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Abstract. We propose a new method for fabric defect detection by in-
corporating the design of an adaptive wavelet-based feature extractor
with the design of an Euclidean distance-based detector. The proposed
method characterizes the fabric image with multiscale wavelet features
by using undecimated discrete wavelet transforms. Each nonoverlapping
window of the fabric image is then detected as defect or nondefect with
an Euclidean distance-based detector. Instead of using the standard
wavelet bases, an adaptive wavelet basis is designed for the detection of
fabric defects. Minimization of the detection error is achieved by incor-
porating the design of the adaptive wavelet with the design of the detec-
tor parameters using a discriminative feature extraction (DFE) training
method. The proposed method has been evaluated on 480 defect
samples from five types of defects, and 480 nondefect samples, where a
97.5% detection rate and 0.63% false alarm rate were achieved. The
evaluations were also carried out on unknown types of defects, where a
93.3% detection rate and 3.97% false alarm rate were achieved in the
detection of 180 defect samples and 780 nondefect samples. © 2002
Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.1517290]

Subject terms: defect detection; undecimated discrete wavelet transform; adap-
tive wavelets; discriminative feature extraction.
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1 Introduction

Automatic fabric defect detection is becoming an attract
alternative to human visual inspection in the modern tex
industry. Based on advances in image processing
pattern recognition, automatic fabric defect detection c
potentially provide an objective and reliable evaluati
on fabric production quality. In general, a fabric defe
detection system consists of a feature extractor and a de
tor. Much research has been focused on the design o
feature extractor, which aims at yielding features with po
erful discrimination between the defect region and
defect-free fabric texture. The design of the feature extr
tor can be divided into two categories. One is based
statistical texture analysis,1–4 which discriminates the
defect region in terms of the statistical textural propert
of the fabric image. The second category is the tra
form-based approaches, where feature extraction is b
on Fourier transforms5,6 Gabor transforms7,8 or wavelet
transforms.9–15 Since Fourier bases do not have local su
port in the spatial domain, the features extracted from F
rier transforms are not as effective in detecting small lo
defects. As fabric images have regular periodic texture p
terns produced during manufacturing, fabric defects eit
appear to be singularities in the homogeneous backgro
or textures whose primitives are different from the bac
ground texture in scale and orientation. Based on this vi
point, wavelet transforms and the similar Gabor transfor
which can provide localized spatial-frequency analysis
the fabric image at multiscale and multiorientation, a
3116 Opt. Eng. 41(12) 3116–3126 (December 2002) 0091-3286/2002/
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more capable for the detection of fabric defects than
traditional methods that rely on the statistical texture ana
sis in a single scale.

In wavelet-based defect detection, the fundamental pr
lem remaining to be solved is the selection of the wave
basis. Normally, the wavelet basis is heuristically selec
from the standard wavelet bases, which may not yield f
tures with optimal discrimination for the detection of a
kinds of fabric defects. A solution to this problem is
design the wavelet basis adapting to the detection of
fabric defects. In Refs. 13 and 14, orthogonal adapt
wavelets are derived directly from the texture data
defect-free fabric images, such that the wavelet filter giv
a close-to-zero response to this texture, while disturban
in the texture due to noise and defects are expected to
duce a distinct nonzero output. The wavelets derived
such a way only achieve the optimal representation of
defect-free fabric texture, but not the optimal discrimin
tion between the defect region and the defect-free fab
texture. Moreover, the orthogonal wavelet transform, due
its shift variant property, is not suitable for fabric defe
detection.

To obtain shift-invariant representation and more fle
ibility in the wavelet design, Yang, Pang, and Yung5 de-
rived adaptive wavelets on the basis of undecimated wa
let transforms. For each type of fabric defect, an adap
wavelet was designed to enhance the defect at one sele
channel of the wavelet transform. Compared to Daubech
wavelets, the designed adaptive wavelets largely enha
the defect region, where good detection of these fabric
$15.00 © 2002 Society of Photo-Optical Instrumentation Engineers
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Fig. 1 The proposed fabric defect detection method.
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fects was achieved by using a threshold detector. Howe
multiple adaptive wavelet bases are used in feature ext
tion, which is computationally expensive. In this work,
single adaptive wavelet has been designed for the fast
tection of multiple types of defects. Moreover, by using
discriminative feature extraction~DFE! training method,16

