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Hopf Bifurcation and Chaos in Synchronous
Reluctance Motor Drives
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Abstract—This paper first presents the occurrence of Hopf bi-
furcation and chaos in a practical synchronous reluctance motor
drive system. Based on the derived nonlinear system equation, the
bifurcation analysis shows that the system loses stability via Hopf
bifurcation when the -axis component of its three-phase motor
voltages loses its control. Moreover, the corresponding Lyapunov
exponent calculation further proves the existence of chaos. Finally,
computer simulations and experimental results are used to support
the theoretical analysis.

Index Terms—Bifurcation, chaos, motor drives, synchronous re-
luctance motors.

I. INTRODUCTION

WITH ever-increasing concern for our environment, the
development of motor drives has focused on pursuing

higher efficiency and better recyclability. Among those modern
motor drives, including the induction motor (IM), perma-
nent-magnet brushless motor (PMBM), and variable-reluctance
motor (VRM), the VRM class takes the advantages of simple
and rugged structure, good compatibility with the power
converter, and high recyclability for the core and winding.
The VRM is further divided into the synchronous reluctance
motor (SynRM) and switched reluctance motor (SRM). The
SynRM adopts a distributed winding and sinusoidal wave,
whereas the SRM uses a concentrated winding and rectangular
wave. So, the SynRM can essentially eliminate the torque
pulsation and acoustic noise problems that are intractable in
the SRM. Increasingly, it can offer the capability of electrical
fault tolerance, such as one-phase open circuit, one phase
short circuit, and phase-to-phase short circuit. With the use
of field-oriented control or vector control, the SynRM drive
can compete favorably with the IM drive for high-performance
drive applications such as electric vehicle propulsion [1]–[5].

Starting from the late 1980s, chaos has been identified to be
a real phenomenon in power electronics. Then, many investiga-
tions into chaotic behavior of dc–dc converters were conducted
in the 1990s [6]–[9]. However, the investigation of chaos in
motor drives has been surprisingly rare. Namely, the bifurcation
and chaos in an IM drive were investigated in [10], the strange
attractor and chaos in a PMBM drive were studied in [11], bi-
furcation and chaos in a permanent-magnet synchronous motor
(PMSM) were simulated in [12], the chaos in voltage-mode and
current-mode dc motor drives were analyzed in [13] and [14],
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Fig. 1. Schematic diagram of three-phase SynRM.

as well as the subharmonics and chaos in a SRM drive were dis-
cussed in [15]. To the best of authors’ knowledge, the investiga-
tion of chaos in the SynRM drive was absent in the literature.

The purpose of this paper is to first analyze the bifurcation and
chaotic behavior of SynRM drives. A practical SynRM drive
adopting field-oriented control will be used for exemplification.
Bifurcation analysis and Lyapunov exponent calculation will
be employed to investigate the corresponding chaotic behavior.
Various computer simulations and experiments will be carried
out to support the theoretical results.

In Section II, a brief introduction of the SynRM drive, in-
cluding its configuration, mathematical model, and operating
principle will be given. In Section III, the SynRM drive adopting
field-oriented control will be modeled. Based on this newly de-
rived model, bifurcation and chaotic analyses will be conducted
in Sections IV and V, respectively. Finally, simulation and ex-
perimental results will be given to verify the theoretical predic-
tion in Section VI.

II. SYNRM DRIVE

The SynRM is a singly salient machine. Its stator is typically
equipped with three-phase sinusoidally distributed windings,
which is similar to that of an IM. Its rotor is purposely
constructed with salient poles so as to produce the desired
reluctance torque for electromechanical energy conversion.
This salient rotor can be derived by using the geometrically
salient-pole structure, the axially laminated structure, or the
flux-barrier structure. The higher the saliency ratio, the larger
the reluctance torque can be produced.

Fig. 1 shows a three-phase two-pole SynRM with an axi-
ally laminated rotor structure. Since both the field winding and
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Fig. 2. Control diagram of three-phase SynRM drive.

damper winding are absent in the SynRM, the corresponding
system equations are given by

(1)

where , , and are the stator phase voltages; , ,
and are the stator phase currents; , , and are the
stator flux linkages; and is the stator resistance per phase.

