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Performance Utility-Analysis of Multi-State Systems
Shaomin Wu and Ling-Yau Chan

Abstract—This paper defines a new utility importance of a state
of a component in multi-state systems. This utility importance
overcomes some drawbacks of a well-known importance measure
suggested by William S. Griffith (J. Applied Probability,1980). The
relationship between this new utility importance and the Griffith
importance is studied and their difference is illustrated with
examples. The contribution of an individual component to the
performance utility of a multi-state system is discussed. Examples
show that a meaningful index for measuring the performance
of individual components in a multi-state system can hardly
be defined in general, without considering the actual values of
the utility levels and the distributions of the component-states
in the system. An example illustrates how genetic algorithm,
simulated annealing, and tabu search can be used in selecting
components and defining the position order of components so that
the performance utility of a multi-state system is optimized.

Index Terms—Multi-state systems, state importance, utility
importance.

ACRONYMS1

GA genetic algorithm
SA simulated annealing
TS tabu search.

NOTATION

number of nonzero states of the system,

an integer,
system utility level when the system is in state;

.
number of components available for use,

number of components in the system,
an integer,
number of nonzero states of each component,

an integer,
a random variable which represents the state of com-
ponent in the system
a value of ,

: row vector of the
: row vector of the

: when its coordinate #has the value
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1The singular and plural of an acronym are always spelled the same.

a system structure function; it represents the state of
the system as a function of
value of when

, performance utility func-
tion (see [12]) of a system
Griffith importance vector of component
utility importance of component.

I. INTRODUCTION

I MPORTANCE measures are used to measure the effect of
the reliability of individual components on the system reli-

ability. From the design view-point, it is crucial to identify the
weaknesses of the system and how failure of each individual
component affects proper functioning of the system; so that ef-
forts can be spent properly to improve the system reliability
[1]. Various authors have introduced importance-measures in
binary systems. Birnbaum-importance measures the contribu-
tion of component-reliability to the system reliability [1], [2].
Structural-importance measures the topographic importance of
a position in the system [3], [4]. Criticality-importance corre-
sponds to the conditional probability of failure of a component,
given that the system has failed [1], [2]. Joint-importance mea-
sures how components in a system interact and contribute to the
system-reliability [5], [6].

A binary system is formed from 2-value logic, e.g., on/off,
and functioning/not-functioning. Although such a system has
many practical applications, a model based on dichotomizing
the system states is often over-simplified and insufficient for
describing many commonly encountered situations in real life;
as a result, multi-state systems are frequently required. In a
multi-state system, the components and/or the system perfor-
mance have more than 2 states. There are numerous examples
of multi-state systems, with more than 2 ordered or unordered
states at the system level, the sub-system level, or the compo-
nent level. A power plant which has states 0, 1, 2, 3, 4 that cor-
respond to generating electricity of 0%, 25%, 50%, 75%, 100%
of its full capacity is an example of a multi-state system that
has ordered multiple states [7]. A nuclear reactor system [8] or
a pumping system [9] which performs differently according to
the many different combinations of states of its subsystems are
examples of multi-state systems with unordered multiple states.
A light-emission diode which emits red, green, and yellow lights
under different inputs is an example of a multi-state system in
which each of its states has binary values. Furthermore, a state in
a system may take a continuous range of quantitative measure-
ment instead of discrete levels, for example, a braking system
might produce an output braking force ranging from 250 to
300 kilograms.
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Some extension of importance measures from binary systems
to multi-state systems has been done. Reference [10] extends
the [11] concept of reliability importance of system components
to multi-state monotone systems, while [12]–[17] mainly focus
on how to extend Birnbaum’s importance in binary systems to
multi-state systems.

Very few publications discuss how the particular states of a
component contribute to a multi-state system, and how the pres-
ence of a component and a particular state of a component af-
fect the contributions of other components in the system. Such
an investigation has theoretical importance as well as practical
value, because the knowledge gained enables efficient design of
the system, as well as formulation of optimal strategies for main-
taining the system. In a binary system, reliability optimization
mainly deals with maximizing the system reliability under con-
straints such as cost, weight, and/or size, or on minimizing the
cost under reliability constraints. This optimization task is by
no means trivial, unless the system is very simple. In multi-state
systems where components have more than 2 states and the per-
formance utility of the system is to be maximized, the optimiza-
tion task is obviously more difficult.

