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Abstract. We propose a new method for fabric defect detection by in-
corporating the design of an adaptive wavelet-based feature extractor
with the design of an Euclidean distance-based detector. The proposed
method characterizes the fabric image with multiscale wavelet features
by using undecimated discrete wavelet transforms. Each nonoverlapping
window of the fabric image is then detected as defect or nondefect with
an Euclidean distance-based detector. Instead of using the standard
wavelet bases, an adaptive wavelet basis is designed for the detection of
fabric defects. Minimization of the detection error is achieved by incor-

porating the design of the adaptive wavelet with the design of the detec-
tor parameters using a discriminative feature extraction (DFE) training
method. The proposed method has been evaluated on 480 defect
samples from five types of defects, and 480 nondefect samples, where a
97.5% detection rate and 0.63% false alarm rate were achieved. The
evaluations were also carried out on unknown types of defects, where a
93.3% detection rate and 3.97% false alarm rate were achieved in the
detection of 180 defect samples and 780 nondefect samples. © 2002
Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.1517290]
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1 Introduction more capable for the detection of fabric defects than the
traditional methods that rely on the statistical texture analy-
sis in a single scale.

In wavelet-based defect detection, the fundamental prob-

lem remaining to be solved is the selection of the wavelet

Automatic fabric defect detection is becoming an attractive
alternative to human visual inspection in the modern textile
industry. Based on advances in image processing and

pattern recognition, automatic fabric defect detection can basis. Normallv. the wavelet basis is heuristically selected
potentially provide an objective and reliable evaluation frorr|1 ihe stan d)::\’r d we\ll\vle\llet basesl V\;hiCh L:T1Ia : noty ield fea-
on fabric production quality. In general, a fabric defect . : S T ynoty

. ; tures with optimal discrimination for the detection of all
detection system consists of a feature extractor and a detec;

tor. Much research has been focused on the design of theklnds of fabric defects. A solution to this problem is to

. . o . design the wavelet basis adapting to the detection of the
feature extractor, which aims at yielding features with pow- fabric defects. In Refs. 13 and 14, orthogonal adaptive
erful discrimination between the defect region and the ' : '

defect-free fabri he desi t the f wavelets are derived directly from the texture data of
efect-free fabric texture. The design of the feature extrac- yotect free fabric images, such that the wavelet filter gives
tor can be divided into two categories. One is based on

o ) i SN a close-to-zero response to this texture, while disturbances
statistical texture analysis, which discriminates the  jj the texture due to noise and defects are expected to pro-
defect region in terms of the statistical textural properties qyce a distinct nonzero output. The wavelets derived in
of the fabric image. The second category is the trans- sych a way only achieve the optimal representation of the
form-based approaches, where feature extraction is basejefect-free fabric texture, but not the optimal discrimina-
on Fourier transfornf® Gabor transformis® or wavelet  tion between the defect region and the defect-free fabric
transforms’~*° Since Fourier bases do not have local sup- texture. Moreover, the orthogonal wavelet transform, due to
port in the spatial domain, the features extracted from Fou- its shift variant property, is not suitable for fabric defect
rier transforms are not as effective in detecting small local detection.
defects. As fabric images have regular periodic texture pat-  To obtain shift-invariant representation and more flex-
terns produced during manufacturing, fabric defects either ibility in the wavelet design, Yang, Pang, and Ydrde-
appear to be singularities in the homogeneous backgroundyived adaptive wavelets on the basis of undecimated wave-
or textures whose primitives are different from the back- let transforms. For each type of fabric defect, an adaptive
ground texture in scale and orientation. Based on this view- wavelet was designed to enhance the defect at one selected
point, wavelet transforms and the similar Gabor transforms, channel of the wavelet transform. Compared to Daubechies
which can provide localized spatial-frequency analysis of wavelets, the designed adaptive wavelets largely enhance
the fabric image at multiscale and multiorientation, are the defect region, where good detection of these fabric de-
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Fig. 1 The proposed fabric defect detection method.

