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Abstract—Fuzzy logic system promises an efficient way for
obstacle avoidance. However, it is difficult to maintain the
correctness, consistency, and completeness of a fuzzy rule base
constructed and tuned by a human expert. Reinforcement
learning method is capable of learning the fuzzy rules automat-
ically. However, it incurs heavy learning phase and may result
in an insufficiently learned rule base due to the curse of dimen-
sionality. In this paper, we propose a neural fuzzy system with
mixed coarse learning and fine learning phases. In the first phase,
supervised learning method is used to determine the membership
functions for the input and output variables simultaneously.
After sufficient training, fine learning is applied which employs
reinforcement learning algorithm to fine-tune the membership
functions for the output variables. For sufficient learning, a new
learning method using modified Sutton and Barto’s model is
proposed to strengthen the exploration. Through this two-step
tuning approach, the mobile robot is able to perform collision-free
navigation. To deal with the difficulty in acquiring large amount
of training data with high consistency for the supervised learning,
we develop a virtual environment (VE) simulator, which is able
to provide desktop virtual environment (DVE) and immersive
virtual environment (IVE) visualization. Through operating a
mobile robot in the virtual environment (DVE/IVE) by a skilled
human operator, the training data are readily obtained and used
to train the neural fuzzy system.

Index Terms—Fuzzy system, obstacle avoidance, reinforcement
learning, supervised learning, virtual environment (VE).

I. INTRODUCTION

T HE ultimate goal of mobile robotics research is to endow
the robots with high autonomous ability, of which navi-

gation in an unknown environment is achieved by using on-line
sensory information. A significant amount of research effort has
been devoted to this area in the past decades. Among the pro-
posed methods in the literature, geometry algorithm assumes
that the local obstacles are fully recognized via visual sensor
[1], [2] or can be learned through on-line acquisition via dis-
tance sensor [3], [4]. The former assumption may not be appli-
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cable to a real environment, while the latter is time-consuming
to explore an unknown environment. On the other hand, poten-
tial field method [5], [6] seems more efficient for fast obstacle
avoidance as it does not need to know the details of the neigh-
boring obstacles. However, its disadvantages, such as local min-
imum and unstable motion [7], may limit its practicality.

Since Brooks [8] proposed the behavior control architecture,
a similar approach has been adopted [9]–[11] to solve the
navigation problem in an unknown environment. Unlike the
traditional navigation architecture [12] which decomposes
the navigation task using a sense-model-plan-act (SMPA)
framework and connects each module serially, the behavior
control method decomposes the navigation system into special
task-specific behavior modules, e.g., obstacle avoidance, goal
seeking, etc., which are connected directly to sensors and
actuators and operate in parallel. Therefore, this architecture
can act in real-time and has good robustness. As the behavior
control architecture tackles the navigation problem in an on-line
manner and requires no environment model, it is efficient in
dealing with navigation in an unknown environment.

In the behavior control architecture, behavior modules are
usually constructed as reactive systems [9]–[11], which map the
perceived situations to the correct actions. Fuzzy logic method
[13]–[15] is an efficient way of representing this mapping re-
lationship as it is able to represent human expert’s knowledge
and requires no mathematical model. Furthermore, it is able to
describe the input state continuously. For the construction of the
behavior modules, obstacle avoidance behavior is the most dif-
ficult as it incurs large number of input spaces. It is not easy to
define the appropriate fuzzy sets for each input variable and in-
formation may be incomplete when human experts express their
experience by linguistic rules. In other words, it is intractable to
maintain the correctness, consistency, and completeness of the
fuzzy rule base compiled and tuned by a human expert for the
obstacle avoidance behavior. Therefore, a fuzzy system, which
is able to evolve and automatically improve its performance, is
highly desired.