the design of the adaptive wavelet is incorporated with
design of the detector parameters for the objective of m
mum error rate in the detection. Traditionally, the design
the feature extractor and the detector in a defect detec
system are loosely linked, which may not yield appropri
interactions between the feature extractor and the dete
By using the DFE training method, the inconsistency b
tween the feature extractor and the detector is allevia
which leads to better performance on the defect detect
The proposed defect detection method has been evalu
on 480 defect samples from five types of defects, and
nondefect samples, where a 97.5% detection rate an
0.63% false alarm rate were achieved. The evaluati
were also carried out on these types of defects, which w
unknown to the designed feature extractor and detecto
93.3% detection rate and 3.97% false alarm rate w
achieved in the detection of 180 defect samples from th
types of defects and 780 nondefect samples. Compare
the standard wavelet bases, the adaptive wavelet ena
the defect detection to achieve similar performance w
fewer scales of wavelet features, which leads to substa
computational savings for the detection.

This work is organized as follows. In the next sectio
the proposed defect detection method is presented. The
ture extraction module and detection module in the de
detection are described first. Then we describe how to
corporate the wavelet design with the design of the dete
parameters by using the DFE method for achieving the
jective of minimum error rate in the defect detection. T
evaluation results of the proposed method are reporte
Sec. 3. Section 4 concludes this work.

2 Detection-Centric Adaptive Wavelet Design

2.1 Overview

Figure 1 illustrates the block diagram of the proposed f
ric defect detection method. The defect detection ess
tially consists of two modules: the feature extraction mo
ule followed by the detection module. In the featu
extraction module, an undecimated discrete wavelet tra
,
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form ~UDWT! has been used to yield multiscale represe
tation of the fabric image. Feature vectors consisting
channel variances at the output of the wavelet transfo
were extracted to characterize each nonoverlapp
window of the fabric image. In the detection module,
Euclidean distance-based detector was used. Minimiza
of the detection error was achieved by using the DFE tra
ing method, which is illustrated in Fig. 1 using dash
lines.17 In the DFE framework, defect detection on a set
training images is evaluated by using a loss value tha
consistent with the detection error rate. The loss value
then minimized by the design of the adaptive wavelet in
feature extraction module and the design of the dete
parameters in the detection module.

2.2 Feature Extraction Based on Wavelet Transform

Figure 218 illustrates the 1-D undecimated discrete wave
transform implemented by an undecimated octave band
ter bank, whereH(z) and G(z) denote thez transform of
the low-pass filterh@n# and high-pass filterg@n#, respec-
tively. Compared to the critically sampled wavelet tran
form, the undecimated wavelet transform achieves tran
tion invariance, which is desirable for fabric defe
detection. The cascade of the filtering operations in the
decimated wavelet transform shown in Fig. 2 can be
scribed in the following equivalent filter sequences19

Hr~z!5H~z2r 21
!Hr 21~z!5)

k50

r 21

H~z2k
!, for r 51,...,I ,

~1!

Fig. 2 Filter bank implementation of a 1-D undecimated wavelet
transform.
3117Optical Engineering, Vol. 41 No. 12, December 2002
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Gr~z!5G~z2r 21
!Hr 21~z!5G~z2r 21

!)
k50

r 22

H~z2k
!,

for r 52,...,I , ~2!

whereH0(z)51 andG1(z)5G(z). r is the scale index of
the wavelet transform andI denotes the depth of the wave
let transform.

The 2-D undecimated wavelet transform is obtained
using the tensor products of the 1-D version.20 The filter
bank implementation of the 2-D undecimated wave
transform is illustrated in Fig. 3. In this figure,I (x,y)
denotes an image and~x,y! is the spatial indices
$Wr

1(x,y),Wr
2(x,y),Wr

3(x,y)% denote the wavelet coeffi
cients at scaler, with diagonal, vertical, and horizontal or
entation, respectively, andRr(x,y) represents the residu
signal at scaler.

Fabric defects have various sizes and most of the def
only occupy a small portion of the fabric image. To loca
the defect, the fabric image is divided into nonoverlapp
windows with sizeNw3Nw , and the defect detection i
performed on each image window. To characterize e
image window, the channel variances19 at the outputs of the
wavelet transform are used. As it is shown in Ref. 19, ch
nel variances are able to provide efficient discriminatio
among different kinds of textures. Therefore, these featu
are employed here for the discrimination between defe
free fabric textures and defective textures. Correspond
to a window in the fabric image, the channel variances
estimated as the mean energy of the wavelet coefficien
the window19

wr
d5 Mean

~x,y!Pwindow
@Wr

d~x,y!#2, for d51,2,3. ~3!