fects was achieved by using a threshold detector. However,form (UDWT) has been used to yield multiscale represen-
multiple adaptive wavelet bases are used in feature extrac-tation of the fabric image. Feature vectors consisting of
tion, which is computationally expensive. In this work, a channel variances at the output of the wavelet transform
single adaptive wavelet has been designed for the fast dewere extracted to characterize each nonoverlapping
tection of multiple types of defects. Moreover, by using a window of the fabric image. In the detection module, an
discriminative feature extractiofDFE) training method?® Euclidean distance-based detector was used. Minimization
the design of the adaptive wavelet is incorporated with the of the detection error was achieved by using the DFE train-
design of the detector parameters for the objective of mini- ing method, which is illustrated in Fig. 1 using dashed
mum error rate in the detection. Traditionally, the design of lines!’ In the DFE framework, defect detection on a set of
the feature extractor and the detector in a defect detectiontraining images is evaluated by using a loss value that is
system are loosely linked, which may not yield appropriate consistent with the detection error rate. The loss value is
interactions between the feature extractor and the detectorthen minimized by the design of the adaptive wavelet in the
By using the DFE training method, the inconsistency be- feature extraction module and the design of the detector
tween the feature extractor and the detector is alleviated,parameters in the detection module.
which leads to better performance on the defect detection.
The proposed defect detection method has been evaluated .
on 480 defect samples from five types of defects, and 480 2.2 Feature Extraction Based on Wavelet Transform
nondefect samples, where a 97.5% detection rate and aFigure 28 illustrates the 1-D undecimated discrete wavelet
0.63% false alarm rate were achieved. The evaluationstransform implemented by an undecimated octave band fil-
were also carried out on these types of defects, which wereter bank, wheréd(z) and G(z) denote thez transform of
unknown to the designed feature extractor and detector. Athe low-pass filteh[n] and high-pass filteg[n], respec-
93.3% detection rate and 3.97% false alarm rate weretjyely. Compared to the critically sampled wavelet trans-
achieved in the detection of 180 defect samples from threeform, the undecimated wavelet transform achieves transla-
types of defects and 780 nondefect samples. Compared tqjon invariance, which is desirable for fabric defect
the standard wavelet bases, the adaptive wavelet enablegetection. The cascade of the filtering operations in the un-
the defect detection to achieve similar performance with gecimated wavelet transform shown in Fig. 2 can be de-
fewer scales of wavelet features, which leads to substantialscriped in the following equivalent filter sequenties
computational savings for the detection.

This work is organized as follows. In the next section, r-1
the proposed defect detection method is presented. The feaH, (z) = H(zZH)H,,l(z)= H H(ZZ"), for r=1,...],
ture extraction module and detection module in the defect k=0
detection are described first. Then we describe how to in- 1)
corporate the wavelet design with the design of the detector
parameters by using the DFE method for achieving the ob-
jective of minimum error rate in the defect detection. The

evaluation results of the proposed method are reported in f () —s

Sec. 3. Section 4 concludes this work. L ?

2 Detection-Centric Adaptive Wavelet Design H(z) tG(ZZ)_'
2.1 Overview

Figure 1 illustrates the block diagram of the proposed fab-

ric defect detection method. The defect detection essen-
tially consists of two modules: the feature extraction mod-

ule followed by the detection module. In the feature Frig 2 Fiter bank implementation of a 1-D undecimated wavelet
extraction module, an undecimated discrete wavelet trans-transform.

H(z?) LG(z“)—-
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W) (x,y) wherel is the decomposition depth of the wavelet trans-

| Glz,)G(z, ) — form, and the total number of features in the feature vector
W2 (x, ) Fis 3l.
I(x,y) H(zl )G(zz)_. ( Zk;( - w1 (x,y)
wxy) [[|O0 P 2.3 Detection Algorithm

#ilxy) Based on the Euclidean distance similarity measure, the

—H(zlzb(zzz)—‘ L . . -
_H(ZI)H(ZZ)Rl(x,y) discriminant functiong;(F;A) for classC; is defined as
|| ( Z)H( 2) #(x,y) follows.
Scale 1 Gey Hiz," J—*
A — 2
Ry(x.y) g;(F;A)=[F—m;|, 6)
_H(Zl2)H(zzz)
S wherej = 1,2 denote defect and nondefect, respectively, and
cale 2 .
A={m;};-,, are the reference vectors representing defect
Fig. 3 Filter bank implementation of a 2-D undecimated wavelet and nondefect, respectively. The reference vectorare
transform. estimated by using the DFE training method described in
the next subsection. The decision rule of the detector is
oy FeC, if i=argmingj(F;A), (6)
j

G/(2)=G(ZZ H,_1(20=6(2 HII H(z?,

which assigns the feature vectbrinto the class whose
for r=2,...], 2) reference vector has minimum Euclidean distancg.to