A number of learning algorithms, such as evolutionary al-
gorithm [16], reinforcement learning [10], [11], [17]–[21], and
supervised learning [22]–[24] have been proposed to construct
the fuzzy system automatically. Evolutionary algorithm itself
always results in a very long learning process. Reinforcement
learning method seems quite promising as it requires no training
data. However, it usually leads to a heavy learning phase as the
gradient information is not provided explicitly. Due to the large
number of the input space for learning obstacle avoidance, the
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search space becomes too large and the performance evaluation
surface becomes too complex to allow efficient learning. There-
fore, it is not easy to apply the reinforcement structural and pa-
rameter learning methods [25], [26] to learn obstacle avoidance
since it is difficult to tell that an incorrect response is due to a
mismatch antecedent part or due to an incorrect consequent part
[19]. Furthermore, the phenomenon of premature convergence
[18], [34] (e.g., trap situation) and ill behavior (e.g., circumnavi-
gate around an obstacle closely and slowly) further undermines
the practicality of these methods. On the contrary, supervised
learning method has the advantages of fast convergence and is
suitable for structure and parameter learning. However, it is very
difficult to obtain sufficient training data, which contain no con-
flict input/output pairs. Insufficient training data may result in
an incomplete fuzzy rule base, while the conflicts among the
training data may cause incorrect fuzzy rules.

In summary, it is intractable to learn obstacle avoidance
behavior by using either reinforcement learning or supervised
learning only. However, it is possible to employ supervised
learning to reduce the search space of reinforcement learning
by pretuning the input and output fuzzy sets first and then apply
reinforcement learning to fine-tune the incorrect rules caused
by inconsistent training data at supervised learning phase. The
benefits of the above approach are as follows.

1) Search domain of the reinforcement learning is greatly
reduced by pretuning the rule base. Therefore, the rein-
forcement learning may be accelerated.

2) As the reinforcement learning starts from a pretuned rule
base, insufficient learning or ill behavior may be poten-
tially overcome.

3) Conflicts between rules and incorrect rules induced by
supervised learning may be removed by fine-tuning of the
reinforcement learning.

Motivated by these observations, we propose a neural fuzzy
system with a mixed learning algorithm. It consists of a coarse
learning and a fine learning phase. In the coarse phase, super-
vised learning method is used to determine the input and output
fuzzy sets simultaneously. After sufficient training, the member-
ship functions of the input variables are frozen and fine learning
phase employing reinforcement learning algorithm is applied to
further tune the output fuzzy sets. In order to maintain a rela-
tively high consistency for the training data, we develop a virtual
environment (VE) simulator, which is able to provide desktop
virtual environment (DVE) and immersive virtual environment
(IVE) visualization. Through operating a mobile robot in the
DVE/IVE by a skilled human operator, the training data are
gradually obtained and used to train the neural fuzzy system.

This paper is organized as follows. Section II introduces the
basic concept and framework of the neural fuzzy system and de-
fines the mobile robot model and coordinate systems. Section III
presents the mixed learning algorithm where the method to ac-
celerate the supervised learning and the approach to strengthen
the exploration are discussed. Section IV describes a VE simu-
lator used for collecting the training data. Section V depicts the
simulation results of the proposed learning algorithm and some
comparisons with related methods; and Section VI presents the
performance analysis of the fuzzy system constructed by the

Fig. 1. Diagram of the neural fuzzy system with mixed learning algorithm.

Fig. 2. Mobile robot and sensor arrangement.

proposed learning algorithm. Finally, conclusions are given in
Section VII.

II. NEURAL FUZZY SYSTEM

A. General Overview

The proposed neural fuzzy system (see Fig. 1) employs a
mixed learning algorithm—supervised learning and reinforce-
ment learning. In the first learning phase, supervised learning
method (depicted as gray) is applied. For each input state vector
, the system infers an output. The difference between the

system output and the desired output is used to train the
neural fuzzy system such that the parameters of the input and
output fuzzy sets are determined. In the second learning phase,
the parameters of the input fuzzy sets are frozen, and reinforce-
ment learning method is employed to further tune the parame-
ters of the output fuzzy sets. For each input state, the system
infers an output , which is applied to the mobile robot after
adding a stochastic perturbation; and the mobile robot moves to
a new state. By evaluating the new state, an internal reinforce-
ment signal is generated and is used to fine-tune fuzzy system.
In both learning phases, the system performance is improved
gradually with the learning proceeds.

B. Mobile Robot Model and Coordinate Systems

Asdepicted inFig.2, we useda cylindricalmobile robotmodel
with a radius of 20 cm. The robot is omnidirectional and there are
24 ultrasonic sensors evenly distributed in a ring. Each sensor,
for ,coversanangularviewof15andgives thedis-
tance to the obstaclein its field of view. To reduce the input di-
mension, the sensors in the front of the robot are divided into five
sensor groups (denoted by for ), each of which
consists of three neighboring sensors. With this sensor arrange-
ment, the distance measured by theth sensor group from the
center of the mobile robot to the obstacle is expressed as

(1)
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Fig. 3. Diagram of the coordinate systems and control variables.

