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Abstract—Fuzzy logic system promises an efficient way for cable to a real environment, while the latter is time-consuming
obstacle avoidance. However, it is difficult to maintain the to explore an unknown environment. On the other hand, poten-

correctness, consistency, and completeness of a fuzzy rule basgiy) fie|d method [5], [6] seems more efficient for fast obstacle
constructed and tuned by a human expert. Reinforcement

learning method is capable of learning the fuzzy rules automat- avol'dance as it does not nged t_o know the details of the ne'gh'
ically. However, it incurs heavy learning phase and may result boring obstacles. However, its disadvantages, such as local min-
in an insufficiently learned rule base due to the curse of dimen- imum and unstable motion [7], may limit its practicality.

sionality. In this paper, we propose a neural fuzzy system with  Since Brooks [8] proposed the behavior control architecture,

mixed coarse learning and fine learning phases. In the first phase, . _
supervised learning method is used to determine the membership a similar approach has been adopted [9}-[11] to solve the

functions for the input and output variables simultaneously. naV|_g.at|on pro*?'em In-an u_nknown envwonment. Unlike the
After sufficient training, fine learning is applied which employs ~traditional navigation architecture [12] which decomposes
reinforcement learning algorithm to fine-tune the membership the navigation task using a sense-model-plan-act (SMPA)
functions for the output variables. For sufficient learning, a new  framework and connects each module serially, the behavior
learning method using modified Sutton and Barto’s model iS ool method decomposes the navigation system into special
proposed to strengthen the exploration. Through this two-step . . .

tuning approach, the mobile robot is able to perform collision-free taSk'_SpeC'f'C beha_wor modules, e.g., obstacle avoidance, goal
navigation. To deal with the difficulty in acquiring large amount ~ S€€king, etc., which are connected directly to sensors and
of training data with high consistency for the supervised learning, actuators and operate in parallel. Therefore, this architecture
we develop a virtual environment (VE) simulator, which is able can act in real-time and has good robustness. As the behavior

to provide desktop virtual environment (DVE) and immersive  .qntyo| architecture tackles the navigation problem in an on-line
virtual environment (IVE) visualization. Through operating a

mobile robot in the virtual environment (DVE/IVE) by a skilled man_ner a.nd I’eq-UIre.S ”F’ environment quel, it is efficient in
human operator, the training data are readily obtained and used dealing with navigation in an unknown environment.

to train the neural fuzzy system. In the behavior control architecture, behavior modules are
Index Terms—Fuzzy system, obstacle avoidance, reinforcement usually constructed as reactive systems [9]-{11], which map the
learning, supervised learning, virtual environment (VE). perceived situations to the correct actions. Fuzzy logic method

[13]-[15] is an efficient way of representing this mapping re-
lationship as it is able to represent human expert’'s knowledge
and requires no mathematical model. Furthermore, it is able to
HE ultimate goal of mobile robotics research is to endodescribe the input state continuously. For the construction of the
the robots with high autonomous ability, of which navibehavior modules, obstacle avoidance behavior is the most dif-
gation in an unknown environment is achieved by using on-lifigult as it incurs large number of input spaces. It is not easy to
sensory information. A significant amount of research effort hakefine the appropriate fuzzy sets for each input variable and in-
been devoted to this area in the past decades. Among the pesmation may be incomplete when human experts express their
posed methods in the literature, geometry algorithm assun@perience by linguistic rules. In other words, it is intractable to
that the local obstacles are fully recognized via visual senspgintain the correctness, consistency, and completeness of the
[1], [2] or can be learned through on-line acquisition via diguzzy rule base compiled and tuned by a human expert for the
tance sensor [3], [4]. The former assumption may not be appbbstacle avoidance behavior. Therefore, a fuzzy system, which
is able to evolve and automatically improve its performance, is
highly desired.
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search space becomes too large and the performance evalug B B e
surface becomes too complex to allow efficient learning. Ther
fore, it is not easy to apply the reinforcement structural and pi
rameter learning methods [25], [26] to learn obstacle avoidan
since it is difficult to tell that an incorrect response is due to . [ Reinforcement Leaming [4———{ Motile Robot
mismatch antecedent part or due to an incorrect consequent part

[19]. Furthermore, the phenomenon of premature convergeriie 1. Diagram of the neural fuzzy system with mixed learning algorithm.
[18], [34] (e.g., trap situation) and ill behavior (e.g., circumnavi-
gate around an obstacle closely and slowly) further undermines
the practicality of these methods. On the contrary, supervised
learning method has the advantages of fast convergence and is
suitable for structure and parameter learning. However, itis very
difficult to obtain sufficient training data, which contain no con-
flict input/output pairs. Insufficient training data may result in

an incomplete fuzzy rule base, while the conflicts among the
training data may cause incorrect fuzzy rules.

In summary, it is intractable to learn obstacle avoidance
behavior by using either reinforcement learning or supervised
learning only. However, it is possible to employ superviselg 5
learning to reduce the search space of reinforcement Iearmn%j '
by pretuning the input and output fuzzy sets first and then apply
reinforcement learning to fine-tune the incorrect rules causBfPPosed learning algorithm. Finally, conclusions are given in
by inconsistent training data at supervised learning phase. Tfetion VII.
benefits of the above approach are as follows.

Mobile robot and sensor arrangement.