2.4 DFE Using Adaptive Wavelets for Defect

whereHy(z)=1 andG4(z) =G(2). r is the scale index of Detection

the wavelet transform aniddenotes the depth of the wave- . . )
let transform. In wavelet-based defect detection, feature extraction using

The 2-D undecimated wavelet transform is obtained by different wavelet bases yields wavelet features with differ-
using the tensor products of the 1-D versirThe filter ent discriminations between defect and nondefect, which

bank implementation of the 2-D undecimated wavelet indicates that the selection of the wavelet basis is closely
transform is illustrated in Fig. 3. In this figuré(x,y) related to the performance of the defect detection. Standard
denotes an image andx)) is the spatial indices. wavelet bases, e.g., Daubechies wavelets, Haar wavelets,

: etc., are not necessarily the best candidates. A better alter-
{WH(x,y),W?(x,y),W3(x,y)} denote the wavelet coeffi- . . .
cients at scale, with diagonal, vertical, and horizontal ori- native to the standard wavelets is the custom-designed

o tivel R ts th id wavelet, which is adapted to the detection of the fabric
gir;;r?allogt’ Srgzlzec vely, anR,(x,y) represents the residue defects. The performance of defect detection is determined

Fabric defects have various sizes and most of the defect by not only the design of the adaptive wavelet-based fea-

| I . f the fabric i To | Sture extractor, but also the design of the detector. To
only occupy a small portion of the fabric image. To locate 5 pieye appropriate interactions between the feature extrac-
the defect, the fabric image is divided into nonoverlapping

. . . FETSY tor and the detector, the DFE training method is used to
windows with sizeN,,xN,,, and the defect detection is perform the overall design of both the feature extractor and
performed on each image window. To characterize eachthe detector. The DFE training method stems from the
image window, the channel variané¢at the outputs of the  minimum classification error(MCE) training method,

wavelet transform are used. As it is shown in Ref. 19, chan- \yhich was developed by Juang and Kat&gifor the clas-
nel variances are able to provide efficient discriminations gjfier design. Biem et @22 further extended the MCE

among different kinds of textures. Therefore, these featuresraining method from the back-end classifier to the front-

are employed here for the discrimination between defect- eng feature extractor for the design of the overall pattern
free fabric textures and defective textures. Corresponding recognizer. In our approach, the DFE training method in-

to a window in the fabric image, the channel variances are corporates the design of the adaptive wavelet with the de-
est|m§\ted ag the mean energy of the wavelet coefficients iNsjgn of the reference vectors of the detector, so that the
the window error rate in the defect detection is minimized. In this sub-

section, before the implementation of the DFE training for

the defect detection, we first describe how to parameterize
the wavelet filters in a form suitable to be designed with an

optimization approach.

wi= Mean [WY(x,y)]?, for d=1,2,3. 3)

(x,y) e window

The channel variances at each channel of the wavelet trans-2 41 Parametrization of wavelet filters
form form the feature vector to characterize the image win- ="
dow Based on the undecimated octave band filter bank, we con-
sider the design of the wavelet filters under the constraint
P P thatH(z) andG(z) are power complementat{,i.e., H(z)
F=[Wg,w3,Wi, ==, Wi, Wi, Wi, (4) andG(z) satisfy the following condition
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H(2)H(z Y+ G(2)G(z 1) =1, (7)

we also impose the following constraints d¢#h(z) and
G(2), thatH(—1)=0 andG(1)=0, whereH(—1)=0 is
imposed for meeting a regularity requirement. By choosing
G(1)=0, we are able to construct a wavelet with one van-
ishing moment, which would yield multiscale edge repre-
sentation of the fabric image.

To design the wavelet filters with an optimization strat-
egy, we parameterize the wavelet filtdigz) and G(z),
which satisfy the prior constraints by using lattice structure
factorization?® Lattice structure factorization performs a
cascade-form factorization for the power complementary
pairs[H(2)G(2)]

H(2)] N N A cosé,
G(z)| = ReA(@Rn 1A (2). RIA@)| g, 8
where
cosf,  sinby g 1 0
Ri= —sinf cosfy and A(z)= 0 z ')

Here H(z) and G(z) have equal filter lengtim+1. For
satisfying the constraintsl(—1)=0 andG(1)=0 in this
factorization structure, the lattice coefficient8}o<i<m
should satisfy the following relations

o
gm:Z+ 00_(02+ 04+ .t 0m_2),
Hm,l= - Z—(01+ 03+ Lt 0m,3),
whenm is even, 9
or

o
em:Z_(Gl"_ 03+ Lt Hm_z),

ar

emfl: - Z‘l’ 00_(02+ 04+ e 0m73),
whenm is odd. (10)

That is, in designing the wavelet filters with lengti+ 1,

we can freely choose from a setmof- 1 lattice coefficients
O={6}g<k=m-2-. Since power complementary property is
structurally satisfied, the design of the wavelet filters turns
out to be an unconstrained optimization of the lattice coef-
ficients. This advantage makes the lattice structure suitable
for the wavelet filter design with an optimization approach.