Fig. 4. Membership functions for the input and output variables.

The remaining sensors are used to compose a dynamic sensor
group to detect the obstacle distance along the goal direction for
behavior fusion [27].

We use two coordinate systems (see Fig. 3); the world coor-
dinate denoted by and the mobile robot coordinate given
by where is the center of the robot andaxis goes through
the center of sensor (the robot will move straight ahead when
the wheels are aligned withaxis). The control variables of the
robot are the linear velocity and the change in the heading
angle (referred as steering angle hereafter). In term of be-
havior control architecture, the purpose of the obstacle avoid-
ance behavior is to determine an actionand (denoted
by and , respectively, for simplicity) for each input state

without considering whether it will cause
a deviation from the goal.

C. Construction of the Fuzzy System

Considering the omnidirectional kinematic nature and the
symmetry of the robot and the sensor arrangement, each input
variables is assigned the same number of fuzzy sets. We use
three fuzzy sets in this research to maintain appropriate number
of rules. The membership functions of the input and output
variables are illustrated in Fig. 4. In Fig. 4(a), the crisp value
of each input variable is fuzzified and expressed by the
fuzzy sets and , referring to very near, near,
and far, respectively. is bounded by the minimum value

and the maximum value ,
where and are the radius of the robot, the
minimum and the maximum detectable distance, respectively.
The parameters for and ,
are bounded by and , where and

. The fuzzy sets and
are described by

otherwise
(2a)

otherwise
(2b)

otherwise.
(2c)

The fuzzy rule base consists of 243 rules and it requires 243
fuzzy sets, for , to represent and 243 fuzzy
sets, for , to represent . The fuzzy sets of
the output variables and take the triangular membership
functions, as shown in Fig. 4(b) and (c), respectively, while their
center positions, and for , are determined
by the proposed learning algorithm. is the upper bound
for ; while and are the lower and upper bound
for , respectively. The fuzzy rule is denoted by

Rule IF is AND AND is

THEN is is for

where is the fuzzy set for in the th rule, which takes
the linguistic value of or ; and and
are the fuzzy sets for and , respectively, in theth rule. If
Larsen’s product inference and height defuzzification method is
used, the control output of the neural fuzzy system for an input

is given by

for (3)

where is the fired strength of theth rule and is calculated
by

(4)

III. A UTOMATIC RULE GENERATION BY THE MIXED

LEARNING ALGORITHM

A. Supervised Learning

We use the error between the actual outputand the desired
output to derive the learning algorithm. As the input and
output are in different metrics, they must be normalized to
and , respectively. The learning process is to minimize the
following objective function for the input

(5)

Using the steepest descent learning algorithm [28], we can de-
rive delta rule (DR) as follows:

(6a)

(6b)

where is the learning rate; is the number of
iterations; and is a constant
induced by the denormalization. and
can be derived by chain rule. We omit it here for simplicity. To
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Fig. 5. Membership functions ofCE;CCE;�� and��:ZE = zero;PS =
positive small;PB = positive big;NS = negative small; andNB = negative
big.

TABLE I
FUZZY RULES FOR THEADAPTATION OF � AND �

increase the learning speed and avoid the problem of instability,
a momentum term is applied to (6a) and (6b). This yields the
following general delta rule (GDR)

(7a)

(7b)

B. Parameter Adaptation by Fuzzy Control

Let ; the change of is denoted as , and
the change of is denoted as . To increase the conver-
gence rate and prevent oscillations, we may use the following
heuristics to adapt and from cycle to cycle.

1) If is small with no sign changes in several consecutive
iterations, should be increased [29].

2) If changes sign in several consecutive iterations,
should be decreased, regardless of the value of [29].

3) IF both and are small and have not changed
sign for several consecutive iterations, bothand
should be increased [30].

A fuzzy system with two-input ( and ) and two-output
( and ) is adopted to implement the parameter adaptation.
The membership functions for the input variables are depicted in
Fig. 5(a), where is determined by the convergence criteria; and
the membership functions for the output variables are depicted
in Fig. 5(b). The fuzzy rules for adapting the value ofand
are given in Table I with the fuzzy rules forin the first column
followed by the fuzzy rules for .

Finally, the crisp value of and is determined by
the center-of-area defuzzification method and applied to the
learning parameters. Then, the next iteration is made using (7a)
and (7b). It is called thegeneral delta rule with fuzzy parameter
adaptation (GDRFPA).