: . L [I. NEURAL FuzzYy SYSTEM
1) Search domain of the reinforcement learning is greatly

reduced by pretuning the rule base. Therefore, the reff\- General Overview

forcement learning may be accelerated. The proposed neural fuzzy system (see Fig. 1) employs a
2) As the reinforcement learning starts from a pretuned rufeixed learning algorithm—supervised learning and reinforce-

base, insufficient learning or ill behavior may be poterment learning. In the first learning phase, supervised learning

tially overcome. method (depicted as gray) is applied. For each input state vector
3) Conflicts between rules and incorrect rules induced l the system infers an outpyt The difference between the

supervised learning may be removed by fine-tuning of tieystem outpuy and the desired outpuy; is used to train the

reinforcement learning. neural fuzzy system such that the parameters of the input and

. . output fuzzy sets are determined. In the second learning phase,
Motivated by these observations, we propose a neural fuzgy narameters of the input fuzzy sets are frozen, and reinforce-

system with a mixed learning algorithm. It consists of a coarggant learning method is employed to further tune the parame-
learning and a fine learning phase. In the coarse phase, SUR§fs of the output fuzzy sets. For each input statéhe system
vised learning method is used to determine the input and outpfers an outputy, which is applied to the mobile robot after
fuzzy sets simultaneously. After sufficient training, the membejgding a stochastic perturbation; and the mobile robot moves to
ship functions of the input variables are frozen and fine learnignew state. By evaluating the new state, an internal reinforce-
phase employing reinforcement learning algorithm is applied ifent signal is generated and is used to fine-tune fuzzy system.
further tune the output fuzzy sets. In order to maintain a relar both learning phases, the system performance is improved
tively high consistency for the training data, we develop a virtugkadually with the learning proceeds.

environment (VE) simulator, which is able to provide desktop

virtual environment (DVE) and immersive virtual environmenB. Mobile Robot Model and Coordinate Systems

(IVE) visualization. Through operating a mobile robot in the g gepictedin Fig. 2, we used a cylindrical mobile robot model
DVE/IVE by a skilled human operator, the training data argith a radius of 20 cm. The robotis omnidirectional and there are
gradually obtained and used to train the neural fuzzy systemy4 yitrasonic sensors evenly distributed in a ring. Each sesisor,
This paper is OrganiZEd as follows. Section Il introduces th‘@l’l — 17 e, 24, coversan angu|arview0f 2End givesthe dis-
basic concept and framework of the neural fuzzy system and gignce to the obstaclgin its field of view. To reduce the input di-
fines the mobile robot model and coordinate systems. Sectioniension, the sensors in the front of the robot are divided into five
presents the mixed learning algorithm where the method to aensor groups (denoted by; fori = 1,...,5), each of which
celerate the supervised learning and the approach to strengitemsists of three neighboring sensors. With this sensor arrange-
the exploration are discussed. Section IV describes a VE sinment, the distancé; measured by thi&h sensor group from the
lator used for collecting the training data. Section V depicts tloenter of the mobile robot to the obstacle is expressed as
simulation results of the proposed learning algorithm and some
comparisons with related methods; and Section VI presents the= [ + min(l; | j = 3i — 2,3i — 1,3i);  fori=1,....5.
performance analysis of the fuzzy system constructed by the Q)
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Yt (di — w2:)/(T4; — w2i), T2 < di < 7wy
(d:) = T — (- P ). . < s
3 . d;: Sensor reading I'LNR1< Z) (1;61 dz)/('x62 x42)/ Tai < d_z S Tei
v Velocity vector 07 otherwise
¢ @ x xay: Robot coordinate (2b)
s 4 Dynamic sensor XWY: World coordinate
s group Bafegy): Goal vestor in xay (di — x53) /(27 — x55), x5 < di <7
s v - d,g sensor reading along p, IU’FRz (dz) = 17 dz > T
y ol ObEcle e 0, otherwise.
p,(x..5.) ngle etweenpgan ¥
(X,.7) frems yz Angle between py and X (2C)
P(X,.7,) goal . . .
The fuzzy rule base consists of 243 rules and it requires 243
w WX

fuzzy setsy; forj =1,...,243, torepreseny; and 243 fuzzy
sets,Ys; for j = 1,...,243, to represen,. The fuzzy sets of
the output variableg,; andy, take the triangular membership
functions, as shown in Fig. 4(b) and (c), respectively, while their
center positiond);; andb,y; for j = 1,. .., 243, are determined
by the proposed learning algorithm. ... is the upper bound
for y1; while ¥ min @andys max are the lower and upper bound
for yo, respectively. The fuzzy rule is denoted by

Rulej: IF dy is Dj; AND --- AND ds is D5
THENyl iSYlj,yQ iSYQj; fOfJ:1243

Fig. 3. Diagram of the coordinate systems and control variables.

Fig. 4. Membership functions for the input and output variables.