2.4.2 Implementation of DFE training for defect

detection

In the defect detection shown in Fig. 1, the adjustable pa-
rameters of the feature extractor are the lattice coefficients
0, which determine the wavelet basis. The adjustable pa-

rameters of the Euclidean distance-based detector are the
reference vectord. The total set of adjustable parameters
in the defect detection i$={0®,A}. DFE training on the
parameter seT ={®,A} is implemented as follow¥.

Given a set of training samples

n=N
nfn=1-

I'={F
where each sample is labeled as defect or nondefect, an
incorrect detection measudg, is defined for each training
sampleF,, as

- gj(Fn;A)

g (Fyih) I FreCr

(11

wherei#j. According to the decision rule defined in Eq.
(6), d,=<0 indicates a correct detection, whilg>0 indi-
cates otherwise. By incorporating the decision rule in this
incorrect detection measure, enumerates how likely the
sampleF, is incorrectly detected.

Based on the incorrect detection measdig a loss
function is then used to evaluate the detection performance.
The loss function is defined as the smoothed zero-one func-
tion of the incorrect detection measure

1
In_1+eX|o(—ozdn)’ (12
wherea(>0) determines the smoothness of this loss func-
tion. Obviously, the loss value incurred by a correct detec-
tion (d,<0) is close to zero, while the loss value incurred
by an incorrect detectiond(,>0) is close to one.

Finally, the empirical average cost for the total set of
training sampled” is defined as

1 N
L==> |I,. (13)
N =1

By minimizing this empirical average cost with respect
to the set of parameter§={®,A}, both the adaptive
wavelet-based feature extractor and the detector are de-
signed for the minimum error rate in the defect detection.
Compared to the DFE training method, the MCE training
method has the same procedure in the implementation, but
the empirical average cost is minimized only with respect
to the detector parametefs In that way, only the detector
is trained for the objective of minimum error rate. The
steepest gradient descent algorithm is normally employed
by the DFE to minimize the empirical average cost. How-
ever, this optimization algorithm is quite inefficient, espe-
cially when the calculation of the gradient of the empirical
average cosk with respect to the lattice coefficien® is
time consuming. To perform the optimization more effi-
ciently, a quasi-Newton optimization mettfds used in-
stead. The calculation of the gradient of the empirical av-
erage cost. with respect to the parameter Set{0,A},
as required by the quasi-Newton method, is given in Sec. 5.

The complete algorithm of DFE training for the defect
detection is summarized as follows.

Optical Engineering, Vol. 41 No. 12, December 2002 3119
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Fig. 4 (al)—(a5) Fabric images containing defect Brokenend, Slackend, Mispick, Thinbar, and Net-
multiples. (b1)—(b5) Detection results using Haar wavelets and 2-scale wavelet features. (c1)—(c5)
Detection results using Haar wavelets and 3-scale wavelet features. (d1)—(d5) Detection results using
adaptive wavelets and 2-scale wavelet features. (el)—(e5) Detection results using adaptive wavelet
and 3-scale wavelet features.

. Select a set of fabric images for training. Label the 3 Evaluations
image windows as defect or nondefect.