Section II introduces a new utility-importance for measuring
the contribution of various component-states to the system-
performance, and compares this utility-importance to Griffith’s
importance. Section III studies the contribution of multi-state
components to the system; examples are given to show that,
for a particular system, even if a multi-state component pro-
duces better system-performance than another component, the
reverse might happen in another system. Section IV discusses
optimization of the system-performance utility by selection
and permutation of components, and an application of heuristic
methods. Section V gives an example to illustrate the use of
heuristic algorithms in optimization of a multi-state system.

II. STATE PERFORMANCEUTILITY

Assumptions:

1) A multi-state system has a zero state andnonzero
states.

2) Each component has a zero state andnonzero states.
Most importance-concepts have been built on how change-in-

state of one component affects the system [12]–[17]. Reference
[17, p. 741] proposes the Griffithimportance vector, , to study
component # in a multi-state system:

(1)

The in Griffith’s importance vector can be interpreted as
the hange of the system performance when componentdete-
riorates from state to state ; it can be regarded as the
importance of state of system-component #.

A drawback of is that it measures only how the change
of a particular component affects the system performance, but

does not measure which component affects it the most, or which
state of a certain component contributes the most. However, the
extent to which a component and its states affect the system is a
major concern to the system designer and the system controller.
To overcome this deficiency of , a new performance utility
importance function is introduced indefinition2.1.

Definition 2.1:

(2)

can be interpreted as the contribution of stateof
component to the system. Thus the utility importance of com-
ponent can be defined as the vector:

(3)

Straight-forward calculation gives the following relationship be-
tween and coordinate :

A significance of is that for each , the of
a system (which is a measure of the overall effect of all compo-
nents in the system) can be expressed in terms of :

(4)

Equation (4) shows that a stateof component with larger
contributes appreciably more to the system performance

utility. To illustrate how a system is described differently using
and , consider a 1-component system, in which

, with 4 states and structure func-
tion , . Let the system
component have 4 states with probability distri-
bution . Table I
shows and cal-
culated for 2 sets of values of . The is not
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TABLE I
VALUES OF I (m) AND I (m) FOR 2 SETS OF(a ; a ; a ; a )

defined for . For example, when
, then

Even though state 2 of the component has the highest prob-
ability of occurrence ( ), Table I shows that when

, then state 2 does not always have the highest con-
tribution to the system, because .
When , from the user’s view-point, effort should be
made to keep the component at state 3, because

On the other hand, when , effort should be made to
keep the component at state 2, because for this case,

Even though state 3 has a ( 0.1) smaller than and
equal to and , Table I shows that changing the compo-
nent from state 3 to state 2 (rather than changing it from state
2 to state 1, or from state 1 to state 0) has the largest effect
on the system as measured by Griffith’s importance, because

for both and .
Definition 2.2 [18]: A system is a

a) multi-stateseries systemif and only if its structure func-
tion is ,

b) multi-stateparallel systemif and only if its structure func-
tion is .

Proposition 2.1: Notation

The utility importance of state ( ) of compo-
nent in a series system is

(5)

for , and

(6)

for .
Proof: For this series system,

(7)

By definition,

When , the sum in can be written as

The consists of a single term, while for a series system

each term in is 0 because for
all . Hence

(8)

This proves proposition 2.1 for . The proofs for the
other cases are similar, except that the sum is broken in
slightly different ways:

For use

For use
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End of Prooffor Proposition 2.1.
Proposition 2.2: Notation

The utility importance of state of component
in a parallel system is

for (9)

for (10)

Remark: In in (10), when
because the highest state of all components is.

Proof: For a parallel system,

(11)

When

for a parallel system, each term in the sum is 0 because
for all ; thus

(12)

This proves proposition 2.2 for . The proofs for
other cases are similar, except that is broken up in slightly
different ways:

For

For

III. COMPONENT PERFORMANCE UTILITY

IN MULTI-STATE SYSTEMS

In general, there are 2 ways to improve the reliability of a
binary system: 1) increase the reliability of individual compo-
nents, and/or 2) add redundant components to the system. For
a multi-state system, however, the situation is not so simple,
and few publications discuss how the performance utility of a
multi-state system can be improved. It is not even straightfor-
ward to define how a multi-state component can be regarded
as better than another one. If a position in a multi-state system,
e.g., , can be occupied by either componentor component

, then the index can be used to compare the con-
tributions of components and to the performance utility of
this system:

position is occupied by component (13)

Component can be regarded as better than componentfor
position of a particular system if , vice versa
if , and both components can be regarded as
equally good if . However, without regard to
a particular system and a particular position in the system, it is
hard to define whether one component is better than another.
This is illustrated by the example:

Four components (1, 2, 3, 4), each have 3 states; let

Let a series system consist of 2 components; thus
, and , where ,

can take the values 0, 1, 2, and position 1 in the system can be
occupied by either component 1 or component 2, and position
2 can be occupied by either component 3 or component 4.