The remaining sensors are used to compose a dynamic seMd¥re ;i is the fuzzy set fou; in the jth rule, which takes
group to detect the obstacle distance along the goal direction #3¢ linguistic value o’ N;, N R;, or F'R;; andYy; and Yy,
behavior fusion [27]. are the fuzzy sets fay; andy,, respectively, in thgth rule. If

We use two coordinate systems (see Fig. 3); the world cod@rsen’s product inference and height defuzzification method is
dinate denoted b\ WY and the mobile robot coordinate giverused, the control output of the neural fuzzy system for an input
by zoy Whereo is the center of the robot ancaxis goes through d' = (d'1,...,d’s) is given by
the center of sensag (the robot will move straight ahead when 22'43 1 (@b
the wheels are aligned withaxis). The control variables of the _ 2=t i\ mj

. . . . m 243
robot are the linear velocity and the change in the heading ijl i (d')

angleAd (referred as steering angle hereafter). In term of b@ir;ereuj(d’) is the fired strength of thgth rule and is calculated

form=1,2 3

havior control architecture, the purpose of the obstacle avoj
ance behavior is to determine an actighand A6, (denoted
by y1 andys,, respectively, for simplicity) for each input state 1;(d') = pp,, (d1)p,. (dy)pp,, (d3)p,,(dy)pp,, (ds).
d = (dy,ds, ..., ds) without considering whether it will cause (4)
a deviation from the goal.
[ll. AUTOMATIC RULE GENERATION BY THE MIXED

C. Construction of the Fuzzy System LEARNING ALGORITHM

Considering the omnidirectional kinematic nature and 'tr)@. Supervised Learning
symmetry of the robot and the sensor arrangement, each input i
variables is assigned the same number of fuzzy sets. We us¥/e use the error between the actual outpuand the desired
three fuzzy sets in this research to maintain appropriate numB&§Puty2q to derive the learning algorithm. As the input and
of rules. The membership functions of the input and outp@titput are in different metrics, they must be normalizegsto
variables are illustrated in Fig. 4. In Fig. 4(a), the crisp valu@nd 24, respectively. The learning process is to minimize the

of each input variablel; is fuzzified and expressed by thefollowing objective function for the inpul’ = (dy, ..., d5)
fuzzy setsV N;, NR;, andF' R;, referring to very near, near, 1 o
and far, respectivelyd; is bounded by the minimum value T =52~ %2a)" )

dmin = Ry, + lmin @and the maximum valué,,..x = R, + lmax, . ) _
where Ry, Iy and l., are the radius of the robot, theUsmg the steepest descent learning algorithm [28], we can de-

minimum and the maximum detectable distance, respectiverlg\/.e delta rule (DR) as follows:

The parameters;,; for »r = 1,...,7 and¢ = 1,...,5, L PPN <0 v

are bounded byrin and 2max, Where zoin = dumin and .Trz(k + 1) = l’m(k> Pnaxri (k) (6a)

Amin < Tmax < dpax. The fuzzy setd/’ N;, NR;, and F'R; oJ

are described by baj(k +1) = baj (k) — Png(/ﬁ) (6b)
J

(w3i — di) /(23 — 213), 21 < di < a3
0<d; <my;
0, otherwise

wheren,0 < n < 1 is the learning ratek is the number of
iterations; anth = (7max —Tmin)?/ (Ymax —Ymin)? IS @ cOnstant
induced by the denormalizatiof.7/0z,;(k) andd.J/Obs; (k)
(2a) can be derived by chain rule. We omit it here for simplicity. To

—_

pyn, (d;) =



20 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 33, NO. 1, FEBRUARY 2003
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Fig.5. Membership functions & E, CCE., AnandAa: ZE = zero;PS =
positive smallPB = positive big;NS = negative small; an?lB = negative
big.

ASE

TABLE | | Defuzzification
Fuzzy RULES FOR THEADAPTATION OF 7 AND «

Fig. 6. Neural fuzzy system employing reinforcement learning.

e £ NB NS ZE PS PB
NB NS, NS | NS, NS | NS, ZE | NS, ZE | NS, ZE
NS NS, NS | ZE, ZE | PS, ZE | ZE, ZE | NS, ZE learning is applied to further tune the parametgfsandb,;. In
if; ?Z\g Zg gg JZ’; f';f;’- fZ’g jzjg fZ’; iE- f’g this paper, we adopt Sutton and Barto’s model [17], [18], and
5 NS 25 | NS zE | Ns. zE [Ns. NS | NS, NS Egdgy the network of the learning algorithm, as depicted in
ig. 6.

An, Aa

The mobile robot begins the learning with an initial configu-
ration at time step = 0, where it acquires the environmental
increase the learning speed and avoid the problem of instabilipformation d; and infers the recommended actigg, (0).

a momentum term is applied to (6a) and (6b). This yields tiBased on the performance evaluation of the system (reinforce-
following general delta rule (GDR) ment signal) and},,, (0), the stochastic perturbation generator

o (SPG) (described in the next section) generates an action

Tri(k+ 1) = zri(k) + @Az (k- 1) — P (k) (7a) 4,.(0), which is applied to the robot. This moves the robot

9. to a new configuration at time stégp= 1, and so on, until a
bj(k +1) = bj(k) + albj(k — 1) = pn= = (k). (7b)  collision occurs at the time step = k. The whole process,
J until a collision occurred, is calledtaal. For instance, if a trial
) ends att = &k where a collision occurs, then a reinforcement
B. Parameter Adaptation by Fuzzy Control signalr,,, representing the failure, is fed back to the learning

Let £ = y, — v24; the change of is denoted ag' £, and network, and the rules which were used at the previous time
the change o' E is denoted ag’CE. To increase the conver-stepsk, k — 1,k — 2, ..., would be changed in order to improve
gence rate and prevent oscillations, we may use the followitlte robot’s performance. In Fig. 6, this task is accomplished

heuristics to adapt anda from cycle to cycle. by an adaptive neuron-like element, which consists of an
1) If CE is small with no sign changes in several consecuti@ssociative search element (ASE) and an associative critic
iterations, should be increased [29]. element (ACE). After the rules are updated, a new trial begins

2) If CE changes sign in several consecutive iterations,at? = k + 1. The process is iterated and terminated until no
should be decreased, regardless of the valGaoE [29].  More collision occurs.