The channel variances at each channel of the wavelet tr
form form the feature vector to characterize the image w
dow

F5@w1
1,w1

2,w1
3, ¯ ,wI

1,wI
2,wI

3#, ~4!

Fig. 3 Filter bank implementation of a 2-D undecimated wavelet
transform.
3118 Optical Engineering, Vol. 41 No. 12, December 2002
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where I is the decomposition depth of the wavelet tran
form, and the total number of features in the feature vec
F is 3I .

2.3 Detection Algorithm

Based on the Euclidean distance similarity measure,
discriminant functiongj (F;L) for classCj is defined as
follows.

gj~F;L!5iF2mj i2, ~5!

wherej 51,2 denote defect and nondefect, respectively, a
L5$mj% j 51,2 are the reference vectors representing def
and nondefect, respectively. The reference vectorsL are
estimated by using the DFE training method described
the next subsection. The decision rule of the detector is

FPCi if i 5argmin
j

gj~F;L!, ~6!

which assigns the feature vectorF into the class whose
reference vector has minimum Euclidean distance toF.

2.4 DFE Using Adaptive Wavelets for Defect
Detection

In wavelet-based defect detection, feature extraction us
different wavelet bases yields wavelet features with diff
ent discriminations between defect and nondefect, wh
indicates that the selection of the wavelet basis is clos
related to the performance of the defect detection. Stand
wavelet bases, e.g., Daubechies wavelets, Haar wave
etc., are not necessarily the best candidates. A better a
native to the standard wavelets is the custom-desig
wavelet, which is adapted to the detection of the fab
defects. The performance of defect detection is determi
by not only the design of the adaptive wavelet-based f
ture extractor, but also the design of the detector.
achieve appropriate interactions between the feature ex
tor and the detector, the DFE training method is used
perform the overall design of both the feature extractor a
the detector. The DFE training method stems from
minimum classification error~MCE! training method,
which was developed by Juang and Katagiri21 for the clas-
sifier design. Biem et al.16,22 further extended the MCE
training method from the back-end classifier to the fro
end feature extractor for the design of the overall patt
recognizer. In our approach, the DFE training method
corporates the design of the adaptive wavelet with the
sign of the reference vectors of the detector, so that
error rate in the defect detection is minimized. In this su
section, before the implementation of the DFE training
the defect detection, we first describe how to paramete
the wavelet filters in a form suitable to be designed with
optimization approach.

2.4.1 Parametrization of wavelet filters

Based on the undecimated octave band filter bank, we c
sider the design of the wavelet filters under the constra
that H(z) andG(z) are power complementary,18 i.e., H(z)
andG(z) satisfy the following condition
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Yang, Pang, and Yung: Discriminative fabric defect . . .
H~z!H~z21!1G~z!G~z21!51, ~7!

we also impose the following constraints onH(z) and
G(z), that H(21)50 andG(1)50, whereH(21)50 is
imposed for meeting a regularity requirement. By choos
G(1)50, we are able to construct a wavelet with one va
ishing moment, which would yield multiscale edge rep
sentation of the fabric image.

To design the wavelet filters with an optimization stra
egy, we parameterize the wavelet filtersH(z) and G(z),
which satisfy the prior constraints by using lattice structu
factorization.23 Lattice structure factorization performs
cascade-form factorization for the power complement
pairs @H(z)G(z)#

FH~z!

G~z!G5RmL~z!Rm21L~z!....R1L~z!Fcosu0

sinu0
G , ~8!

where

Rk5F cosuk sinuk

2sinuk cosuk
G and L~z!5F1 0

0 z21G .
Here H(z) and G(z) have equal filter lengthm11. For
satisfying the constraintsH(21)50 andG(1)50 in this
factorization structure, the lattice coefficients$uk%0<k<m
should satisfy the following relations

um5
p

4
1u02~u21u41...1um22!,

um2152
p

4
2~u11u31...1um23!,

whenm is even, ~9!

or

um5
p

4
2~u11u31...1um22!,

um2152
p

4
1u02~u21u41...1um23!,

whenm is odd. ~10!