Let performance utility of this system when po-
sition 1 is occupied by component, and position 2
is occupied by component, .

Values of for 2 sets of values of performance utility
levels are calculated and shown in Table II. For example, when

, then

and so on.
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TABLE II
VALUES OFU(i ; i ) FOR 2 SETS OF(a ; a ; a ; a )

Table II shows that

when

when

Thus the order between and can change if per-
formance utility levels change. Therefore, in general it is not
possible to tell whether component 1 is better than component
2 orvice versa,if the performance utility levels are not known.

Table II also shows that

and

when ;

and

when .
This means that for the same system, for certain performance

utility levels, replacing a component with another component
can increase the system performance utility, while for other per-
formance utility levels, this could decrease the system perfor-
mance level. This means that it is not possible to know whether
one component is better another one, if the utility levels of the
system are not known. Thus, this example shows that if one
component in a system is replaced with a spare component, it
is not possible to tell in general whether this replacement will
increase or decrease the performance utility of the system. In
other words, by ignoring the performance utility levels and the
probability distribution of the components, it is impossible to
define a meaningful index to measure the performance utility of
an individual component.

IV. M AXIMIZATION OF PERFORMANCEUTILITY

Sections II and III investigate only the effect of individual
components on the system; this section considers the problem
of placement of components to optimize the system.

Assumptions:

1) multi-state components are available.
2) Each of these components can perform the same function.
3) These components have different probability distributions

of states.
4) A system requires components.
5) The optimization problem for the system is to selectof

the components, and define the position order of the
selected components to maximize the performance utility
of the system.

For a binary system, this process has 2 steps:

1) Select of the components with the highest reliability.
2) Define their position order in the system so that the per-

formance utility of the system is maximized.

See [19]–[21], for example, on optimization of particular
types of systems. For a multi-state system, the optimization
process cannot be performed in these 2 discrete steps, because,
as shown in Section III, comparison of the performance utility
of 2 multi-state components with known probability distri-
butions of states is not trivial, and it is not straightforward to
define how one component can be regarded as having higher
reliability than another.

In an -component system, the total number of ways of se-
lecting and arranging of the components is

, which can be as large as 3 991 680, when
, and . Hence, even whenand are of moderate

sizes, calculation of the performance utility of the system for all
possible permutations is time-consuming and impractical.

Similar to the binary case, special algorithms can be estab-
lished for optimizing multi-state systems. Construction of such
algorithms is a separate topic of research and is not treated in
this paper. These days, because high-speed computing machines
and efficient heuristic algorithms are readily available, using
these heuristic methods for optimization of the performance
utility is practical and efficient. Commonly used heuristic
methods such as GA, SA, and TS can be used for optimizing
multi-state systems. See [22]–[27] for studies of these search al-
gorithms and [28], [29]. References [30]–[37] for their applica-
tions in reliability analysis and other areas. Many other heuristic
methods, such as Artificial Neural Networks [38] and Threshold
Accepting [39] can also be applied, but they are not discussed
here.

To search for a global maximum of an objective function
over a search space using GA, each elementin the search space
is represented as a string of symbols called: chromosome. Each
chromosome in the search space corresponds to a uniqueand
has a fitness-value, . The search process begins with a pop-
ulation which is a subset of the search space. A mating-pool
is formed by selecting chromosomes with replacement from
the population in such a way that a chromosomeis selected
with probability , where runs over the en-
tire population. More precisely, a random number is
generated, and is accepted or rejected according to whether

or .

Next, pairs of chromosomes are selected from the mating pool
according to a pre-determined probability. In each selected pair,
the 2 chromosomes are then divided randomly into sub-strings
in the same way, and sub-strings from the 2 chromosomes are
swapped to form 2 new chromosomes called “offspring.” This
process is called “crossover.” The fitness values of the offspring
are calculated, and a new population is formed by replacing
parent chromosomes of low fitness values in the mating pool
with offspring of high fitness values. The content of sub-strings
of chromosomes in the population are then selected with a small
probability and altered (mutated), to avoid converging to
a local maximum. These steps are repeated until a certain stop-
ping rule is satisfied.