3) IF bothCE and CCE are small and have not changed Suppose that the current configuration of the robdt(is) =
sign for several consecutive iterations, bofhand o (Xo(t), Yo(t).60(t))", at which the sensor readingsare en-
should be increased [30]. coded intog;(t) by (4). In order to obtain the associativity of

A fuzzy system with two-inputq £ andC'C E) and two-output Iearn_ing the rules, the traqe;j(t) of the firedjth rule is used
(A andAa) is adopted to implement the parameter adaptatiod IS calculated by

The membership functions for the input variables are depicted in

Fig. 5(a), where is determined by the convergence criteria; and fij (t+ 1) = A () 4 (1 = A)p(2) (8)
the membership functions for the output variables are depicted

in Fig. 5(b). The fuzzy rules for adapting the valueroinda  WhereA,0 < A < 1is the trace decay rate. Each ACE re-

are given in Table | with the fuzzy rules farin the first column  Ceives an external reinforcement signal(¢) as a performance
followed by the fuzzy rules for. feedback, and generates an internal reinforcement sigr(a),

Finally, the crisp value ofAn and A« is determined by Which are fed into the ASE to update its weights. The external

the center-of-area defuzzification method and applied to tFinforcement signal is determined by (9), shown at the bottom
learning parameters. Then, the next iteration is made using (Phjhe next page, wheraT is the time interval between two

and (7b). Itis called thgeneral delta rule with fuzzy parameter€@rning steps anifi.... is the upper bound of the robot's ve-
adaptation (GDRFPA). locity. In order to determine the internal reinforcement signal

7m(t), two ACEs are used to predict the discounted sum
C. Reinforcement Learning

1) Modified Sutton and Barto’'s ModelAfter the supervised 2m(t) = Z Ayt =t (4 1) (10)
learning phase, the parametefsare frozen, and reinforcement vt
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wherev, 0 < v < 1, is the discount rate. If the prediction valugophenomenon is calletthe conflict between exploration and ex-

of z,»(t), denoted by, (t), are accurate, from (10) we have ploitation [31]. The existing method using Sutton and Barto’s
model [17]-[21] may result in insufficiently learned rule base

Pt = 1) = 1o (t) + Ypm (). (1) a5 they used pure exploitation. To overcome this drawback and

In practice, the ACEs learn to make the predictions. Thus, theaintain the efficiency of learning, a tradeoff between explo-

mismatch or time difference error between the two sides of (1Btion and exploitation should be achieved.

is defined as the internal reinforcement signal and expressed aghis objective is achieved by using the SPG. The SPG gener-
ates an action’,, (¢), which is a Gaussian random variable with

P (t) = Tm () + ¥Pm(t) — pm(t = 1). (12)  meany,,(t) and standard deviation,,(¢). v/., (1) is the actual
The predictiorp,, (¢) isimplemented as a weighted sumgft) ~ action applied to the robot, while,, (¢) is a nonnegative func-
and given by tion given by
243 _ S am(e ¥ ® — ), eVt 5 p
pm(t) =G vaj(t)u]-(t) (13) om(t) = {0, otherwise (18)
=1 where
wherev,,;, form = 1,2 andj = 1,...,243, are the weights ¢ search domain scaling factor and is set to 1.0;
of the ACEs andi(z) = 2/(1 + exp(§z)) — 1 is a bi-stable  a., constant;
function. In order to give correct prediction value, the weights 0 < 7 < 1 threshold value determining the strength of ex-
of each ACE are learned through the trace of the firediy(e) ploration.
and its output',,, (¢). They are updated by If 7 is small,s,,(t) will be large which may slow down the

B 5 B 14 learning, but lead to an extensive exploration. With the specific
U (4 1) = 0mji() + Fitm (82 (1) 14 vae ofa,, andr, the perturbation is large whet, () is low

wheres is a positive constant determining the rate of change fapd small when,, (¢) is high. Asi,,, () is a performance evalua-

vm;. Similarly, the weights of the ASEy,,,; for m = 1,2 and tion of the previous action, the result is that a large random error

j =1,...,243, are updated by away from the recommended action results when the previous
A action performed is bad, but the SPG remains consistent with the
W (t 1) = wm;j(t) + afm(t)em; (1) (15) fuzzy rules when the previous action is a good one. The learning

wherea,0 < a < 1 is the learning rate and,,;(t) is the SyStém converges at specific performance for each sgf ahd
eligibility trace of thejth rule and is updated by 7 value. As can be seen from (18), perturbation is allowed when

, the learning converges. An obstacle avoidance behavior learned
emj(t +1) = 0en;(t) + (1 = )y (um;i(t)  (16)  using the SPG is able to keep a large clearance from obstacles,

wheres, 0 < 6 < 1is the decay rate of the eligibility; and, (¢) as a trajectory closer to an obstacle is more likely to get colli-
is the actual action applied to the robot which is a GaussigiPh hence not stable. Compared with the existing methods [25],
random variable generated by the SPG. The eligibility trace d&8l: [32], the exploration strength of the SPG is adjustable by
scribes that certain rules have been used and what control ¥ed We use internal reinforcement in SPG instead of prediction
tions have been applied. The center positions of the fuzzy skl [26].

for the output variables at each time step are determined by ~ With the known control action of the current time step, the
. robot’s configuration is updated by
R p— O