That is, in designing the wavelet filters with lengthm11,
we can freely choose from a set ofm21 lattice coefficients
Q5$uk%0<k<m22 . Since power complementary property
structurally satisfied, the design of the wavelet filters tu
out to be an unconstrained optimization of the lattice co
ficients. This advantage makes the lattice structure suit
for the wavelet filter design with an optimization approac

2.4.2 Implementation of DFE training for defect
detection

In the defect detection shown in Fig. 1, the adjustable
rameters of the feature extractor are the lattice coefficie
Q, which determine the wavelet basis. The adjustable
 -

rameters of the Euclidean distance-based detector are
reference vectorsL. The total set of adjustable paramete
in the defect detection isT5$Q,L%. DFE training on the
parameter setT5$Q,L% is implemented as follows.16

Given a set of training samples

G5$Fn%n51
n5N ,

where each sample is labeled as defect or nondefect
incorrect detection measuredn is defined for each training
sampleFn as

dn512
gj~Fn ;L!

gi~Fn ;L!
, if FnPCi , ~11!

where iÞ j . According to the decision rule defined in E
~6!, dn<0 indicates a correct detection, whiledn.0 indi-
cates otherwise. By incorporating the decision rule in t
incorrect detection measure,dn enumerates how likely the
sampleFn is incorrectly detected.

Based on the incorrect detection measuredn , a loss
function is then used to evaluate the detection performan
The loss function is defined as the smoothed zero-one fu
tion of the incorrect detection measure

l n5
1

11exp~2adn!
, ~12!

wherea(.0) determines the smoothness of this loss fu
tion. Obviously, the loss value incurred by a correct det
tion (dn<0) is close to zero, while the loss value incurre
by an incorrect detection (dn.0) is close to one.

Finally, the empirical average cost for the total set
training samplesG is defined as

L5
1

N (
n51

N

l n . ~13!

By minimizing this empirical average cost with respe
to the set of parametersT5$Q,L%, both the adaptive
wavelet-based feature extractor and the detector are
signed for the minimum error rate in the defect detectio
Compared to the DFE training method, the MCE traini
method has the same procedure in the implementation,
the empirical average cost is minimized only with resp
to the detector parametersL. In that way, only the detecto
is trained for the objective of minimum error rate. Th
steepest gradient descent algorithm is normally emplo
by the DFE to minimize the empirical average cost. Ho
ever, this optimization algorithm is quite inefficient, esp
cially when the calculation of the gradient of the empiric
average costL with respect to the lattice coefficientsQ is
time consuming. To perform the optimization more ef
ciently, a quasi-Newton optimization method24 is used in-
stead. The calculation of the gradient of the empirical a
erage costL with respect to the parameter setT5$Q,L%,
as required by the quasi-Newton method, is given in Sec

The complete algorithm of DFE training for the defe
detection is summarized as follows.
3119Optical Engineering, Vol. 41 No. 12, December 2002
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3120 Optical Engi
Fig. 4 (a1)–(a5) Fabric images containing defect Brokenend, Slackend, Mispick, Thinbar, and Net-
multiples. (b1)–(b5) Detection results using Haar wavelets and 2-scale wavelet features. (c1)–(c5)
Detection results using Haar wavelets and 3-scale wavelet features. (d1)–(d5) Detection results using
adaptive wavelets and 2-scale wavelet features. (e1)–(e5) Detection results using adaptive wavelet
and 3-scale wavelet features.
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1. Select a set of fabric images for training. Label t
image windows as defect or nondefect.

2. Initialize the lattice coefficientsQ and the reference
vectorsL. The maximum number of iterations in th
quasi-Newton optimization procedure is set as a st
ping criterion for the DFE training.

3. Corresponding to the lattice coefficientsQ, the wave-
let filters H(z) andG(z) are derived using Eq.~8!.

4. Perform the wavelet transform on the training fab
images using the derived wavelet filters. The feat
vectors of the training samples are obtained using
~4!.

5. Calculate the empirical average cost using Eq.~13!.
Calculate the gradients of the empirical average c
with respect toQ andL.