By applying the well-known Park’s transformation, the
system equations given by (1) can be rewritten as [16], [17]

(2)

where the subscripts and represent the corresponding
direct-axis ( -axis) and quadrature-axis ( -axis) quantities,
respectively, and are the magnetizing inductances,

is the stator leakage inductance, and is the electrical
rotor speed. Hence, the electromagnetic torque is expressed as

(3)

where is the number of poles. In terms of and , it can
be rewritten as

(4)

From (4), it can be found that the higher the saliency
of the SynRM, the greater the difference between

and , the larger the value of is produced. Then, the
motion equation is given by

(5)

where is the moment of inertia of the drive system, is the
viscous friction coefficient, is the load torque, and

is the mechanical rotor speed.
Based on the above d–q model, a modern SynRM drive gen-

erally employs field-oriented control as illustrated in Fig. 2.

III. SYSTEM MODELING

In order to study the behavior of the SynRM drive, the system
dynamical model can be deduced from (2), (4), and (5) as given
by

(6)

The key merit of field-oriented control is to decouple the field
component ( -axis stator current ) and the torque component
( -axis stator current ) for high-performance operation. In
general, the SynRM is maintained fully fluxed by exciting it
with a constant while the torque is regulated by controlling

. Based on a voltage-fed inverter, and are governed
by and , respectively. The constant value of can be
easily deduced by substituting into (6), whereas

is regulated by the speed error using PID control. The cor-
responding control criteria are set below

(7)

where is the reference mechanical rotor speed.
The above field-oriented control works well provided that

can be kept constant and under proper control. In case loses
its control, the SynRM drive may exhibit strange behavior. For
the sake of simplicity, the analytical derivation is based on the
assumption that and which may be
somewhat unrealistic. Otherwise, the analytical solution cannot
be derived and only the numerical results can be generated.

Thus, based on (6) and (7), the SynRM drive can be expressed
as

(8)

Rearranging , , and as the state variables, (8) can be
rewritten as

(9)

It should be noted that the feedback effect has
been taken into consideration which is absent in the open-loop
cases in [11] and [12].

The system equation can be further simplified by trans-
forming to and to as defined by [11]
and [12]

(10)
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where , , and
. Hence, the SynRM drive can be expressed as

(11)

where , , ,
, and .

IV. LOCAL STABILITY AND HOPF BIFURCATION

It is essential to discuss the stability of the equilibrium point
and the trajectory around the equilibrium point by deriving the
eigenvalues of the system at the equilibrium point.

A. Special Case

For the special case when , , and ,
the system (11) becomes

(12)

The equilibrium point can be deduced by setting the deriva-
tives in (12) equal to zero. Obviously, the origin is a trivial equi-
librium point. The nonzero equilibria can be solved by the fol-
lowing equations:

(13)

Considering , , and their transformed quantities ,
, are all realistic parameters, there are three possible cases:

1) if , one equilibrium point (0, 0, 0);
2) if , three equilibrium points (0, 0, 0) and

;
3) if , five equilibrium points (0, 0, 0) and

.
The local stability of the equilibrium point is described by the

eigenvalues of the system characteristic

(14)

where is the eigenvalue, is the identity matrix, and is the
Jacobian matrix of the transformed system evaluated at the equi-
librium point . Hence, the eigenvalues can be de-
duced from an explicit cubic equation as given by

(15)

It is easy to check that the origin is a locally stable equilibrium
point since the corresponding eigenvalues are all negative, being

, , and .
For the nonzero equilibrium case, an explicit form of (15) can

be obtained using (13)

(16)

TABLE I
ROUTH–HURWITZ ARRAY FOR LOCAL STABILITY

Applying the Routh-Hurwitz stability criterion, as shown
in Table I, the local stability is guaranteed by the following
condition:

(17)

According to [18], the system will exhibit Hopf bifurcation
if there exists a pair of complex eigenvalues satisfying the fol-
lowing criteria:

(18)

where is the critical value of at which Hopf bifurcation
occurs.

