundaries.

F. Discussion
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A. Image Fusion

Images The function of the image fusion module is to integrate useful
from weo information from different channels, i.€z; ... E,,. Since each
[ of the optimal filtersh; ... A, is designed to optimally sup-

v L L press the defect-free texture with respect to a class of defect.
L The local energy estimates from each of these channels is un-
h, h, —_— h, likely to contain any component from the defect-free texture.

Therefore a simple data fusion module involving vector addi-
tion of local energy estimates, rather than those used in [2] or
[35], is adequate. Thus the fused image outfut, y), is ob-
tained from the vector sum of local energy estimates from each

P
A -] - |.° of the channel, i.e.,
v Y v H(z,y) = Z E;. (29)
Smoothing Smoothing | _—__. | Smoothing i=t
E, E, - E,
B. Binarization
'R 'R it {J The last stage is the thresholding of fused image output to
L 'mﬁ;;im ‘ generate a binary image of defed¥x,y). A thresholding
¢' value is selected such that the value below this limit are
considered as regular texture under inspection and value above
Binarization are contributed from the defects. The simplest way to obtain
* this value is by the calibration at the beginning of inspection
[3]. For calibration, a defect-free image (reference) sample is
Segmented .
Defect used to generate a fused image outfutz, v). The threshold

value ¢y, is obtained as follows:
Fig. 7. Unsupervised web inspection using optimal filters.

d)th = InaX,{HT(-Tv y)} (30)
z,yEW
IV. UNSUPERVISEDDEFECTDETECTION

Industrial web inspection in production lines requires contifthere ‘W is a window centered at the imagé,(z,y). The
uous processing of images acquired from camera using bawiadow size is chosen to avoid the possible undesirable effects
lighting. The orientation and the dimension of local defects geflie to border distortions. In all experiments, the window size is
erated in web materials, such as textile web, varies randomly gnfained by removing 20 pixelag-hog from each side of the
dynamically. Therefore, complete automation of visual inspegize of imageH..(x, ).
tion process requires unsupervised defect detection that can be
used for the online web inspection. In this paper, the term ‘u~ Experimental Setup and Results

supervised defect detection’ refers to the detection of unknownThe online defect detection algorithm was evaluated using

plass OT defects for W.h'Ch there s noltraml.ng. A gen'eraI. Wq‘gbric samples gathered from the textile loom. The defects on
inspection system using the optimal filters is shown in Fig.

. S NS . 2 zhe textile webs usually occur either in horizontal or in vertical
The algorithm proposed in this section is divided into training. ~ . g . :
. . " : irection [2]. This is due to the nature of weaving process in tex-
and detection phases. The training procesffime and involves ile looms. Therefore. only two ontimal filters. usida(h. ) as
computations of optimal filters from the sample images with d(t%—] bi if i » Only dp to def ’t . tﬁ( I(;p)' tal
fects. The detection phase isamline process, in which the in- € object function, corresponding to detect in the horizonta

spection images are inspected for the defect using precompdt&gft) direction and vertical (warp) direction were designed.
optimal filters. The 7x 7 optimal filter maskh,; was designed for fabric de-

As shown in Fig. 7/ .. . hy is a set ofn. minimal optimal fect shgwn'in Fig. 8(.a).and its magnitude_ frequency response is
filters required to capture the different class of defects for tf&own in Fig. 8(f). Similarly, another fabric sample with the de-
required level of performance. The total number of filters ddectin vertical direction [Fig. 2(a)] was chosen and the 7 op-
pends on the range of defects to be detected (quality assurafi¢ed! filter 2> was designed (results used from Section 1I-D) to
and the available computational complexity of the inspectigiégment the defect. The data fusion module using simple vector
system. For each of these optimal filtered outputs, the local exgdition of local energy estimate& . .. £,,) was used. The
ergy estimaté F; ... F,,) is obtained using the process similathresholding limit was obtained from a defect-free image as dis-
to as shown in Fig. 1. cussed in Section IV-B.
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Fig. 8. (a) Fabric sample with a defect, (b) after filtering with optimal filter, (c) local energy estimate of image in (b), (d) segmented defaoestitading

image (c), (e) segmented defect after thresholding (b), (f) amplitude frequency respons& aptimal filter, (g) 2-D mesh plot of local energy estimate shown
in (c).