6. UpdateQ and L using the quasi-Newton optimiza
tion method to reduce the empirical average cost.

7. If the stopping criterion is satisfied, the DFE trainin
is terminated. Otherwise, go to step 3 and contin
the training procedure.
neering, Vol. 41 No. 12, December 2002
3 Evaluations

3.1 Data Collection

The proposed defect detection method was evaluated on
detection of five types of representative fabric defec
These fabric defects are Brokenend, Slackend, Misp
Thinbar, and Netmultiples@Figs. 4~a1! to 4~a5!#. The fabric
images are 2563256 pixels in size with 256 gray levels. 2
fabric images containing the five types of defects were c
tured for the evaluation. Feature vectors were extracte
characterize image windows 32332. In each fabric image
24 feature vectors with defect were collected, which cor
spond to 24 windows containing different parts of the d
fect region. 24 feature vectors without defects were a
collected in the same fabric image, which correspond to
nonoverlapping and defect-free windows in the fabric i
age. Five fabric images containing the five types of defe
respectively, were used for training, where 120 def
samples and 120 nondefect samples were collected.
remaining 20 fabric images were used as tests, where
defect samples and 480 nondefect samples were collec
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3.2 Evaluation Conditions

3.2.1 Evaluation criteria

The overall detection performance is evaluated by the e
rate in the detection, which is defined as the percentag
samples incorrectly detected. Detailed evaluations of
detection performance adopt two criteria: detection rate
false alarm rate. The detection rate is defined as the
centage of defect samples that are correctly detected a
fect, and the false alarm rate is defined as the percentag
nondefect samples that are incorrectly detected as defe

3.2.2 Decomposition depth of the wavelet transform

When the decomposition depth of the wavelet transform
increased, the feature vectorF @Eq. ~4!# includes more fea-
tures that are extracted from the channels at the incre
scales of the wavelet transform. In our evaluation, wave
transform with decomposition depths 1, 2, and 3 were
vestigated, where 1 scale features~3 features!, 2 scales fea-
tures~6 features!, and 3 scales features~9 features! of the
wavelet transform were used for the defect detection,
spectively.

3.2.3 Length of the wavelet filters

The length of the wavelet filtersH(z) andG(z) determines
the number of free parameters in designing the wave
basis. On one hand, a long filter allows more design fr
doms. However, too many free parameters will reduce
generalization capacity of the detection method. On
other hand, a short filter can provide more accurate loca
of the defect region and lower computational costs tha
long filter. Wavelet filters with different lengths~from 3 to
20! were evaluated in the defect detection. From our wo
filters with lengths between 8 and 16 usually gave be
detection performance than filters with other lengths. In
following evaluations, a filter length of 10 was used.

3.2.4 Smoothness factor of the loss function

The smoothness factora in the loss function@Eq. ~12!#
controls the loss value from the training samples. Con
quently, the selection ofa affects the detection perfor
mance. Figure 5 illustrates the error rate in the defect
tection, where differenta were used in the DFE training
Here the decomposition depth of the wavelet transform w
1. When the decomposition depth was 2 or 3, similar re
tions were obtained. As depicted in Fig. 5, the detect

Fig. 5 The effect of the smoothness factor a on the performance of
the defect detection using the DFE training method.
r
f

-
e-
f

d

performance substantially decreases ifa is either too large
or too small. Whena is too large, the loss values from mo
of the training samples are close to zero or one. As a res
the final cost surface is not smooth and is unsuitable fo
gradient algorithm. Moreover, the loss value cannot e
ciently reflect how likely a sample is incorrectly detecte
However,a with too small of a value also results in poo
performance, since the empirical average cost contains
much loss from those training samples that can be w
detected. In our evaluations, the value ofa was chosen to
be 20.

3.2.5 Effect of using different window size

For an accurate location of the defect, the size of the im
window should be small. However, a small window cann
preserve well the texture property of the defect-free fab
texture, and could lead to poor discrimination between
window containing the defect and the window without t
defect. Obviously, the suitable window size is determin
by the resolution of the fabric image. Based on the fab
images we have captured, DFE training was performed
image windows of sizes 16316, 32332, and 64364, re-
spectively. The corresponding error rate in the detection
test samples are summarized in Table 1.

As shown in Table 1, the largest window, 64364,
achieved the smallest error rate. However, the accurac
locating the defect along with such a window size is n
satisfactory. On the other hand, the smallest window w
size 16316 yielded the largest error rate, although it co
responds to the best accuracy in locating the defects. In
work, evaluation results based on the 32332 window are
presented.