/
"k max(Jwm; (£)]) + |wm; ()] 0() +u5(t) ,
- S(t+1) = | Xo(t) + ¥ (t)AT cos(8(t) + y5(t)) | . (19)
forj=1,...,243 (17) ] ) ;
Yo(t) + y1 () AT sin(6(2) + y5(t))
whereb,, is the initial center position of the fuzzy sefs,; is a

Eventually, if the rules are sufficiently learned in a specific envi-

positive constant that determines the rang&,of; and the pos- . d ,
itive constant is used to guarantee the fuzzy sets for the outp[ﬂnment' the weights of t_he ASEs W|Il_conver_ge to a set of fixed
alues. When the learning process is terminated, the learned

variable to be within their universe of discourse. The recony . )
mended action,.(t) can be calculated by (3) and the actual aCs_et ofb,,; is used as the rule base for the obstacle avoidance
tiony! (t) is determined by the SPG basedwn(t) andr,, (). module.
2) Stochastic Perturbation GeneratoF-or learning obstacle
avoidance, there is a conflict between 1) the desire to use the rule
base already learned; and 2) the desire to further explore the enFhe simulation platform used to acquire training data is based

vironment so as to make improvement on the rule base. This the EXPECTATIONS simulator [33], which is able to

IV. TRAINING PATTERN ACQUISITION

() = {—1./ if min(d;|i=1,2,...,5) < dmin + Vinax X AT ©)

0.05, otherwise
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=l Expectations-AMV Simulator Tapview [Topview.iv]

gl

Fig. 7. Multiple X-windows for supervised learning.

TABLE 1l
INITIAL SIMULATION PARAMETERS FORSUPERVISEDLEARNING (UNIT: cm)

x, =120
X, =220

R, =20
x,, =120

x, =40
xg =200

x,, =40
x;, =200

x, =120
X = 30

provide DVE or IVE visualization. The learning is carried out
in a floor plan, as depicted in Fig. 7(a) where R1 represents the
mobile robot. Fig. 7(b) depicts the DVE as seen hy the robot’s

top mounted camera. The steering and velocity are controllable
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n

through the human-machine interface. When the robot is dpg. 8. Learning curves of the three AFI(§ = 0.2, = 0.2).
erated in the VE by a human operator, the five sensor reading

and the steering angle of the robot at each sampling step are
PARAMETERS x,.; AFTER ONLINE TRAINING FOR 8000th TRAINING DATA

composed into a data pait, y24) and further compiled into

TABLE Il

a training set accumulatively. As human’s driving behavior is S 2 3 4 3 5 7
driven by vision, the three-dimensional visualization of the VE 1 | 446|500 | 305 | 945 | 1004 | 1725 | 188.8
may be helpful in transferring human expert’s driving skill to 2 | 564 | 587 | 1058 | 112.3 | 117.1 | 183.6 | 194.2
the mobile robot. 3 |462 (503 869 | 99.6 | 1064 | 1305 | i83.2
4 | 431 469 884 | 937 | 10031832 190.0
5 | 450493 922 | 985 | 102.7 | 182.9 | 192.7
V. SIMULATION OF RULES LEARNING -

A. Supervised Learning Phase

For the supervised learning phase, we assume that the effégrations with 75.11 ms) followed by the GDR algorithm (27
tive range of the ultrasonic sensors is 10 cm-210 cm and tkgyations with 154.09 ms) and the DR algorithm (53 iterations
velocity of mobile robot is 15 cm/s. Considering the overheatlith 299.95 ms). Simulations also show that the GDRFPA al-
of the learning algorithm and graphic rendering, a time stg®rithm is not sensitive to initial value gfanda. We adopt the
of 0.3 s was used. For a maximum angular velocity of°1€§0 GDRFPA method to train the neural fuzzy system in this paper.
the minimum and maximum steering in a time step -a89° The online training scheme [34] was employed for this
and 30, respectively. This translates #6..;» = —0.5236 and learning phase. The robot was trained in laboratory L1, L2,
Y2 max = 0.5236. The initial value obs; is set such thatit covers and L3. At each configuration, a training data pgif", y5;)
the rang€(ys min, Y2 max) €venly. The initial values of the otherfor m = 1,..., N, is composed and the fuzzy system is
parameters used for the simulation are tabulated in Table II. T#i@ined for 20 iterations or until the convergence criterion
convergence criteria i$ < 1.389 x 10~¢, which is equivalent J < 1.389 x 1076 is met. At theN'th training data(d™, y2)),
to the system’s output error of 0.1In relation with this, the the system produces,,, wherem L,...,N, for each
parameter depicted in Fig. 5 is chosen to be 0.005, which igrevious data. The average validg = (3 _, J..)/N over
equivalent to about 0°3 the historical data is defined as the ensemble square error

To evaluate the performance of the DR algorithm, the GDE&SE). When the learning terminated at the 8000th training
algorithm and the GDRFPA algorithm, simulation runs were inflata, the ESE is 0.002 335, i.e., a system output error 6f 4.1
plemented under different value gfand« for an input-output The parameters,; after learning are tabulated in Table I1l.
pair (d*, ys,), whered* = (43.7,43.7,156.2,156.2, 76.2) and i i
yl, = —0.2094. Fig. 8 show the learning curves of the thre®- Reinforcement Learning Phase
learning algorithms withy = 0.2 anda = 0.2. It can be ob- 1) Rule Learning by the Proposed Methoth this phase, a
served that the GDRFPA has the fastest convergence rate ¢@sputer-generated environment (see Fig. 9) is used and the



YE et al: FUZZY CONTROLLER WITH SUPERVISED LEARNING ASSISTED REINFORCEMENT 23

Fig. 9. Simulation of reinforcement learning in a complex environment.