. Initialize the lattice coefficient® and the reference 3.1 Data Collection
vectorsA. The maximum number of iterations in the The proposed defect detection method was evaluated on the
guasi-Newton optimization procedure is set as a stop- detection of five types of representative fabric defects.
ping criterion for the DFE training. These fabric defects are Brokenend, Slackend, Mispick,
. Corresponding to the lattice coefficielisthe wave- ~ Thinbar, and NetmultiplefFigs. 4al) to 4(25)]. The fabric
let filters H(z) andG(z) are derived using E48). images are 256 256.p_|xels in size with 256 gray levels. 25
. Perform the wavelet transform on the training fabric Iﬁ?e”c? ;gi%iseioaqbig:)nng r:;gfet@ifog Oﬁ;?gtz)ggﬁgg%
images using the derived wavelet filters. The feature . o o
vectors of the training samples are obtained using Eq. characterize image windows 832. In each fabric image,
(4). 24 feature vectors with defept_were_ collected, which corre-
spond to 24 windows containing different parts of the de-
fect region. 24 feature vectors without defects were also
collected in the same fabric image, which correspond to 24
) ) o nonoverlapping and defect-free windows in the fabric im-
- Update® and A using the quasi-Newton optimiza-  age. Five fabric images containing the five types of defects,
tion method to reduce the empirical average cost.  respectively, were used for training, where 120 defect
. If the stopping criterion is satisfied, the DFE training samples and 120 nondefect samples were collected. The
is terminated. Otherwise, go to step 3 and continue remaining 20 fabric images were used as tests, where 480
the training procedure. defect samples and 480 nondefect samples were collected.

. Calculate the empirical average cost using @).
Calculate the gradients of the empirical average cost
with respect to® and A.

Optical Engineering, Vol. 41 No. 12, December 2002



Yang, Pang, and Yung: Discriminative fabric defect . . .

“ Table 1 The effect of the window size on the performance of the

— Traini :
56 defect detection.

Error rate (%)

Window size 1-scale features 2-scale features 3-scale features

Esor Rate (%)

16X 16 14.5 10.5 7.3
32X 32 10.5 4.2 1.6
64X 64 6.9 3 0.7

1 5 10 20 40 60 80 100 120 140 180
Smoothness factor

Fig. 5 The effect of the smoothness factor « on the performance of

the defect detection using the DFE training method. performance substantially decreases if either too large

or too small. Whernw is too large, the loss values from most
of the training samples are close to zero or one. As a result,

3.2 Evaluation Conditions the final cost surface is not smooth and is unsuitable for a
gradient algorithm. Moreover, the loss value cannot effi-
3.2.1 Evaluation criteria ciently reflect how likely a sample is incorrectly detected.

However, @ with too small of a value also results in poor
performance, since the empirical average cost contains too
much loss from those training samples that can be well

The overall detection performance is evaluated by the error
rate in the detection, which is defined as the percentage of
samples incorrectly detected. Detailed evaluations of the detected. In our evaluations. the valuewfvas chosen to
detection performance adopt two criteria: detection rate andb 20 : '

false alarm rate. The detection rate is defined as the per- e 2u.

centage of defect samples that are correctly detected as de-

fect, and the false alarm rate is defined as the percentage 08.2.5 Effect of using different window size

nondefect samples that are incorrectly detected as defect. 4, an accurate location of the defect, the size of the image

window should be small. However, a small window cannot
preserve well the texture property of the defect-free fabric
When the decomposition depth of the wavelet transform is texture, and could lead to poor discrimination between the
increased, the feature vecter{Eq. (4)] includes more fea-  window containing the defect and the window without the
tures that are extracted from the channels at the increasediefect. Obviously, the suitable window size is determined
scales of the wavelet transform. In our evaluation, wavelet py the resolution of the fabric image. Based on the fabric
transform with decomposition depths 1, 2, and 3 were in- images we have captured, DFE training was performed on
vestigated, where 1 scale featuf@8deaturey 2 scales fea- image windows of sizes 616, 32< 32, and 64 64, re-
tures(6 featurey and 3 scales featurd$ features of the  gpectively. The corresponding error rate in the detection of
wavelet transform were used for the defect detection, re- tast samples are summarized in Table 1.

spectively. As shown in Table 1, the largest window, %664,
achieved the smallest error rate. However, the accuracy in
locating the defect along with such a window size is not
The length of the wavelet filteid (z) andG(z) determines satisfactory. On the other hand, the smallest window with
the number of free parameters in designing the waveletssize 16x< 16 yielded the largest error rate, although it cor-
basis. On one hand, a long filter allows more design free- responds to the best accuracy in locating the defects. In this

doms. However, too many free parameters will reduce the work, evaluation results based on thex3@ window are
generalization capacity of the detection method. On the presented.

other hand, a short filter can provide more accurate location
of the defect region and lower computational costs than a o
long filter. Wavelet filters with different lengthdrom 3 to ~ 3-2.6  Initialization of the DFE

20) were evaluated in the defect detection. From our work, Since the implementation of the DFE is based on gradient
filters with lengths between 8 and 16 usually gave better descent optimizatioiquasi-Newton method the perfor-
detection performance than filters with other lengths. In the mance of the defect detection using the DFE training
following evaluations, a filter length of 10 was used. depends on the initialization of the parameter Jet