3.2.6 Initialization of the DFE

Since the implementation of the DFE is based on grad
descent optimization~quasi-Newton method!, the perfor-
mance of the defect detection using the DFE train
depends on the initialization of the parameter setT
5$Q,L%. However, it is difficult to predetermine a set o
lattice coefficientsQ that would yield good detection per
formance after DFE training. Several sets of randomly g
eratedQ were used for the initialization of the lattice coe
ficients and the best results are presented. After the la
coefficients were initialized, the MCE training method w
used to initialize the reference vectorsL of the detector.
Corresponding to the initial wavelet, the detector para
eters were initialized for the minimum error rate in th
detection. The MCE training itself also needed reasona

Table 1 The effect of the window size on the performance of the
defect detection.

Window size

Error rate (%)

1-scale features 2-scale features 3-scale features

16316 14.5 10.5 7.3

32332 10.5 4.2 1.6

64364 6.9 3 0.7
3121Optical Engineering, Vol. 41 No. 12, December 2002
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3122 Optic
Fig. 6 DFE training using 1-scale wavelet features: (a) learning curves, (b) frequency responses of the
wavelet filters before DFE training, and (c) after DFE training.
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initialization onL, which was implemented by a maximum
likelihood method~using class-dependent mean vectors!.

3.3 Evaluation Results

The training procedure for the defect detection is divid
into three steps. At each step, the detection performanc
evaluated.

1. Initialize the lattice coefficientsQ with random val-
ues. The reference vectorsL of the detector are ob
tained by using a maximum likelihood metho
where the reference vector for each class is calcula
as the class-dependent mean vectors.

2. MCE training on the reference vectorsL.

3. DFE training onT5$Q,L%.

At step 1, after the initialization of the lattice coefficient
the reference vectorsL are initialized as the class
dependent mean vectors for the MCE training at step
Subsequently, the reference vectorsL are trained by using
the MCE method, which initializesL for the DFE training
in step 3.

When using 1-scale, 2-scale, and 3-scale wavelet
tures, learning curves of the DFE training procedure
illustrated in Fig. 6~a!, Fig. 7~a!, and Fig. 8~a!, respectively.
At each step of the training, the error rate in the detect
of training samples and test samples are summarize
Table 2. In step 1, the poor detection performance indica
al Engineering, Vol. 41 No. 12, December 2002
s

-

that the reference vectors estimated using the cla
dependent mean vectors cause large decision bias. In st
the MCE method results in 12.7, 17.7, and 7.1% reduct
of the error rate in the detection of test samples, wh
1-scale, 2-scale, and 3-scale wavelet features are used
spectively. By using the MCE training method, the decisi
bias caused by the estimation on the detector paramete
reduced and better detection performance is achieved.

So far, the training only focuses on the back-end det
tor, and the detection performance is limited by the d
crimination between defect and nondefect, which is de
mined by the front-end feature extractor. In step 3, it can
seen that the error rate in the detection of test sam
substantially decreases after the DFE training. Compare
the MCE training, the defect detection using DFE traini
further achieves 25.8, 17.5, and 4.3% reduction on the e
rate in the detection of test samples. Such improvement
the detection performance are primarily due to the des
of the wavelet basis, which substantially increases the
criminative power between defect and nondefect. Mo
over, the large improvement on the detection performa
on test samples also indicates that the design of the fea
extractor is an efficient approach to increase the gene
zation capacity of the defect detection to unknown samp
Corresponding to the use of 1-scale, 2-scale, and 3-s
wavelet features, the wavelet filters before and after
DFE training are illustrated in Figs. 6~b! and 6~c!, Figs.
7~b! and 7~c!, and Figs. 8~b! and 8~c!, respectively.
Fig. 7 DFE training using 2-scale wavelet features: (a) learning curves, (b) frequency responses of the
wavelet filters before DFE training, and (c) after DFE training.
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Fig. 8 DFE training using 3-scale wavelet features: (a) learning curves, (b) frequency responses of the
wavelet filters before DFE training, and (c) after DFE training.
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Detection rate and false alarm rate are used for the
tailed evaluation on the performance of the defect detec
method. Corresponding to the minimum error rate~1.6%!
achieved by using adaptive wavelets with 3-scale wav
features, the detection rate and false alarm rate are 97.5
0.625%, respectively.

3.4 Comparison between Adaptive and Standard
Wavelets

For comparative study, several commonly used wav
bases have been evaluated in defect detection. These w
let bases are Haar wavelets, Daubechies wavelets
length 12, and Battle-Lemarie wavelets of order 1.