TABLE IV
PARAMETERS USED FORREINFORCEMENTLEARNING

a,=3em/s | a,=x/50 | A=05 | b=15cm/s | b,=B, | f=08| a=08
7=025 6=085 |y=095| f =15em/s | f,=n/5| k=02 | £=15

parameters used for the learning are shown in Table IV, whexeer, to save time, we moved the robot out of it and specified
By; was learned at the supervised learning phase. In this simmnew configuration manually after it had circulated 20 times.
ulation, a small value of is used to ensure sufficient explo-The learning continued until it was terminated at up to 100 000
ration. At the starty,,,;(¢) are set to some small nonzero valuedearning steps.
while w.,;(t), 7j(t), pm(t — 1),, ande,,;(t) are set to zero.  Due to the stochastic perturbation, a trajectory nearer to the
The mobile robot begins at an arbitrary initial configuratiombstacle is more likely to get a collision. Therefore, the robot
with nonzero initial control action. The environment exploratiotends to move with a larger clearance from the obstacles. When
method [17], [18] is employed for training. At each collision, théhe robot entered loop 2, it first circumnavigated in the outer
robot is backtracked four steps and its heading direction is teajectory which is much closer t@-, then it retreated and
versed. Details of the training method are referred to in [18]. Asoved away fronO; gradually and finally, orbited in the inner
the learning proceeds; ; andb,; are tuned gradually from the trajectory which roughly kept a same clearance with bOth
initial values to the correct values by (17), which may remowendO3. This phenomenon is caused by the cooperation of the
the incorrect rules induced in the supervised learning phase.credit/penalty assignment and perturbation generation; specif-
As shown in Fig. 9(a), the learning began with a start configeally, a move closer to an obstacle is more likely to lead to-
uration of (460 cm, 260 cm, 99”. The robot moved forward ward a collision hence it is punished and assigned a smaller re-
and encountered the obstaclke on its right. As the rule base inforcement which may move robot away from the obstacle and
had been learned by supervised learning, the robot avéided move the system to a better state, i.e., a larger reinforcement.
successfully and moved toward the obsta@lgon its left. It According to (18), this results in a smaller standard deviation
avoidedO, once again (this agrees with the fact that the prespdor the stochastic action, i.e., unlikely to get collision. A loop
ified rules can accelerate the learning [17]) and headed on theght be induced while the robot is dealing with multiple obsta-
obstacleD3; where a collision occurred at. This demonstrates cles as it tends to keep a clearance from all the obstacles. When
that the rules are patrtially correct. The next trial began wiihgoes into a loop, the robot has two possibilities to get rid of
the robot reversing its heading and moving towérgl After it. One is that a large perturbation causes a collision. The other
avoiding O, it traversed the opening space betwé&nand one is that the accumulative deviation from the previous action
0,4, where it first avoided), on its right followed byO, onits causes a significant change in the fired rule strengths or causes
left, until a collision occurred aB. Then a new trial began andnew rules fired. In this sense, a small value ofiay increase the
the robot went into a loop (loop 1) and was circulating. Insteadhance to get out of a loop by the cost of longer learning time.
of repeating the same trajectory as the learning method [1If],principle, the robot is always able to get out of the trapped
[18], [34] employing Sutton and Barto’s model, the robot tookituation provided the learning is not converged and the time is
a different path each time circumnavigating around obstagle long enough.
because the perturbation generated by the SPG causes a devig} Comparison With the Related MethodBirstly, let us
tion from the previous trajectory. The robot escaped from tle®nsider the existing methods [17], [18], [21] using the original
loop due to the perturbation and then moved along trajectddytton and Barto’s model. We carried out a large number of
T, keeping out of the obstacles all the way until a collision aimulations under the same condition except that the SPG and
C. Fig. 9(b) demonstrates the new trial after the collision, thbe supervised learning method was not used. Some typical
robot went into and escaped from loop 2, loop 3, loop 4, amdsults are shown in Fig. 10. In Fig. 10(a), the robot began the
loop 5 one after another and collided with the obstaclé®at learning ats; with an initial heading of 90. After a collision
[see Fig. 9(c)] after which it went into loop 6 [see Fig. 9(d)]with the neighboring boarder, it moved at a straight-line trajec-
The robot seemed to be trapped by this loop. It might be alitay back and forth with collisions with the obstacles at both
to get out of he loop due to the stochastic perturbation; hoewnds and could not get out of the trap. The same resulted as it
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Fig. 10. Simulations without SPG and supervised learning.

was moved toss, s3, s4, andss (all with 9C°initial heading) TABLE V

manually one after another. It is required to restart the learning EXPLORATION STRENGTH UNDER DIFFERENT T

from scratch. Fig. 10(b) shows a new learning process starting 0 | 702 704 706 0-08 | =10
from s; with configuration (280 cm, 196 cm, 4h The robot collision | 30 | 42 8 | 13 S 3
went into a trap situation (loopl). Then it was moved to a hew ave SE; | 4229 | 3600 | 3125 | 2678 | 1721 | 16356
starts, with configuration (520 cm, 240 cm, 9Pmanually for ave SE; | 14.59 | 953 | 7.80 | 7.11 | 6.39 | 5.98

a new trial. However, it got into a new trap (loop2) once again.