C. Reinforcement Learning

1) Modified Sutton and Barto’s Model:After the supervised
learning phase, the parametersare frozen, and reinforcement

Fig. 6. Neural fuzzy system employing reinforcement learning.

learning is applied to further tune the parametersand . In
this paper, we adopt Sutton and Barto’s model [17], [18], and
modify the network of the learning algorithm, as depicted in
Fig. 6.

The mobile robot begins the learning with an initial configu-
ration at time step , where it acquires the environmental
information and infers the recommended action .
Based on the performance evaluation of the system (reinforce-
ment signal) and , the stochastic perturbation generator
(SPG) (described in the next section) generates an action

, which is applied to the robot. This moves the robot
to a new configuration at time step , and so on, until a
collision occurs at the time step . The whole process,
until a collision occurred, is called atrial. For instance, if a trial
ends at where a collision occurs, then a reinforcement
signal , representing the failure, is fed back to the learning
network, and the rules which were used at the previous time
steps , would be changed in order to improve
the robot’s performance. In Fig. 6, this task is accomplished
by an adaptive neuron-like element, which consists of an
associative search element (ASE) and an associative critic
element (ACE). After the rules are updated, a new trial begins
at . The process is iterated and terminated until no
more collision occurs.

Suppose that the current configuration of the robot is
, at which the sensor readingsare en-

coded into by (4). In order to obtain the associativity of
learning the rules, the trace of the fired th rule is used
and is calculated by

(8)

where is the trace decay rate. Each ACE re-
ceives an external reinforcement signal as a performance
feedback, and generates an internal reinforcement signal,
which are fed into the ASE to update its weights. The external
reinforcement signal is determined by (9), shown at the bottom
of the next page, where is the time interval between two
learning steps and is the upper bound of the robot’s ve-
locity. In order to determine the internal reinforcement signal

, two ACEs are used to predict the discounted sum

(10)
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where , is the discount rate. If the prediction value
of , denoted by , are accurate, from (10) we have

(11)

In practice, the ACEs learn to make the predictions. Thus, the
mismatch or time difference error between the two sides of (11)
is defined as the internal reinforcement signal and expressed as

(12)

The prediction is implemented as a weighted sum of
and given by

(13)

where , for and , are the weights
of the ACEs and is a bi-stable
function. In order to give correct prediction value, the weights
of each ACE are learned through the trace of the fired rule
and its output . They are updated by

(14)

where is a positive constant determining the rate of change for
. Similarly, the weights of the ASE, for and

, are updated by

(15)

where is the learning rate and is the
eligibility trace of the th rule and is updated by

(16)

where is the decay rate of the eligibility; and
is the actual action applied to the robot which is a Gaussian
random variable generated by the SPG. The eligibility trace de-
scribes that certain rules have been used and what control ac-
tions have been applied. The center positions of the fuzzy sets
for the output variables at each time step are determined by

for (17)

where is the initial center position of the fuzzy sets; is a
positive constant that determines the range of; and the pos-
itive constant is used to guarantee the fuzzy sets for the output
variable to be within their universe of discourse. The recom-
mended action can be calculated by (3) and the actual ac-
tion is determined by the SPG based on and .

2) Stochastic Perturbation Generator:For learning obstacle
avoidance, there is a conflict between 1) the desire to use the rule
base already learned; and 2) the desire to further explore the en-
vironment so as to make improvement on the rule base. This

phenomenon is calledthe conflict between exploration and ex-
ploitation [31]. The existing method using Sutton and Barto’s
model [17]–[21] may result in insufficiently learned rule base
as they used pure exploitation. To overcome this drawback and
maintain the efficiency of learning, a tradeoff between explo-
ration and exploitation should be achieved.

This objective is achieved by using the SPG. The SPG gener-
ates an action , which is a Gaussian random variable with
mean and standard deviation . is the actual
action applied to the robot, while is a nonnegative func-
tion given by

otherwise
(18)

where
search domain scaling factor and is set to 1.0;
constant;
threshold value determining the strength of ex-
ploration.