Considering that there exists a pure imaginary nonzero char-
acteristic root in (16), it yields

(19)

By separating the real part and the imaginary part, it results

(20)

For positive , , and , the existence of is guaranteed by the
following condition:

(21)

This condition shows that the system parameters , , ,
and of the SynRM drive have a critical effect on the existence
of bifurcation. If their values are not properly set, Hopf bifurca-
tion and chaos may occur.

It is straightforward to check that
for positive and . For this reason, the equilibrium point pair

if it exists, will not meet
the bifurcation condition in (18). From (17), they are always
locally unstable.

By substituting into (21), the crit-
ical value of at which Hopf bifurcation occurs can be obtained
as

(22)
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TABLE II
RELATIONSHIP BETWEEN SIGNS OF LYAPUNOV EXPONENTS AND

TYPE OF ATTRACTORS

The corresponding critical eigenvalues are given by

Obviously, from (17), when is large enough while still
smaller than the critical value , the equilibrium point pair

is stable. Once the value
of exceeds the critical value, it becomes unstable saddle
points. Furthermore, it may even become chaotic attractors as
shown in the coming sections.

B. General Case

In general, the solution of the system (11) will lead to a
fifth-order polynomial. Consequently, the equilibrium point

has five possible roots—five real roots, three
real roots, plus a pair of complex conjugate roots, or one real
root plus two pairs of complex conjugate roots. Analytical
results for this case are almost impossible. Nevertheless, the
numerical analysis can always be performed.

V. FROM BIFURCATION TO CHAOS

Under the occurrence of Hopf bifurcation, the dynamical
system may demonstrate complicated behavior, that is, chaos.
To further identify the chaotic behavior, the calculation of
Lyapunov exponents plays an important role. Namely, a system
will exhibit chaotic behavior if at least one of its Lyapunov
exponents is positive [19]. For a three-dimensional (3-D)
state-space system described by a set of three first-order
differential equations, the corresponding type of attractors
(fixed point, limit cycle, quasiperiod torus, and chaotic) can be
directly determined by the signs of Lyapunov exponents [20]
as listed in Table II. Obviously, the SynRM drive described by
(11) belongs to the aforementioned 3-D state-space system.
Thus, this SynRM drive will demonstrate chaotic behavior if
its Lyapunov exponents are one zero, one positive, and one
negative.

The notion of Lyapunov exponent is a generalization of the
idea of an eigenvalue as a measure of the stability of a fixed point
or a characteristic exponent as the measure of the stability of a
periodic orbit. For a chaotic trajectory, it is not sensible to ex-
amine the instantaneous eigenvalue of a trajectory. The next best
quantity, therefore, is an eigenvalue averaged over the whole tra-
jectory. The Lyapunov exponent is best defined by measuring
the evolution (under a flow) of the tangent manifold

(23)

Fig. 3. Locus of eigenvalues via parameter c.

Fig. 4. Lyapunov exponents via parameter c.

where is the solution of the system charac-
teristic (14) and is the system dimension. The Gram–Schmidt
orthonormalization algorithm [20] can readily be used to calcu-
late the Lyapunov exponents.

VI. SIMULATION AND EXPERIMENTAL RESULTS

To illustrate the strange behavior of the SynRM drive, com-
puter simulations of both waveforms and trajectories are carried
out. A three-phase four-pole SynRM drive is used for exempli-
fication, which has the parameters , ,

, , ,
, , , and

. Notice that the values of , and
are simply chosen for illustrations, and can readily be altered
without affecting the final conclusion. Most important, the pa-
rameters of this practical motor drive meet the requirements of
Hopf bifurcation as described by (21).

The locus of eigenvalues obtained by the equilibrium point
pair is depicted in Fig. 3,
in which the parameter starts from , namely

. As discussed before, this pair of equilibrium
points loses their stability once the parameter exceeds its crit-
ical value. Clearly, at this critical value , the locus
crosses the imaginary axis and Hopf bifurcation occurs.

