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A Fuzzy k-Modes Algorithm for Clustering Categorical Data
Zhexue Huang and Michael K. Ng

Abstract—This correspondence describes extensions to the To tackle the problem of clustering large categorical data
fuzzy k-means algorithm for clustering categorical data. By using sets in data mining, theé:-modes algorithm has recently
a simple matching dissimilarity measure for categorical objects been proposed in [7]. Thé-modes algorithm extends the
and modes instead of means for clusters, a new approach is . . . . R
developed, which allows the use of th&-means paradigm to k-means algorithm by US'”Q a simple matCh'ng dissimilarity
efficiently cluster large categorical data sets. A fuzzyk-modes Measure for categorical objects, modes instead of means for

algorithm is presented and the effectiveness of the algorithm is clusters, and a frequency-based method to update modes in

demonstrated with experimental results. the clustering process to minimize the clustering cost function.
Index Terms_Categorica| data’ C|ustering, data mining’ fuzzy These eXtenSionS haVe remOVed the nUmeriC‘OnIy I|m|tat|0n Of
partitioning, k-means algorithm. the k-means algorithm and enable it to be used to efficiently

cluster large categorical data sets from real-world databases.
In this paper, we introduce a fuzzymodes algorithm which
generalizes our previous work in [7]. This is achieved by
HE k-means algorithm [1], [2], [8], [11] is well known the development of a new procedure to generate the fuzzy
for its efficiency in clustering large data sets. Fuzzpartition matrix from categorical data within the framework
versions of thek-means algorithm have been reported igf the fuzzy k-means algorithm [3]. The main result of
Ruspini [15] and Bezdek [3], where each pattern is allowed tfis paper is to provide a method to find the fuzzy cluster
have membership functions to all clusters rather than havingrddes when the simple matching dissimilarity measure is
distinct membership to exactly one cluster. However, workingsed for categorical objects. The fuzzy version has improved
only on numeric data limits the use of thekemeans-type the k-modes algorithm by assigning confidence to objects
algorithms in such areas as data mining where large categorigalifferent clusters. These confidence values can be used
data sets are frequently encountered. to decide the core and boundary objects of clusters, thereby

Ralambondrainy [13] presented an approach to using thgyviding more useful information for dealing with boundary
k-means algorithm to cluster categorical data. His approagbjects.

converts multiple categorical attributes into binary attributes,
each using one for presence of a category and zero for absence I
of it, and then treats these binary attributes as numeric ones ) )
in the k-means algorithm. This approach needs to handleVe assume the set of objects to be clustered is stored
a large number of binary attributes when data sets halfe @ database tablel’ defined by a set of attributes
attributes with many categories. This will inevitably increasé1; 42, -, An. Each attributeA; describes a domain of
both computational cost and memory storage of thrmeans Values denoted by OM(A;) and associated with a defined
algorithm. The other drawback is that the cluster means givégmantic and a data type. In this letter, we only consider
by real values between zero and one do not indicate tH¥0 general data typesjumericand categoricaland assume
characteristics of the clusters. other types used in database systems can be mapped to one
Other algorithms for clustering categorical data includ@f these two types. The domains of attributes associated
hierarchical clustering methods using Gower's similarity co¥ith these two types are called numeric and categorical,
efficient [6] or other dissimilarity measures [5], the PAI\/FESDe_C“Ve')’- A numeric _domam consists of_r(_ea_l nl_Jr_nbers. A
algorithm [9], the fuzzy-statistical algorithms [18], and th&lomainDOM(4;) is defined as categorical if it is finite and
conceptual clustering methods [12]. All these methods suffépordered, e.g., for any, b € DOM(A;), eithera = b or
from a common efficiency problem when applied to massive 7 0. see for instance [5].
categorical-only data sets. For instance, the computationafn object.X in 7" can be logically represented as a con-
complexity of most hierarchical clustering methodsig,2)  junction of attribute-value pairgd, = 1] A[Ay = zo] A- - A
[1] and the PAM algorithm has the complexity O{k(n—k)?)  [Am = Zm], wherez; € DOM(4;) for 1 < j < m. Without
per iteration [14], where: is the size of data set aridis the 2ambiguity, we represenk’ as a vectollzy, za, -+, Tm]. X
number of clusters. is called a categorical object if it has only categorical values.
We consider every object has exactly attribute values. If
Manuscript received September 2, 1997; revised October 28, 1998. Tﬂiﬁ_:. value of an attributeLlJ» is missing, then we denote the
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database, but rather that the two objects have equal valuesan « > 1, the minimizeri of Problem (P1) is given by