If is small, will be large which may slow down the
learning, but lead to an extensive exploration. With the specific
value of and , the perturbation is large when is low
and small when is high. As is a performance evalua-
tion of the previous action, the result is that a large random error
away from the recommended action results when the previous
action performed is bad, but the SPG remains consistent with the
fuzzy rules when the previous action is a good one. The learning
system converges at specific performance for each set ofand

value. As can be seen from (18), perturbation is allowed when
the learning converges. An obstacle avoidance behavior learned
using the SPG is able to keep a large clearance from obstacles,
as a trajectory closer to an obstacle is more likely to get colli-
sion hence not stable. Compared with the existing methods [25],
[26], [32], the exploration strength of the SPG is adjustable by
and we use internal reinforcement in SPG instead of prediction
[25], [26].

With the known control action of the current time step, the
robot’s configuration is updated by

(19)

Eventually, if the rules are sufficiently learned in a specific envi-
ronment, the weights of the ASEs will converge to a set of fixed
values. When the learning process is terminated, the learned
set of is used as the rule base for the obstacle avoidance
module.

IV. TRAINING PATTERN ACQUISITION

The simulation platform used to acquire training data is based
on the EXPECTATIONS simulator [33], which is able to

if
otherwise

(9)
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Fig. 7. Multiple X-windows for supervised learning.

TABLE II
INITIAL SIMULATION PARAMETERS FORSUPERVISEDLEARNING (UNIT: cm)

provide DVE or IVE visualization. The learning is carried out
in a floor plan, as depicted in Fig. 7(a) where R1 represents the
mobile robot. Fig. 7(b) depicts the DVE as seen by the robot’s
top mounted camera. The steering and velocity are controllable
through the human-machine interface. When the robot is op-
erated in the VE by a human operator, the five sensor reading
and the steering angle of the robot at each sampling step are
composed into a data pair and further compiled into
a training set accumulatively. As human’s driving behavior is
driven by vision, the three-dimensional visualization of the VE
may be helpful in transferring human expert’s driving skill to
the mobile robot.

V. SIMULATION OF RULES LEARNING

A. Supervised Learning Phase

For the supervised learning phase, we assume that the effec-
tive range of the ultrasonic sensors is 10 cm–210 cm and the
velocity of mobile robot is 15 cm/s. Considering the overhead
of the learning algorithm and graphic rendering, a time step
of 0.3 s was used. For a maximum angular velocity of 100/s,
the minimum and maximum steering in a time step are30
and 30 , respectively. This translates to and

. The initial value of is set such that it covers
the range evenly. The initial values of the other
parameters used for the simulation are tabulated in Table II. The
convergence criteria is , which is equivalent
to the system’s output error of 0.1. In relation with this, the
parameter depicted in Fig. 5 is chosen to be 0.005, which is
equivalent to about 0.3.

To evaluate the performance of the DR algorithm, the GDR
algorithm and the GDRFPA algorithm, simulation runs were im-
plemented under different value ofand for an input-output
pair , where and

. Fig. 8 show the learning curves of the three
learning algorithms with and . It can be ob-
served that the GDRFPA has the fastest convergence rate (13

Fig. 8. Learning curves of the three AFLS(� = 0:2; � = 0:2).

TABLE III
PARAMETERSx AFTERONLINE TRAINING FOR 8000th TRAINING DATA

iterations with 75.11 ms) followed by the GDR algorithm (27
iterations with 154.09 ms) and the DR algorithm (53 iterations
with 299.95 ms). Simulations also show that the GDRFPA al-
gorithm is not sensitive to initial value ofand . We adopt the
GDRFPA method to train the neural fuzzy system in this paper.

The online training scheme [34] was employed for this
learning phase. The robot was trained in laboratory L1, L2,
and L3. At each configuration, a training data pair
for , is composed and the fuzzy system is
trained for 20 iterations or until the convergence criterion

is met. At the th training data, ,
the system produces , where , for each
previous data. The average value over
the historical data is defined as the ensemble square error
(ESE). When the learning terminated at the 8000th training
data, the ESE is 0.002 335, i.e., a system output error of 4.1.
The parameters after learning are tabulated in Table III.

B. Reinforcement Learning Phase

1) Rule Learning by the Proposed Method:In this phase, a
computer-generated environment (see Fig. 9) is used and the
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Fig. 9. Simulation of reinforcement learning in a complex environment.