To search for a global minimum of a function using
SA, an initial point, , is selected from the search space. Then
another point, , within a certain small distance from is
selected randomly. The point is accepted with probability
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TABLE III
PROBABILITY DISTRIBUTION OF THESTATES OF60 COMPONENTS

1 if , and accepted with probability
if , where is a positive constant. These

steps are repeated until a certain stopping rule is satisfied. In
maximizing the of a system with SA, on can set .

The search for a global maximum using TS begins with an
initial solution. At each step, a move is performed between com-
ponents in the solution of the previous step and a component in
the “spare component store” which is a subset of the search
space . Here is a TS containing some previous moves. The
purpose of excluding moves in the TS is to prevent the algorithm
from converging to a local maximum. However, an “improved
best aspiration criterion” is adopted, so that if a certain move
contained in the TS improves the objective function, then tabu
classification of this move can be “overridden”; and this “aspi-
ration-level move” can be accepted. At each step, the move is
chosen so that the objective function gains the largest increase
(which at times could be negative). The process terminates when
a certain stopping rule is satisfied.

These 3 algorithms have various modified versions, e.g., in
[24], [25]. Section V gives a simple example illustrate how a
multi-state system can be optimized using these algorithms.

V. AN EXAMPLE

Consider a 3-state system consisting of 3-state com-
ponents, such that the system is at state 0 when at least 2 of its
components are at state 0, state 2 when at least 3 consecutive
components are at state 2, state 1 otherwise.

The search space consists of components; Table III
gives their state probability distributions.

Let . Then

The arrangement in which is occupied by component is
represented by ; e.g., represents:

position 1 is occupied by component 13,

position 2 is occupied by component 7,

position 3 is occupied by component 54,

position 4 is occupied by component 29

In this example, to optimize the performance utility of the
system using GA, 20 components are selected from a total of
60, to form an initial population. A chromosome is represented
by . Pairs in the mating pool are selected with prob-
ability 0.6 for crossover. A chromosome in the population is se-
lected with probability 0.1 for mutation, in which 1 of the 4 com-
ponents in the chromosome is selected randomly and replaced
by another component chosen randomly from the population.
Fig. 1 shows that becomes stable after generation #120 or so.
A maximum value is achieved at the arrangement

.
When SA is used in this example, a randomly selected 4-com-

ponent set is used as the initial solution. The distance between
2 components with probability distributions
and for states 0, 1, 2 is defined as

A neighborhood-set of a component is the collection of the
5 components that are closest in distance to it. In each step,
each component in the system is replaced with probability 1
with a component selected randomly from its neighborhood
if this replacement gives a lower value of the
negative of system performance utility than the original value

; otherwise, the component is replaced with proba-
bility , where the initial value of is chosen
as 1/12, and the value of in each step is the previous value
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Fig. 1. The results of optimizing a system using GA, SA, TS. The horizontal
axis is the number of iterations; the vertical axis is the system performance
utility.

multiplied by 0.9. Here the values 1/12 and 0.9 are chosen
by experience in anad hocmanner; the algorithm converges
reasonably quickly under this condition. Fig. 1 shows that
stabilizes after the 90th iteration or so, and a maximum value
of 2626.32 is achieved at the arrangement .

When TS is used, a move is defined as replacement of a com-
ponent in the system in the previous step of iteration by a com-
ponent in the spare component store. In each step, the tabu set

consists of the moves performed within the previous 3 steps.
The tabu status is overridden for a move if the objective func-
tion after this move is larger than all previous values. The initial
solution used in this example is randomly selected. Fig. 1 shows
that the algorithm stabilizes at iteration #9. A maximum value,
2723.31, of is reached at the arrangement .

In this example, GA converges more steadily than SA, and TS
converges appreciably faster than GA and SA. For the values of
the maximum performance utility obtained, GA is slightly better
than TS, and TS is better than SA. This example shows that var-
ious heuristic methods can perform differently when they are
applied to the same multi-state system. Comparative study of
the performance of GA, SA, TS, and other heuristic methods in
optimization of multi-state systems is a separate topic of inves-
tigation, and is not handled in this paper.
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