attributes Ay, A4s, ---, A,,. . i N
17 if X, = ZAI
0, if Xo=2n, h#£I1
[Il. HARD AND FUZzzY k-MEANS ALGORITHMS N . 1/(a—1)
Let X be a set ofn objects described byn numeric “%7Y 4 Z d(?l’ i) . if X; #Z and
attributes. The hard and fuzzymeans clustering algorithms L A2, X)
to glusterX into k C|L_JS_tel_’S can be stated as the algorithms [3], | Xi# Z 1<h<k
which attempt to minimize the cost function 5)
k n
= o The proof of Theorem 1 can be found in [3], [17]. We
remark that for the case of = 1 the minimum solutioriV" is
subject to not unique, sav; = 1 may arbitrarily be assigned to the first
minimizing index!, and the remaining entries of this column
O<wi <1, 1<I<k 1<isn (2) are put to zero.

In the literature the Euclidean normd(X,Y) =
k > iy |z5 —y;|? is often used in the-means algorithm.
wi=1, 1<i<n (3) In this case, the following result holds [3], [4].
=1 Theorem 2: Let W be fixed and consider Problem (P2)

and Irgn F(W, Z)
0< Z wy; < Ny 1<Ii<k (4) whered(Z;, X;) is the Euclidean norm. Then the minimizer
i=1 Z of Problem (P2) is given by

wherek(<n) is a known number of clusters; € [1, oo) is L
a weighting exponentl = [w;] is a k-by-n real matrix, Zw}‘iﬁf,
Z=1[Z1, Za, -, Zi) € R™* andd(Z;, X;)(> 0) is some 7 = i=277 1<1<k
dissimilarity measure betweeti; and X;. Zwa

Minimization of F in (1) with the constraints in (2)—(4) gt ti

forms a class of constrained nonlinear optimization problems

whose solutions are unknown. The usual method towardMostk-means-type algorithms have been proved convergent
optimization of ¥ in (1) is to use partial optimization fof and often terminate at a local minimum (see for instance [3],
and W [3]. In this method, we first fixZ and find necessary [4], [11], [16], [17]). The computational complexity of the
conditions orW¥ to minimize F'. Then we fixi¥ and minimize algorithm is O(tkmn) operations, where is the number of

F with respect taZ. This process is formalized in themeans iterations, k is the number of clustersy is the number of

algorithm as follows. attributes, and is the number of objects. When:s ¢, m, k,
Algorithm 1—Thek-Means Algorithm: it is faster than the hierarchical clustering algorithms whose
1) Choose an initial poinZ® e IR™*. DetermineW () computational complexity is generaltp(n?) [1]. As for the

such thatF(W, Z() is minimized. Set = 1. storage, we need(n(m + k) + km) space to hold the set

2) DetermineZ*+1 such thatF(w(t)7 Z(“fl)) is min- of objects, the cluster genteéé, and the partition mat_rix
imized. If F(w(t)’ Z(“fl)) _ F(w(t)’ Z(t))—then w, wh|ch, for a largen, is much [ess than that required
stop; otherwise go to step 3). by the h|era_rch|c_al cluster_lng algorlth_ms. 'I_'herefore, the

3) Determine W@+D such that F(W@“), Z(t+1)) means algonthm is best suited for _deallng Wlth I_arg_e data s_ets.
is minimized. If F(W(tﬂ)7 Z(t+1)) _ However, working only on numeric values limits its use in
F(W®, Z(t+D)—then stop; otherwise set= ¢ + 1 applications such as data minir)g ?n _whjch _categorical yalues
and go to step 2). are frequently encountered. This limitation is removed in the

hard and fuzzyk-modes algorithms to be discussed in the

The matricesZ and W are calculated according to the .
next section.

following two theorems.