In Fig. 10(c), the robot started the learningsatwith con-
figuration (340 cm, 360 cm, 99. It collided with obstacle); the robot always navigated in the middle of the corridor with
first and then collided withD, and Oy, it then circumnavi- & noticeable velocity when the learning converged. This is a
gated slowly and closely around obstaclg and was trapped Significant improvement over the existing methods [17], [18]
by loop1. It went into new traps (loop2 and loop3) again startinghere the robot may move very slowly in a trajectory very
from s, andss. It appears that the learning algorithm thoughglose to either sides of the corridor. We also noticed that the
a convergence has been achieved, although the rule baserfgt moved in a zigzag trajectory in some cases. However, if
not been sufficiently learned. We believe all of these problertize mixed learning algorithm was used, no zigzag trajectory
are induced by pure exploitation nature of this learning methotias found in all of our simulation runs. This means the mixed
Once a reactive behavior to obstacles has been formed, the rd@atning algorithm may obtain a better rule base.
will tend to use the associated rules over and over again hencé summary, due to the curse of dimensionality, reinforcement
it repeats the same behavior and refuse to learn further. To ovéarning may result in insufficiently learned rule base. The pro-
come this problem, Yung and Ye [18] proposed a new traininfg)sed mixed learning algorithm deals with this problem by two
method, which runs the robot clockwise and counter-clockwiséeps:
in a narrow corridor-like environment. This overcomes the in- 1) it employs the modified Sutton and Barto’s model to
sufficient learning problem, but the rule learned in such anarrow  strengthen the exploration;
space is very nearsighted. A better solution is to use the modi-2) it starts reinforcement learning from a pretuned rule base,
fied model. To prove this point, we carried out a large number  such that the search space is reduced and simplified.
of simulation runs using the modified model and have not egyyr simulation results demonstrate that the proposed method
countered the above-mentioned problems. outperforms the existing methods.

To study the impact ofr, we trained the robot in a
corridor-like environment as in [18], except that a bigger
corridor width (1 m) was used. In each learning step, VI. PERFORMANCEANALYSIS
the changes of the ASE's weights were calculated by
Awp;(t) = wm;(t + 1) — wm;(t). The norm of the vector
Aw,, = (Awml, Awmg7 e Awm243), denoted by”Ame,

’

The rule base learned in Fig. 9 was tested to be able to perform

obstacle avoidance in a number of different environments and
. as then used by a fuzzy navigator proposed in [18]. The overall

was used to evaluate the strength of exploration as only ex‘;}%_rformance, such as the motion smoothness, the quality of the

ratlohn r_nayl r(ta_sult mt'? Gsé%rgl(ﬁ?m chang? n thlti valge. We 1 vigated path, and the robustness to sensor noise, of the learned
each simulation unti earning step with various valye "o <o 2o studied using this navigator.

of 7. The results are tabulated in Table V (where $Bd Sk
are the sum offAw, || and||Aws||, respectively, over the 6000
steps), which depicts the average value of &iad SE over
600 simulation runs for each We can observe that a smaltler ~ Navigation tasks were carried out in the laboratories other
may result in stronger exploration strength but more collisiotlsan L1, L2, and L3, as depicted in Fig. 7(a). Fig. 11 depicts
and longer learning time. The plots of the instant reinforcemeatase study of the navigation fromto g, . For this navigation
signal versus learning step show that the leaning with 0.6  task, the velocity, acceleration, angular velocity, and angular ac-
converged within 6000 learning steps while the others did naeleration of the robot are plotted. It was observed from the plots
This means an adequate valuerofs required to maintain a that 1) the range of acceleration/deceleration is small when the
tradeoff between exploration and exploitation. We noticed thadbot passes by an obstacle, but large when the obstacles are in

A. Smoothness of Motion
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(S| Bupeotations- AV Simuator Topview Topsiewv] TABLE VI
[r = NAVIGATION UNDER VARIOUS OBSTACLE COURSES
T | Py/em | ps/em E: ave dz._e max da_e Time | obstacle
1]930.8 | 878.1 | 6.0% | 15.2cm | 40.1em | 55.5s 9
2| 884.6 | 838.5 [5.5% | 14.0cm | 38.0cm | 54.8s 8
318323 |793.4 [4.9% | 12.4cm | 37.7cm | 53.7s 7
4]787.0 | 754.6 | 4.3% | 10.7cm | 33.2cm | 53.0s 6
517067 | 680.8 [ 3.8% | 8.6em | 29.3cm | 49.9s 5
r 66362 | 616.5 [3.2% | 7.3cm | 21.8ecm | 47.3s 4
75585 | 545.9 [2.3% | 5.4em | 12.9cm | 43.9s 3
84954 | 487.1 [1.7% | 3.9cm | 10.3cm | 41.5s 2
94241 [ 4229 [1.2% | 3.1em | 82cm | 38.1s 0
TABLE VII
— ROBUSTNESS TOSENSORNOISE
) L . N | SSI (rad) | VSI (cm/s) SI
Fig. 11. Navigation frons, to ¢, in laboratory L4. 00 1 00207 020 T000
0.1 | 0.0344 0.37 1.000
its path; 2) there is no abrupt change of velocity, the accelera- 8§ ggilg 8‘;‘? éggg
tion is within (~10 cm/g, 15 cm/8); and 3) there is no abrupt 04 | 0.0466 0.6 0.990
change in the angular velocity, the angular acceleration is within 05 | 00523 0.79 0.982
(—2.0 rad/3, 1.5 rad/3). These properties have obvious bene- 06 [ 00602 098 0973
fits for practical application when the robot’s dynamics become
an important consideration. Taking into consideration the navigation task frento ¢, , as
depicted in Fig. 11, we tested the robustness of the navigator in
B. Quality of Navigated Path the presence of various degrees of sensor noise. The simulated