. ={0,A}. However, it is difficult to predetermine a set of
3.2.4  Smoothness factor of the loss function lattice coefficients® that would yield good detection per-
The smoothness factax in the loss functionEq. (12)] formance after DFE training. Several sets of randomly gen-
controls the loss value from the training samples. Conse- erated® were used for the initialization of the lattice coef-
quently, the selection ot affects the detection perfor- ficients and the best results are presented. After the lattice
mance. Figure 5 illustrates the error rate in the defect de- coefficients were initialized, the MCE training method was
tection, where differentx were used in the DFE training. used to initialize the reference vectoss of the detector.
Here the decomposition depth of the wavelet transform was Corresponding to the initial wavelet, the detector param-
1. When the decomposition depth was 2 or 3, similar rela- eters were initialized for the minimum error rate in the
tions were obtained. As depicted in Fig. 5, the detection detection. The MCE training itself also needed reasonable

3.2.2 Decomposition depth of the wavelet transform

3.2.3 Length of the wavelet filters

Optical Engineering, Vol. 41 No. 12, December 2002 3121
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Fig. 6 DFE training using 1-scale wavelet features: (a) learning curves, (b) frequency responses of the
wavelet filters before DFE training, and (c) after DFE training.

initialization on A, which was implemented by a maximum that the reference vectors estimated using the class-
likelihood method(using class-dependent mean vectors dependent mean vectors cause large decision bias. In step 2,
the MCE method results in 12.7, 17.7, and 7.1% reduction
3.3 Evaluation Results of the error rate in the detection of test samples, where
The training procedure for the defect detection is divided 1-scale, 2-scale, and 3-scale wavelet features are used, re-
into three steps. At each step, the detection performance isspectively. By using the MCE training method, the decision

evaluated. bias caused by the estimation on the detector parameters is
reduced and better detection performance is achieved.
1. Initialize the lattice coefficient® with random val- So far, the training only focuses on the back-end detec-

ues. The reference vectofs of the detector are ob-  tor, and the detection performance is limited by the dis-
tained by using a maximum Ilkellhood_ method, crimination between defect and nondefect, which is deter-
where the reference vector for each class is calculatedmined by the front-end feature extractor. In step 3, it can be

as the class-dependent mean vectors. seen that the error rate in the detection of test samples
2. MCE training on the reference vectoks substantially decreases after the DFE training. Compared to
3. DFE training onT ={©,A}. the MCE training, the defect detection using DFE training

further achieves 25.8, 17.5, and 4.3% reduction on the error

At step 1, after the initialization of the lattice coefficients, rate in the detection of test samples. Such improvements on
the reference vectors\ are initialized as the class- the detection performance are primarily due to the design
dependent mean vectors for the MCE training at step 2. Of the wavelet basis, which substantially increases the dis-
Subsequently, the reference vectdrsare trained by using ~ criminative power between defect and nondefect. More-
the MCE method, which initializeA for the DFE training ~ over, the large improvement on the detection performance
in step 3. on test samples also indicates that the design of the feature

When using 1-scale, 2-scale, and 3-scale wavelet fea-extractor is an efficient approach to increase the generali-
tures, learning curves of the DFE training procedure are zation capacity of the defect detection to unknown samples.
illustrated in Fig. 6a), Fig. 7(a), and Fig. 8a), respectively. Corresponding to the use of 1-scale, 2-scale, and 3-scale
At each step of the training, the error rate in the detection wavelet features, the wavelet filters before and after the
of training samples and test samples are summarized inDFE training are illustrated in Figs.(§ and @c), Figs.
Table 2. In step 1, the poor detection performance indicates7(b) and 7c), and Figs. &) and &c), respectively.

— Training
o=~ Test

TV

1]

Error Rate (%)
o

é..