Theorem 1:Let Z be fixed and consider Problem (P1)
IV. HARD AND Fuzzy K-MODES ALGORITHMS

min F(W, Z) subject to (2),(3), and(4). The hardk-modes algorithm, first introduced in [7], has

. made the following modifications to themeans algorithm: 1)
For « = 1, the minimizeri¥ of Problem (P1) is given by  using a simple matching dissimilarity measure for categorical
_ R R objects; 2) replacing the means of clusters with the modes;
o = {1’ it d(Z, X;) < d(Zn, Xi), 1<h<k and 3) using a frequency-based method to find the modes to
0, otherwise. solve Problem (P2). These modifications have removed the
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numeric-only limitation of thes-means algorithm but maintain &

its efficiency in clustering large categorical data sets [7]. Z Z 8(z1,5> i, 5)
Let X andY be two categorical objects represented by ; =t

[x1, 2, - -, xm] @nd[yy, y2, -~ -, ¥m], respectively. The sim- Z < {wilwi; = 25, wa = 1}|>'

ple matching dissimilarity measure betweeéf and Y is — n

defined as follows: -

m The inner sum is minimized iff every terfl — [|[{wy|z;, ; =
d.(X, V)= Z 8(xj, yy) (6) 2, j, wi = 1}|]/n) is minimal for1 < j < m. Thus the term
J=1 {wiilzs, j = 2.5, wy = 1} must be maximal. The result
where follows. [ |
According to (8), the category of attribut; of the cluster
8, yp) = {(1)’ id ;yf mode Z; is determined by the mode of categories of attribute
v 7Y A; in the set of objects belonging to cluster

It is easy to verify that the functiod, defines a metric space The main problem addressed in the present paper is to

on the set of categorical objects. Traditionally, the simplnd the fuzzy cluster modesy(> 1) when the dissimilarity

matching approach is often used in binary variables which dreasure defined in (6) is used.

converted from categorical variables [9, pp. 28—29]. We noteTheorem 4—The FuzzyModes Update MethodLet X be

that d. is also a kind of generalized Hamming distance [10]a Set of categorlcal objects described by categorical attributes
The k-modes algorithm uses thé-means paradigm to A;, Az, ---, A, and DOM(A;) = {a(l) ,(2) ("J)}

cluster categorical data. The objective of clustering a set where n; |s the number of categorres of attrrbute for

n categorical objects int& clusters is to find? and Z that 1 < j < m. Let the cluster centerg; be represented by

minimize [z, L Zi2, -, Z2im] for 1 < 1 < k. Then the quantity
ko SEoYr whd (Zi, X;) is minimized iff 7 ; = a{” €
=> Z wid (7, X, (7) DOM(A;) where
=1 =1
. > 5 1<t< 9
with other conditions same as in (1). Hete represents a set Z - Wi = ‘ Z o W " ©)
of & modes fork clusterst We can still use Algorithm 1 to b, j=a; BT, =

minimize F.(W, Z). However, the way to updat& at each for 1 < j < m.
iteration is different from the method given in Theorem 2. For  proof; For a giveniV, all the inner sums of the quantity

the hardk-partition (i.e., = 1), Huang [7] has presentedy~* s~ 0 (7 X.) are nonnegative and independent.
a frequency-based method to update This method can be M|n|m|2|ng the quantity is equivalent to minimizing each inner

described as follows. sum. We write thdth inner sum { <1 < k) as
Theorem 3—The Haré-Modes Update MethodlLet X be

a set of categorical objects described by categorical attributes Z wi do( 2, X
A, A, -+, Ap and DOM(4)) = {a, o, -, al™}, g o del 21
where n; is the number of categorles of attrrbulze for

1 <€ 7 < m. Let the cluster centerg; be represented by
[z, 1, Zi2, -, Z2im] for 1 < 1 < k. Then the quantity i
Sy wiid, (Zi, X;) is minimized iff 2 ; = o} €
DOM(A;) where

7,

m

wy > (2,4, @i, )

1 j=1
3

[
M:

3

[
]
NIE

wi;6(z1, 4, T, 5)
1

,_.
«.
Il

J

30

(r)