TABLE IV
PARAMETERS USED FORREINFORCEMENTLEARNING

parameters used for the learning are shown in Table IV, where
was learned at the supervised learning phase. In this sim-

ulation, a small value of is used to ensure sufficient explo-
ration. At the start, are set to some small nonzero values,
while , and are set to zero.
The mobile robot begins at an arbitrary initial configuration
with nonzero initial control action. The environment exploration
method [17], [18] is employed for training. At each collision, the
robot is backtracked four steps and its heading direction is re-
versed. Details of the training method are referred to in [18]. As
the learning proceeds, and are tuned gradually from the
initial values to the correct values by (17), which may remove
the incorrect rules induced in the supervised learning phase.

As shown in Fig. 9(a), the learning began with a start config-
uration of (460 cm, 260 cm, 90) . The robot moved forward
and encountered the obstacle on its right. As the rule base
had been learned by supervised learning, the robot avoided
successfully and moved toward the obstacleon its left. It
avoided once again (this agrees with the fact that the prespec-
ified rules can accelerate the learning [17]) and headed on the
obstacle where a collision occurred at. This demonstrates
that the rules are partially correct. The next trial began with
the robot reversing its heading and moving toward. After
avoiding , it traversed the opening space betweenand

, where it first avoided on its right followed by on its
left, until a collision occurred at . Then a new trial began and
the robot went into a loop (loop 1) and was circulating. Instead
of repeating the same trajectory as the learning method [17],
[18], [34] employing Sutton and Barto’s model, the robot took
a different path each time circumnavigating around obstacle,
because the perturbation generated by the SPG causes a devia-
tion from the previous trajectory. The robot escaped from the
loop due to the perturbation and then moved along trajectory

keeping out of the obstacles all the way until a collision at
. Fig. 9(b) demonstrates the new trial after the collision, the

robot went into and escaped from loop 2, loop 3, loop 4, and
loop 5 one after another and collided with the obstacle at
[see Fig. 9(c)] after which it went into loop 6 [see Fig. 9(d)].
The robot seemed to be trapped by this loop. It might be able
to get out of he loop due to the stochastic perturbation; how-

ever, to save time, we moved the robot out of it and specified
a new configuration manually after it had circulated 20 times.
The learning continued until it was terminated at up to 100 000
learning steps.

Due to the stochastic perturbation, a trajectory nearer to the
obstacle is more likely to get a collision. Therefore, the robot
tends to move with a larger clearance from the obstacles. When
the robot entered loop 2, it first circumnavigated in the outer
trajectory which is much closer to , then it retreated and
moved away from gradually and finally, orbited in the inner
trajectory which roughly kept a same clearance with both
and . This phenomenon is caused by the cooperation of the
credit/penalty assignment and perturbation generation; specif-
ically, a move closer to an obstacle is more likely to lead to-
ward a collision hence it is punished and assigned a smaller re-
inforcement which may move robot away from the obstacle and
move the system to a better state, i.e., a larger reinforcement.
According to (18), this results in a smaller standard deviation
for the stochastic action, i.e., unlikely to get collision. A loop
might be induced while the robot is dealing with multiple obsta-
cles as it tends to keep a clearance from all the obstacles. When
it goes into a loop, the robot has two possibilities to get rid of
it. One is that a large perturbation causes a collision. The other
one is that the accumulative deviation from the previous action
causes a significant change in the fired rule strengths or causes
new rules fired. In this sense, a small value ofmay increase the
chance to get out of a loop by the cost of longer learning time.
In principle, the robot is always able to get out of the trapped
situation provided the learning is not converged and the time is
long enough.

2) Comparison With the Related Methods:Firstly, let us
consider the existing methods [17], [18], [21] using the original
Sutton and Barto’s model. We carried out a large number of
simulations under the same condition except that the SPG and
the supervised learning method was not used. Some typical
results are shown in Fig. 10. In Fig. 10(a), the robot began the
learning at with an initial heading of 90. After a collision
with the neighboring boarder, it moved at a straight-line trajec-
tory back and forth with collisions with the obstacles at both
ends and could not get out of the trap. The same resulted as it
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Fig. 10. Simulations without SPG and supervised learning.

was moved to and (all with 90 initial heading)
manually one after another. It is required to restart the learning
from scratch. Fig. 10(b) shows a new learning process starting
from with configuration (280 cm, 196 cm, 45). The robot
went into a trap situation (loop1). Then it was moved to a new
start with configuration (520 cm, 240 cm, 90) manually for
a new trial. However, it got into a new trap (loop2) once again.