Magnitude Response in dB

End of MCE training

| g
Beginning of OFE training | — Low-pass filter — Lowepass fiter
5 \ RSP ] & - - - High-pass fiter © - - High-pass fitter

. . 70
0 % 0 7% 100 0 005 01 0% 02 02 03 0% 04 04 05 0 005 01 015 02 025 03 0% 04 045 05
fterations Normalized Frequency Normalized Frequency

(a) (b) (c)

Fig. 7 DFE training using 2-scale wavelet features: (a) learning curves, (b) frequency responses of the
wavelet filters before DFE training, and (c) after DFE training.
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Fig. 8 DFE training using 3-scale wavelet features: (a) learning curves, (b) frequency responses of the
wavelet filters before DFE training, and (c) after DFE training.
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Detection rate and false alarm rate are used for the de-four types of defects. When using 3-scale wavelet features,
tailed evaluation on the performance of the defect detectionthe discrimination between defect and nondefect is in-
method. Corresponding to the minimum error rete6%) creased and better results are obtained. Compared to the
achieved by using adaptive wavelets with 3-scale wavelet Haar wavelet, the adaptive wavelet always performs better
features, the detection rate and false alarm rate are 97.5 anavhen the same scales of the wavelet features are used. Sat-

0.625%, respectively. isfactory detection results are achieved when using adap-
tive wavelet and 3-scale wavelet features. The results also

3.4 Comparison between Adaptive and Standard show that adaptive wavelets using 2-scale wavelet features
Wavelets perform slightly better than Haar wavelets using 3-scale

For comparative study, several commonly used wavelet wavelet features. Since featurg extraction from more scales
bases have been evaluated in defect detection. These wave2f the wavelet transform requires more computational cost,
let bases are Haar wavelets, Daubechies wavelets withtheé use of the adaptive wavelet enables a faster detection
length 12, and Battle-Lemarie wavelets of order 1. than the standard wavelets.
As shown in Table 3, the detection performance of the .. .
simple Haar wavelet always outperfofms the other two 3> Additional Evaluations on Unknown Types of
types of standard wavelets, and the minimum error rate in Defects
the detection of test samples is 5.7%. It is worth noting that The detection performance of the proposed method has also
such a detection performance is only obtained by using been evaluated on unknown types of defects. The unknown
3-scale wavelet features, while adaptive wavelets obtainstypes of defects refer to those that have not been used in the
less error rate$4.2% by using 2-scale wavelet features.  DFE training and are unknown to the DFE-trained feature
Figures 4b) and 4c) illustrate the detection results on extractor and detector. Three types of defects, Mis}&ig
one test image of each type of defects using 2-scale and9(al)], Broken[Fig. 9a2] and StainfFig. Aa3)], are used
3-scale wavelet features, respectively, where the waveletfor the evaluations. A total of 15 fabric images containing
basis is a Haar wavelet. Compared to the Haar wavelet, thethe three types of defects were captured. From these 15
detection results on the same images using an adaptivefabric images, 180 defect samples and 780 nondefect
wavelet are illustrated in Figs.(d) and 4e). From these samples were collected. Performance of the defect detec-
results, it can be seen that the Haar wavelet yields poortion on these unknown types of test samples are summa-
detection performance when using 2-scale wavelet featuresytized in Table 4. Examples of the defect detection of each
especially on the detection of defect Netmultiples, where type of defect are shown in Fig. 9.
all the nondefect samples are incorrectly detected as defect. In contrast to the detection performance on the five
Note here that the fabric containing the defect Netmultiples known types of defects, the error rate in the detection of
is slightly different from the fabric containing the other unknown types of defects increase 3, 4.6, and 2.9%, respec-

Table 2 Error rate of the defect detection using DFE training with Table 3 Error rate of the defect detection using MCE training with
adaptive wavelets. standard wavelets.
Error rate (%) Error rate (%)
DFE 1-scale features 2-scale features 3-scale features 1-scale features 2-scale features 3-scale features
training Standard
procedure  Train Test Train Test Train Test wavelet bases Train Test  Train Test  Train Test
Step 1 46.7 49 36.3 39.4 12.1 13 Haar 23.8 334 16.3 24.5 0.5 5.7
Step 2 30.9 36.3 18 21.7 1.7 5.9 Daubechies 26.3 33.9 19.6 26.6 0.5 8.7
Step 3 6.7 10.5 0 4.2 0 1.6 Battle-Lemarie 25 34.6 21.7 27 0.9 7.8
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Fig. 9 (al)—(a3) Fabric images containing defects Misyarn, Broken, and Stain. (b1)—(b3) Detection
results using Haar wavelets and 3-scale wavelet features. (c1)—(c3) Detection results using adaptive
wavelets and 2-scale wavelet features. (d1)—(d3) Detection results using adaptive wavelets and
3-scale wavelet features.