Fig. 4 shows the Lyapunov exponents of the SynRM drive
system. From these three curves, the underlying system
behavior can be easily distinguished by using Table II.
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TABLE III
LYAPUNOV EXPONENTS AT TYPICAL VALUES OF c

Fig. 5. Speed bifurcation diagram via parameter c.

With a small value of , the SynRM system has only one
stable equilibrium point (fixed point). The corresponding
Lyapunov exponents are all negative. Thus, five equilibria
occur with the increase of . Once exceeds its critical value

, a pair of stable equilibria loses its stability as
shown in Fig. 3 and becomes a pair of saddle points. This
pair of saddle points causes the SynRM drive demonstrating
complex behavior. There are chaotic attractors in the regions of

and . On the other
hand, in the regions of and ,
the system exhibits limit cycles. Table III lists the Lyapunov
exponents under different typical values of .

Fig. 5 shows the speed bifurcation diagram via . This
diagram is obtained by plotting the successive 200 crossing
points of the steady-state trajectory with a fixed Poincaré
section via the parameter . Therefore, the underlying chaotic
attractor (CA) or limit cycle (LC) can be easily identified as
labeled in the figure. It can be found that this diagram matches
the phenomena obtained by Fig. 4 and Table III. Namely,
when or , the system
exhibits limit-cycle operations; when or

, the system offers chaotic operations.
Fig. 6 shows the simulated chaotic waveforms of , , and
of the SynRM drive when and the trajectories on the

, , and planes. It can be found that
the waveforms offer the well-known chaotic properties, namely
random-like and bounded, while the trajectories resemble a but-
terfly (like the well-known Lorenz attractors).

On the other hand, as illustrated in Fig. 5, the SynRM drive
exhibits limit-cycle operation when . Fig. 7 depicts the

Fig. 6. Simulated chaotic waveforms and trajectories when c = 10: (a) i ;
(b) i ; (c) ! ; (d) i � i plane; (e) i � ! plane; (f) i � ! plane.

Fig. 7. Simulated periodic waveforms and trajectories when c = 22: (a) i ;
(b) i ; (c) ! ; (d) i � i plane; (e) i � ! plane; (f) i � ! plane.
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Fig. 8. Measured chaotic waveforms and trajectories when c = 10: (a) i ;
(b) i ; (c) ! ; (d) i � i plane; (e) i � ! plane; (f) i � ! plane.

corresponding time-domain waveforms of , , and , and
its trajectories on the , , and planes. It
can easily be observed that both the waveforms and trajectories
offer the periodic property.

Experimental results are shown in Figs. 8 and 9. Comparing
the periodic waveforms and trajectories shown in Fig. 7 with
those in Fig. 9, the measured results match well with the simu-
lation results. On the other hand, comparing the chaotic wave-
forms shown in Figs. 6 and 8, the simulated and measured pat-
terns can hardly match together because the chaotic pattern is
aperiodic and very sensitive to initial conditions. Nevertheless,
the random-like and bounded nature can be easily observed from
their trajectories. The measured boundary values also match
well with the simulated values.

It should be noted that the above analysis regulates the clas-
sical concept of SynRM drive operation. Besides the fixed-point
operation, the SynRM drive can offer the chaotic operation and
limit-cycle operation with the variation of controllable param-
eters. Although the chaotic operation has not yet been widely
used for industrial applications, it is anticipated that the resulting
chaotic motion of this SynRM drive is beneficial to surface
milling or material mixing.

VII. CONCLUSION

In this paper, Hopf bifurcation and chaos in a practical
SynRM drive have been presented. The key is to analyze the

Fig. 9. Measured periodic waveforms and trajectories when c = 22: (a) i ;
(b) i ; (c) ! ; (d) i � i plane; (e) i � ! plane; (f) i � ! plane.

eigenvalues and Lyapunov exponents of the SynRM drive
adopting field-oriented control. Hence, it first identifies that
the drive system may offer chaotic operation or limit-cycle
operation. Moreover, the proposed analysis is so general that it
can readily be extended to other motor drives.
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