In Fig. 10(c), the robot started the learning atwith con-
figuration (340 cm, 360 cm, 90). It collided with obstacle
first and then collided with and , it then circumnavi-
gated slowly and closely around obstacle and was trapped
by loop1. It went into new traps (loop2 and loop3) again starting
from and . It appears that the learning algorithm thought
a convergence has been achieved, although the rule base has
not been sufficiently learned. We believe all of these problems
are induced by pure exploitation nature of this learning method.
Once a reactive behavior to obstacles has been formed, the robot
will tend to use the associated rules over and over again hence
it repeats the same behavior and refuse to learn further. To over-
come this problem, Yung and Ye [18] proposed a new training
method, which runs the robot clockwise and counter-clockwise
in a narrow corridor-like environment. This overcomes the in-
sufficient learning problem, but the rule learned in such a narrow
space is very nearsighted. A better solution is to use the modi-
fied model. To prove this point, we carried out a large number
of simulation runs using the modified model and have not en-
countered the above-mentioned problems.

To study the impact of , we trained the robot in a
corridor-like environment as in [18], except that a bigger
corridor width (1 m) was used. In each learning step,
the changes of the ASE’s weights were calculated by

. The norm of the vector
, denoted by ,

was used to evaluate the strength of exploration as only explo-
ration may result in a significant change in this value. We ran
each simulation until 6000th learning step with various value
of . The results are tabulated in Table V (where SEand SE
are the sum of and , respectively, over the 6000
steps), which depicts the average value of SEand SE over
600 simulation runs for each. We can observe that a smaller
may result in stronger exploration strength but more collisions
and longer learning time. The plots of the instant reinforcement
signal versus learning step show that the leaning with
converged within 6000 learning steps while the others did not.
This means an adequate value ofis required to maintain a
tradeoff between exploration and exploitation. We noticed that

TABLE V
EXPLORATION STRENGTH UNDER DIFFERENT�

the robot always navigated in the middle of the corridor with
a noticeable velocity when the learning converged. This is a
significant improvement over the existing methods [17], [18]
where the robot may move very slowly in a trajectory very
close to either sides of the corridor. We also noticed that the
robot moved in a zigzag trajectory in some cases. However, if
the mixed learning algorithm was used, no zigzag trajectory
was found in all of our simulation runs. This means the mixed
learning algorithm may obtain a better rule base.

In summary, due to the curse of dimensionality, reinforcement
learning may result in insufficiently learned rule base. The pro-
posed mixed learning algorithm deals with this problem by two
steps:

1) it employs the modified Sutton and Barto’s model to
strengthen the exploration;

2) it starts reinforcement learning from a pretuned rule base,
such that the search space is reduced and simplified.

Our simulation results demonstrate that the proposed method
outperforms the existing methods.

VI. PERFORMANCEANALYSIS

The rule base learned in Fig. 9 was tested to be able to perform
obstacle avoidance in a number of different environments and
was then used by a fuzzy navigator proposed in [18]. The overall
performance, such as the motion smoothness, the quality of the
navigated path, and the robustness to sensor noise, of the learned
rule base are studied using this navigator.

A. Smoothness of Motion

Navigation tasks were carried out in the laboratories other
than L1, L2, and L3, as depicted in Fig. 7(a). Fig. 11 depicts
a case study of the navigation fromto . For this navigation
task, the velocity, acceleration, angular velocity, and angular ac-
celeration of the robot are plotted. It was observed from the plots
that 1) the range of acceleration/deceleration is small when the
robot passes by an obstacle, but large when the obstacles are in
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Fig. 11. Navigation froms to g in laboratory L4.

its path; 2) there is no abrupt change of velocity, the accelera-
tion is within ( cm/s , 15 cm/s); and 3) there is no abrupt
change in the angular velocity, the angular acceleration is within
( 2.0 rad/s, 1.5 rad/s). These properties have obvious bene-
fits for practical application when the robot’s dynamics become
an important consideration.

B. Quality of Navigated Path

To evaluate the path achieved by the navigator, the visibility
graph method [35] is used to determine the shortest path for each
navigation task. For instance, the shortest path determined by
this algorithm from to is shown by the solid line in Fig. 11.
At each time step, the deviation of the robot’s position from the
shortest path is denoted by . The length of the actual path and
the shortest path are represented byand , respectively, and
the relative error between the actual path length and the shortest
path length is denoted by . Based on the floor
plan, nine navigation tasks were conducted and the results are
tabulated in Table VI.