The fabric samples evaluated included most commontsibutions from#A; and he can be seen in Fig. 10(b) and (c)
occurring defectse.g., mispick, double-weft, big-knot, nettingespectively. In Fig. 11(b) and (c), filtdt; and successfully
multiples, slack-end, efc.The fabric samples with these de-capture the components of defects in the tigodirections.
fects could be successfully detected and therefore the two-filteig. 12 shows another example of robustness of the two filters
scheme proved to be robust. Some of the results with twill capturing defects in two directions. The components in this
weave fabric samples are reproduced here. defectslack-endare evenly distributed in the horizontal and

Fig. 9(a) shows the defectmispick$ in the vertical direc- vertical directions. The respective components are captured
tion and therefore only filtef., contribute to the output 9 (c) in Fig. 12(b) and (c) and segmented defect can be seen in
and (d), as expected. For the defects shown in Fig. 10(a), céig. 12(e).
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Fig. 9. (a) Fabric sample with defect, (b) output from filfer, (c) output from filterk., (d) combined output fronk; andh., () segmented defect after
thresholding image (d).

(b) (©) (d (e)

Fig. 10. (@) Fabric sample with defect, (b) output from filtar, (c) output from filterk, (d) combined output fronk, andh., (€) segmented defect after
thresholding image (d).
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(b) (©) (d)

Fig. 11. (a) Fabric sample with defect, (b) output from filtar, (c) output from filterh, (d) combined output fronk,; andh., (€) segmented defect after
thresholding image (d).

d. ¢w ..

-

(b) (©) (d) (e)

Fig. 12. (a) Fabric sample with defect, (b) output from filtar, (c) output from filterk,, (d) combined output fronk; andh., (e) segmented defect after
thresholding image (d).
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V. CONCLUSIONS

Inthis paper, a new approach for the detection of defects usf?‘ngﬁ]
linear FIR filters with optimized energy separation has been ifj-
vestigated. Thdahalanobis—Singf4], [45], Unser[46], and
Fisher criterion[47], [48] functions were evaluated for the per-
formance in fabric defect detection. The test conducted on
ferent types of defect and different styles of fabric has yielded
promising results.

One of the important conclusions of this work is that the size [1]
of optimal filter has appreciable effect on the performance for
the defect detection. The texture segmentation work by Randen;
and Husgy [47], [48] has suggested that the optimal filters
designed by with theMahalanobis-Singhobject function,
i.e.J1(h,p), yields less robust results than those with the object
functions Jz(h,,) and J;(h,,). However the authors in [47],
[48] have designed and used<77 optimal filters masks (with
32 x 32 Gaussian smoothing filter) and did not test their claim
on the optimal filters of other sizes. Therefore, their conclu- [5]
sions are subjective to the size of the optimal filters they have
used. Although the work in this paper is related to the defect[el
detection, the robustness of the results with the object function
J2(h,p) andJz(h,,) over the results with/; (h,,) (as claimed
in [47]) could not be established. The results have shows!”!
that the optimal filters designed by using the object functions
Ji1(h,,) andJz(h,,) give the same results, while in some cases [8]
the results with the object functiof;(h,,,) outweigh others. g
In order to keep this paper of manageable size, experimenta[l
results for different optimal filter mask sizes for different
images have not been presented. The experimental resulfd!
suggest that the performance with the object functipth,,,) [11]
andJ:(h,,) is the same in most cases. But this conclusion may
be subjective and depend on the size of the optimal filter aflz]
shown in Fig. 6. Some excellent results for difficult defects i.e.,
defects with very subtle intensity variations, have been obtainef3]
with J3(h,,). Therefore, thd=isher criterionis recommended
for the detection of such defects, but its performance too can d(la‘”
subjective to the size of the optimal filters as can be observed
by comparing the results in Fig. 3(j)—(I) and Table II1. (5]

Another conclusion can be drawn from this work regarding
the size of smoothing filter. The primary requirementin the welj16)
inspection problem is the detection of defects rather than their
localization, i.e., size and location of the detected defects. Thg7
large size smoothing filters are computationally expensive an
the performance does not increase much (Table IV) with the in-
crease in the size of the smoothing filter. Prior work [47], [48] on[18]
texture segmentation employed 832 smoothing filter, which
can be computationally expensive. The detection results (im-
ages) shown in this paper utilize ¥111 smoothing filter and  [19]
can be a reasonable choice (Table Ill) for a given image resolu-
tion.

A general web inspection system using the optimal filters ha§0]
been suggested in Section IV of this paper. The qualitative re-
sults in this paper have shown that the two-filter scheme is robugsy;
for a variety of fabric defects and yields promising results. The
optimal and smoothing filters of different sizes can be used fo 2]
the different channels in Fig. 7. Thus a user can obtain the de-
sired performanceR) and/or the localization for the different

(3]

(4]
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defects. An averaging smoothing filter, instead of the Gaussian
used to show the experimental results in this paper, can be
putationally economical for the online implementation of
this system. The optimal filters can also be used to supplement
the performance of the existing inspection systems that fail to
d(flfgtect a class of specific defects.
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