To evaluate the path achieved by the navigator, the visibili§fNSOr Noise is assumed to have a Gaussian distribution with
graph method [35] is used to determine the shortest path for edéf@nd; the actual distance and standard deviatiomot d
navigation task. For instance, the shortest path determined"#§ere” = 0,0.1,0.2,0.3,0.3,0.5 and0.6, in this simulation.
this algorithm froms; to ¢; is shown by the solid line in Fig. 11. The robot performed the navigation task 1000 times with egch
At each time step, the deviation of the robot's position from thé!ue ofn. For measuring the robustness, we use the following
shortest path is denoted by, . The length of the actual path andd€finitions. .
the shortest path are representeghpyndp. , respectively, and _ Pefinition 1—: Safety Index (Sl)z The percentage of the
the relative error between the actual path length and the shorfulation runs in which the robot successfully reaches the goal
path length(p, — p.)/p. is denoted byf,. Based on the floor Without collision.

plan, nine navigation tasks were conducted and the results @rgefinitiokn 2—: Steering  Smoothness  Index  (SSI):
tabulated in Table VI. w = Y. ,|Abi|/k, where Af; stands for the absolute

It can be seen that average steering angle in tith simulation run.
Definition 3—: Velocity Smoothness Index (VSI):

1) g?)r?eas\?%a;[%r- achieves a path reasonably close to the”_ Sk |Adi|/k, where A stands for the absolute

2) the less obstacles the robot has to tackle, the shortest%/%age of the velocity chgpge in tih smulguon run. .
path: e result of the empirical evaluation is summarized in

3) the relative error and the L . Tzl-uble VIl and plotted in Fig. 12, which shows a degradation of
path deviation are proportlonﬁ\]e Sl and smoothing index of the proposed navigator as the
to the number of obstacles. g Inc prop 9 .
amount of sensor noise increases. For the smoothness index,
. the SSlincreases only 1.03 times larger while the VSI increases
C. Robustness to Sensor Noise 2.38 times larger, meaning VSI is more sensitive to the sensor
The robustness to noisy sensor reading is quite important farise. As the maximum value of SSI is equivalent to° 3the
a navigation algorithm. For a real mobile robot, sensor readindgegradation of SSl is graceful. The maximum value of VSI is
are often noisy, especially in the case that ultrasonic sensors@®&8 cm/s, which is also small compared with the maximum
used. The noise of the sensor may cause incorrect obstacle didecity of the robot. Even if the value of is as high as 0.6,
tances and further cause error in navigation. In the worst catee navigator is still able to tackle the obstacle course in most
the noise of the sensor may cause collision. Therefore, a navigases. As the standard deviation of sensor measurement for
tion algorithm shall have a large tolerance to noisy sensor dataphysical sensor could not be as large as 60% of the actual
Due to the limitations of physical experimentation, such as higlalue in most case, the result means that the navigator has
cost, unrepeatability and damage in the case of collision, simrhigh robustness to noisy sensor data. This is attribute to the
lation is an essential and efficient measure to test the robustngssposed modified Sutton and Barto’s model. Therefore, the
of a navigation algorithm. fuzzy system constructed by the proposed learning method has
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Fig. 12. Smoothness and safety versus noise rate.

high practicality to real robot navigation, in which sensor noise [2] N. S. V. Rao, “Robot navigation in unknown generalized polygonal ter-

cannot be ignored.

VII. CONCLUSION

rains using vision sensorslEEE Trans. Syst., Man, Cyberol. 25,
pp. 947-962, June 1995.

[3] V. J. Lumelskyet al., “Dynamic path planning in sensor-based terrain

[4]

We have presented a neural fuzzy system with mixed learning

algorithm where supervised learning method is used to deter-

mine the input and output membership functions simultaneously
and reinforcement learning algorithm is employed to fine tune

the output membership functions. To speed up the superviseéﬁ]
learning phase and ensure a stable learning, the GDR method
is utilized and fuzzy logic approach is employed to adapt thel7]

learning parameters from iteration to iteration. A new learning

method using modified Sutton and Barto’s model is proposed tojg)
ensure a better tradeoff between the exploration and exploitation;
therefore, a sufficient and efficient learning is achieved. As [0

the modified model adds a perturbation to the control action

before being applied to the robot, the resulted obstacle avoidan&é)
module is robust to noisy sensor input. The learning performance
under different exploration strength was studied thoroughlyi1;
and a new method using the norm of the change of the neuron’s
weights was proposed to evaluate the exploration strengtfﬂlz]

The simulation results renders that: 1) the GDRFPA learning
algorithm is faster than DR method; 2) the modified Sutton and

Barto’s model has a better exploration hence the robot is able®!

to learn obstacle avoidance more efficiently without human

intervention and the learned rule base is robust to perturbatiofit4]
3) assisted by the proposed Supervised Learning method, the
search space of the Reinforcement Learning is reduced henge
the learning is accelerated and it may result in a better rule base;

and 4) the mobile robot using the fuzzy system learned by th
proposed method is able to perform collision-free navigation.

The performance analysis demonstrates that the navigator us
the obstacle avoidance module constructed by the propos

learning method features that: 1) it is able to achieve a path

reasonably close to the shortest path; 2) it has smooth motiofi8]

and 3) itis very robust to sensor noise.
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