As shown in Table 3, the detection performance of
simple Haar wavelet always outperforms the other t
types of standard wavelets, and the minimum error rate
the detection of test samples is 5.7%. It is worth noting t
such a detection performance is only obtained by us
3-scale wavelet features, while adaptive wavelets obta
less error rates~4.2%! by using 2-scale wavelet features.

Figures 4~b! and 4~c! illustrate the detection results o
one test image of each type of defects using 2-scale
3-scale wavelet features, respectively, where the wav
basis is a Haar wavelet. Compared to the Haar wavelet
detection results on the same images using an adap
wavelet are illustrated in Figs. 4~d! and 4~e!. From these
results, it can be seen that the Haar wavelet yields p
detection performance when using 2-scale wavelet featu
especially on the detection of defect Netmultiples, wh
all the nondefect samples are incorrectly detected as de
Note here that the fabric containing the defect Netmultip
is slightly different from the fabric containing the othe

Table 2 Error rate of the defect detection using DFE training with
adaptive wavelets.

DFE
training

procedure

Error rate (%)

1-scale features 2-scale features 3-scale features

Train Test Train Test Train Test

Step 1 46.7 49 36.3 39.4 12.1 13

Step 2 30.9 36.3 18 21.7 1.7 5.9

Step 3 6.7 10.5 0 4.2 0 1.6
-

t
d

e-

d
t
e
e

r
,

t.

four types of defects. When using 3-scale wavelet featu
the discrimination between defect and nondefect is
creased and better results are obtained. Compared to
Haar wavelet, the adaptive wavelet always performs be
when the same scales of the wavelet features are used.
isfactory detection results are achieved when using ad
tive wavelet and 3-scale wavelet features. The results
show that adaptive wavelets using 2-scale wavelet feat
perform slightly better than Haar wavelets using 3-sc
wavelet features. Since feature extraction from more sc
of the wavelet transform requires more computational co
the use of the adaptive wavelet enables a faster detec
than the standard wavelets.

3.5 Additional Evaluations on Unknown Types of
Defects

The detection performance of the proposed method has
been evaluated on unknown types of defects. The unkno
types of defects refer to those that have not been used in
DFE training and are unknown to the DFE-trained featu
extractor and detector. Three types of defects, Misyarn@Fig.
9~a1!#, Broken@Fig. 9~a2!# and Stain@Fig. 9~a3!#, are used
for the evaluations. A total of 15 fabric images containi
the three types of defects were captured. From these
fabric images, 180 defect samples and 780 nonde
samples were collected. Performance of the defect de
tion on these unknown types of test samples are sum
rized in Table 4. Examples of the defect detection of ea
type of defect are shown in Fig. 9.

In contrast to the detection performance on the fi
known types of defects, the error rate in the detection
unknown types of defects increase 3, 4.6, and 2.9%, res

Table 3 Error rate of the defect detection using MCE training with
standard wavelets.

Standard
wavelet bases

Error rate (%)

1-scale features 2-scale features 3-scale features

Train Test Train Test Train Test

Haar 23.8 33.4 16.3 24.5 0.5 5.7

Daubechies 26.3 33.9 19.6 26.6 0.5 8.7

Battle-Lemarie 25 34.6 21.7 27 0.9 7.8
3123Optical Engineering, Vol. 41 No. 12, December 2002
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3124 Optical Engi
Fig. 9 (a1)–(a3) Fabric images containing defects Misyarn, Broken, and Stain. (b1)–(b3) Detection
results using Haar wavelets and 3-scale wavelet features. (c1)–(c3) Detection results using adaptive
wavelets and 2-scale wavelet features. (d1)–(d3) Detection results using adaptive wavelets and
3-scale wavelet features.
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tively. On the detection of small defects like Misyarn, ada
tive wavelets with 3-scale wavelet features perform sim
larly to adaptive wavelets with 2-scale wavelet features
Haar wavelets with 3-scale wavelet features, but much
ter on the detection of large defects Broken and Stain.
average, adaptive wavelets with 2-scale wavelet featu
perform similarly to Haar wavelets with 3-scale wave
features. These results further demonstrate the advant
of using the adaptive wavelet. Corresponding to the m
mum error rate~4.5%! achieved by using adaptive wavele
with 3-scale wavelet features, the detection rate and f
alarm rate are 93.3 and 3.97%, respectively.