It can be seen that

1) the navigator achieves a path reasonably close to the
shortest path;

2) the less obstacles the robot has to tackle, the shortest the
path;

3) the relative error and the path deviation are proportional
to the number of obstacles.

C. Robustness to Sensor Noise

The robustness to noisy sensor reading is quite important for
a navigation algorithm. For a real mobile robot, sensor readings
are often noisy, especially in the case that ultrasonic sensors are
used. The noise of the sensor may cause incorrect obstacle dis-
tances and further cause error in navigation. In the worst case,
the noise of the sensor may cause collision. Therefore, a naviga-
tion algorithm shall have a large tolerance to noisy sensor data.
Due to the limitations of physical experimentation, such as high
cost, unrepeatability and damage in the case of collision, simu-
lation is an essential and efficient measure to test the robustness
of a navigation algorithm.

TABLE VI
NAVIGATION UNDER VARIOUS OBSTACLE COURSES

TABLE VII
ROBUSTNESS TOSENSORNOISE

Taking into consideration the navigation task fromto , as
depicted in Fig. 11, we tested the robustness of the navigator in
the presence of various degrees of sensor noise. The simulated
sensor noise is assumed to have a Gaussian distribution with
mean ; the actual distance and standard deviation of
where and , in this simulation.
The robot performed the navigation task 1000 times with each
value of . For measuring the robustness, we use the following
definitions.

Definition 1—: Safety Index (SI): The percentage of the
simulation runs in which the robot successfully reaches the goal
without collision.

Definition 2—: Steering Smoothness Index (SSI):
, where stands for the absolute

average steering angle in theth simulation run.
Definition 3—: Velocity Smoothness Index (VSI):

, where stands for the absolute
average of the velocity change in theth simulation run.

The result of the empirical evaluation is summarized in
Table VII and plotted in Fig. 12, which shows a degradation of
the SI and smoothing index of the proposed navigator as the
amount of sensor noise increases. For the smoothness index,
the SSI increases only 1.03 times larger while the VSI increases
2.38 times larger, meaning VSI is more sensitive to the sensor
noise. As the maximum value of SSI is equivalent to 3.4, the
degradation of SSI is graceful. The maximum value of VSI is
0.98 cm/s, which is also small compared with the maximum
velocity of the robot. Even if the value of is as high as 0.6,
the navigator is still able to tackle the obstacle course in most
cases. As the standard deviation of sensor measurement for
a physical sensor could not be as large as 60% of the actual
value in most case, the result means that the navigator has
high robustness to noisy sensor data. This is attribute to the
proposed modified Sutton and Barto’s model. Therefore, the
fuzzy system constructed by the proposed learning method has
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Fig. 12. Smoothness and safety versus noise rate.

high practicality to real robot navigation, in which sensor noise
cannot be ignored.

VII. CONCLUSION

We have presented a neural fuzzy system with mixed learning
algorithm where supervised learning method is used to deter-
mine the input and output membership functions simultaneously
and reinforcement learning algorithm is employed to fine tune
the output membership functions. To speed up the supervised
learning phase and ensure a stable learning, the GDR method
is utilized and fuzzy logic approach is employed to adapt the
learning parameters from iteration to iteration. A new learning
method using modified Sutton and Barto’s model is proposed to
ensure a better tradeoff between the exploration and exploitation;
therefore, a sufficient and efficient learning is achieved. As
the modified model adds a perturbation to the control action
before being applied to the robot, the resulted obstacle avoidance
module is robust to noisy sensor input. The learning performance
under different exploration strength was studied thoroughly
and a new method using the norm of the change of the neuron’s
weights was proposed to evaluate the exploration strength.
The simulation results renders that: 1) the GDRFPA learning
algorithm is faster than DR method; 2) the modified Sutton and
Barto’s model has a better exploration hence the robot is able
to learn obstacle avoidance more efficiently without human
intervention and the learned rule base is robust to perturbation;
3) assisted by the proposed Supervised Learning method, the
search space of the Reinforcement Learning is reduced hence
the learning is accelerated and it may result in a better rule base;
and 4) the mobile robot using the fuzzy system learned by the
proposed method is able to perform collision-free navigation.
The performance analysis demonstrates that the navigator using
the obstacle avoidance module constructed by the proposed
learning method features that: 1) it is able to achieve a path
reasonably close to the shortest path; 2) it has smooth motion;
and 3) it is very robust to sensor noise.
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