tively. On the detection of small defects like Misyarn, adap- detection performance. As a major contribution of this
tive wavelets with 3-scale wavelet features perform simi- work, we show how to design the wavelet basis by adapting
larly to adaptive wavelets with 2-scale wavelet features and it to the detection of fabric defects. By using the DFE train-
Haar wavelets with 3-scale wavelet features, but much bet-ing method, the design of the adaptive wavelet is incorpo-
ter on the detection of large defects Broken and Stain. Onrated with the design of the detector parameters to mini-
average, adaptive wavelets with 2-scale wavelet featuresmize the error rate in the defect detection. In this way,
perform similarly to Haar wavelets with 3-scale wavelet appropriate interactions between the feature extractor and
features. These results further demonstrate the advantagethe detector have been achieved. Compared to the standard
of using the adaptive wavelet. Corresponding to the mini- wavelet bases, the adaptive wavelet enables the defect de-
mum error raté4.5%) achieved by using adaptive wavelets tection to achieve similar performance with fewer scales of
with 3-scale wavelet features, the detection rate and falsewavelet features, which leads to substantial computational
alarm rate are 93.3 and 3.97%, respectively. savings for the detection.

4 Conclusions 5 Appendix A

A new method that incorporates the design of an adaptive The gradients of the empirical average cbswith respect
wavelet-based feature extractor with the design of an Eu- g ha parameter sat={®,A} are derived as follows:
clidean distance-based detector is proposed for fabric de- ' '

fect detection. In the wavelet-based fabric defect detection, L 1N g L 1N g
the selection of the wavelet basis is closely related tothe — _ - 1 g5 —-_% 1 (14)
Table 4 Error rate of the defect detection on unknown test samples. Given that the loss valuk, is caused by training sample
F,eC,;, the gradient ofl,, with respect to the reference
Error rate (%) vectors are derived based on E@S), (11), and(12),
Haar wavelet ~ Adaptive wavelet Adaptive wavelet
Defect with 3-scale with 2-scale with 3-scale iy 2ag;exp(—ady)(m—F,) 15
type wavelet features wavelet features  wavelet features am, - gi2[1+eX[i _ adn)]z ’ (15
Misyarn 6.8 6.5 6.5 d
Broken 10.3 8.4 3.4 an
AStaln 8.7 11.2 3.4 (?In B 2a exq_ adn)(Fn_ mJ)
verage 8.7 8.8 45 —= -, (16)
am; gi[1+exp —ad,)]
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wherei #j.
The gradient of , with respect to the lattice coefficients
is derived as follows:

al, _ 2ag; exp —adp)
90 g’[1+exp—ad,)]?

P IF P
x 2 IR = miPlg = [FP - mPlg} 5]

17

where P denotes the dimension of the feature vedqr,
and Fﬁ]p) denotes the’th component of the feature vector
Fn. According to Eq.(4), the feature compone{" cor-
responds to one componemf. From Eq.(3), we have

ow? IWE(x,y) ]?
= Mean JZV\/‘,’(X,WJ , (18
96k (x,y) e windo 96k
where
IWI(xX, Iy
Ly): lﬁr * |(X,y)_ (19)

90y 90,

In Eq. (19), (x,y) are the spatial indices anddenotes the

2-D convolution.zﬁﬁj is the cascade of the filter sequences in
the wavelet transform corresponding to the output of

V\/?(x,y). By using the chain role for differentiation, the
calculation of awflaek depends on the calculation of

dH(z)/ 96, anddG(z)/ 36, , which can be derived based on
the lattice structure as given in E@)

IH(2)190| A N
3G (2)96,)~ RmA(2Rn-1A(2M(2)
—sing, cosf ||1 O
i ~1[N(2)
—Ccosf, —singy||0 z

) —sinf, cosé,
J’_
96m! —cosf, —sindy
1 0
Xlo 21 Rmn-1A(2)W(2), (20)

wherem+Kk is even, or

IH(2)136| A N
0G(2)196,|~ RmA (ZDRm—1A(2M(2)
[ —sing, cosf |[1 O
X
| —cosfy —singJ|0 z7* N(2)

+RmA(2)360m_1/ 96k
[ —sinfn_, COSH,_ 1
| —C0Sfn_1 —Sinfy_,

1 0
X_O ,1 W(z), (21

wherem-+k is odd.

HereN(z) andM(z) are 2<1 and 2<2 matrices of poly-
nomials whose coefficients are functions {a}o<j<x-1
and{ 0} 1<j=m-2, respectivelyW(z) are 2<1 matrices
of polynomials whose coefficients are functions of

{ej}OSjém—Z'
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