4 Conclusions

A new method that incorporates the design of an adap
wavelet-based feature extractor with the design of an
clidean distance-based detector is proposed for fabric
fect detection. In the wavelet-based fabric defect detect
the selection of the wavelet basis is closely related to

Table 4 Error rate of the defect detection on unknown test samples.

Defect
type

Error rate (%)

Haar wavelet
with 3-scale

wavelet features

Adaptive wavelet
with 2-scale

wavelet features

Adaptive wavelet
with 3-scale

wavelet features

Misyarn 6.8 6.5 6.5

Broken 10.3 8.4 3.4

Stain 8.7 11.2 3.4

Average 8.7 8.8 4.5
neering, Vol. 41 No. 12, December 2002
-

s

s

-
,

detection performance. As a major contribution of th
work, we show how to design the wavelet basis by adapt
it to the detection of fabric defects. By using the DFE tra
ing method, the design of the adaptive wavelet is incor
rated with the design of the detector parameters to m
mize the error rate in the defect detection. In this w
appropriate interactions between the feature extractor
the detector have been achieved. Compared to the stan
wavelet bases, the adaptive wavelet enables the defec
tection to achieve similar performance with fewer scales
wavelet features, which leads to substantial computatio
savings for the detection.

5 Appendix A

The gradients of the empirical average costL with respect
to the parameter setT5$Q,L% are derived as follows:

]L

]mj
5

1

N (
n51

N
] l n

]mj
and

]L

]uk
5

1

N (
n51

N
] l n

]uk
. ~14!

Given that the loss valuel n is caused by training sampl
FnPCi , the gradient ofl n with respect to the referenc
vectors are derived based on Eqs.~5!, ~11!, and~12!,

] l n

]mi
5

2agj exp~2adn!~mi2Fn!

gi
2@11exp~2adn!#2 , ~15!

and

] l n

]mj
5

2a exp~2adn!~Fn2mj !

gi@11exp~2adn!#2 , ~16!
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whereiÞ j .
The gradient ofl n with respect to the lattice coefficient

is derived as follows:

] l n

]uk
5

2agj exp~2adn!

gi
2@11exp~2adn!#2

3 (
p51

P S $@Fn
~p!2mi

~p!#gj2@Fn
~p!2mj

~p!#gi%
]Fn

~p!

]uk
D ,

~17!

whereP denotes the dimension of the feature vectorFn ,
andFn

(p) denotes thep’ th component of the feature vecto
Fn . According to Eq.~4!, the feature componentFn

(p) cor-
responds to one componentwr

d . From Eq.~3!, we have

]wr
d

]uk
5 Mean

~x,y!Pwindow
F2Wr

d~x,y!
]Wr

d~x,y!

]uk
G2

, ~18!

where

]Wr
d~x,y!

]uk
5

]c r
d

]uk
* I ~x,y!. ~19!

In Eq. ~19!, ~x,y! are the spatial indices and* denotes the
2-D convolution.c r

d is the cascade of the filter sequences
the wavelet transform corresponding to the output
Wr

d(x,y). By using the chain role for differentiation, th
calculation of ]c r

d/]uk depends on the calculation o
]H(z)/]uk and]G(z)/]uk , which can be derived based o
the lattice structure as given in Eq.~8!

F]H~z!/]uk

]G~z!/]uk
G5RmL~z!Rm21L~z!M ~z!

3F 2sinuk cosuk

2cosuk 2sinuk
GF1 0

0 z21GN~z!

1]um /]ukF 2sinum cosum

2cosum 2sinum
G

3F1 0

0 z21GRm21L~z!W~z!, ~20!

wherem1k is even, or

F]H~z!/]uk

]G~z!/]uk
G5RmL~z!Rm21L~z!M ~z!

3F 2sinuk cosuk

2cosuk 2sinuk
GF1 0

0 z21GN~z!

1RmL~z!]um21/]uk

3F 2sinum21 cosum21

2cosum21 2sinum21
G

3F1 0

0 z21GW~z!, ~21!
wherem1k is odd.
HereN(z) andM (z) are 231 and 232 matrices of poly-
nomials whose coefficients are functions of$u j%0< j <k21

and$u j%k11< j <m22 , respectively.W(z) are 231 matrices
of polynomials whose coefficients are functions
$u j%0< j <m22 .
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