{wilwi,; = a;”, wy; =1}

_ _ o
> \wilws,; = al), wy =1},  1<t<n; (8) —E Z Do =awi— Y =a gl

t=1 4, x; ; i,

for 1 < j < m. Here,|X| denotes the number of elements o
in the setXx. Since wy; is fixed and nonnegative fot < [ < k and

Proof: For a giveni¥’, all the inner sums of the quantity < ¢ < 7 the quantity3 5,7, 37, o0 wi; 1S fixed and
S, S wide(Z;, X;) are nonnegative and independennonnegative. It follows that ;" whd (Zl, ;) is minimized
Minimizing the quantity is equivalent to minimizing each inneiff each term}_; . __ wyf; is maximal. Hence, the result

Ty Ty 4

sum. We write thdth inner sum{ <[/ < k) as follows. [
According to Theorem 4, the category of attribug of
Z wido(Z1, X; the cluster modeZ; is given by the category that achieves

the maximum of the summation af;; to cluster! over all
m categories. If the minimum is not unique, then the attribute
IZ w; Z 6(z1, 45 @i, 5) of the cluster mode may arbitrarily assigned to the first
J=1 minimizing indext in (9). Combining Theorems 1 and 4 with
1The mode for a set of categorical objedt& 1, Xo, -, X, } is defined Algorithm 1 forms the fuzzyk-modes algorithm in which
as an object that minimizesy_"_, d.(X;, Z) [7]. the modes of clusters in each iteration are updated according

n

=1
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TABLE | out several tests of these algorithms on both real and artificial

(2) NUMBER OF OPERATIONS REQUIRED IN THE FUZZY data. The test results are discussed below.
k-MoDES ALGORITHM AND (b) THE CONCEPTUAL VERSION

OF THE k-MEANS ALGORITHM. HERE M = 3771 n;
Steps Operations A. Clustering Performance

;(Initiahzaﬁon) g((fﬂz)) The first data set used was the soybean disease data set

3 O(kmn) [12]. We chose this data set to test these algorithms because
@) all attributes of the data can be treated as categorical. The
soybean data set has 47 records, each being described by 35

Steps Operations attributes. Each record is labeled as one of the four diseases:
1 (Initialization) 8Eang Diaporthe Stem Canker, Charcoal Rot, Rhizoctonia Root Rot,
2 kMn

and Phytophthora Rot. Except for Phytophthora Rot which has
17 records, all other diseases have ten records each. Of the 35
(b) attributes, we only selected 21 because the other 14 have only
one category.
to Theorem 4 and the fuzzy partition matrix is computed We used the three clustering algorithms to cluster this data
according to Theorem 1. The hafdmode algorithm [7] is Set into four clusters. The initial means and modes were

3 O(kMn)

a special case where = 1. randomly selected: distinct records from the data set. For
Theorem 5:Let @ > 1. The fuzzy k-modes algorithm the conceptuak-means algorithm, we first converted multiple
converges in a finite number of iterations. categorical attributes into binary attributes, using zero for

Proof: We first note that there are only a finite numbepbsence of a category and one for presence of it. The binary
(N = H;,":l n;) of possible cluster centers (modes). We theyalues of the attributes were then treated as numeric values
show that each possible center appears at most once by ithéhe k-means algorithm. For the fuzzi-modes algorithm
fuzzy k-modes algorithm. Assume thattt) = Z(tz) where We specifiedy = 1.1 (we tried several values ef and found
t1 7& to. According to the fuzzw-modes a|gorithm we can thata = 1.1 prOVideS the least value of the cost fUnCti.Bl)l.
compute the minimizerd (*) and W (t2) of Problem (P1) for Unlike the other two algorithms the fuzzymodes algorithm
Z =27®) andZ = Z), respectively. Therefore, we have Produced a fuzzy partition matri®”. We obtained the cluster
) o) () or(ta) (t2)  r(ta) memberships fromV as follows. The record; was assigned
FLWH, Z0) = F(WHY, Z0%7) = (W, Z07), to thelth cluster ifw;; = maxi<p<i{wn;}. If the maximum

However, the sequencé.(-, -) generated by the hard and¥a@s not unique, thed; was assigned to the cluster of first

fuzzy k-modes algorithm is strictly decreasing. Hence th@chieving the maximum. .
result follows. - A clustering result was measured by the clustering accuracy

We remark that the similar proof concerning the convet- defined as

gence in a finite number of iterations can be found in [16]. k
We now consider the cost of the fuzZzymodes algorithm. Zal
The computational cost in each step of the fuZzyodes =1
algorithm and the conceptual version of theneans algorithm o

[Iif’] are givezn md Zat_:_lﬁl accorgl?g th> Algolnth.;rj 1 farlthereal was the number of instances occurring in both cluster
5 eo(;e;nsf 1h ,?n ' edcom[:l)u a |gna cc()jm[; exities o saTz?nd its corresponding class andvas the number of instances

an of the fuzzyk-mo es algorithm and the conceptu n the data set. In our numerical tegtss equal to four.
version of thek-means algorithm ar®(kn(m + M)) and

Ok M tivelv. Heres is th b ¢ elust Each algorithm was run 100 times. Table Il gives the
(. n), respective y. nerev Is he glum er of clusters, average accuracy (i.e., the average percentages of the cor-
m is the number of attributes\ (= Zj:l n;) is the total

b f . £ all i gis th b rectly classified records over 100 runs) of clustering by each
number of categories of all attributes, andis the number algorithm and the average central processing unit (CPU) time

of objects. We remark that we need to transform mumplﬁsed. Fig. 1 shows the distributions of the number of runs

categorical attributes into binary attributes as numeric valu%]%th respect to the number of records correctly classified by
in the conceptual version of the-means algonthm. Thus, each algorithm. The overall clustering performance of both

V\(he_n_M is large, the cost of the fuzzy-modes algonthm 'S hard and fuzzyc-modes algorithms was better than that of the
significantly less than that of the conceptual version ofithe conceptualk-means algorithm. Moreover, the number of runs

means algonthm: Similar to the fuzaymeans-type algorithm, with correct classifications of more than 40 records-(0.87)

our method require®(im(n + k) + km) storage space {0 holdy s iy ,ch arger from both hard and fuzzynodes algorithms

the s_et of object$.X;}, the cluster center and the partition than that from the conceptuatmeans algorithm. The fuzzy

matrix W. k-modes algorithm slightly outperformed the hatemodes

algorithm in the overall performance. The average CPU time

used by thek-modes-type algorithms was much smaller than
To evaluate the performance and efficiency of the fukzy that by the conceptuat-means algorithm.

modes algorithm and compare it with the concepfuateans  To investigate the differences between the hard and fuzzy

algorithm [13] and the hard-modes algorithm, we carried k-modes algorithms, we compared two clustering results pro-

V. EXPERIMENTAL RESULTS
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The number of nuns.

22324 272829 32 33 34 36 36 42 a7
Number of records correctly classitied In  run

(@)

The number of runs

o
26 27 29 32 33 34 35 36 43 44 45 46 47
Number of racords correctly classified in a run

(b)

2820 313233343 37 45 46 47
Number of records correclly classified in a run

©

Fig. 1. Distributions of the number of runs with respect to the number

the correctly classified records in each run. (a) The conceptual version of

k-means algorithm. (b) The hafdmodes algorithm. (c) The fuzzi-modes
algorithm.

TABLE I
THE AVERAGE CLUSTERING ACCURACY AND AVERAGE CPU
TIME IN SECONDS BY DIFFERENT CLUSTERING METHODS

Conceptual Hard Fuzzy
k-means k-modes | k-modes

Accuracy 0.704 0.782 0.790
CPU time
in seconds 0.164 0.024 0.034
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TABLE I
THE MoDES oF FOUR CLUSTERS PRODUCED BY (@)
HARD k-MobDEs AND (b) Fuzzy k-MODES ALGORITHMS

Z; Attributes
1 2 3 4 5 6 7
1 0 1 2 0 0 3 1
2 1 1 2 0 0 2 1
3(3 0 2 1 0 1 0
4 5 0 0 2 1 1 2
Z; Attributes
8 9 10 11 12 13 14
1 1 0 2 0 0 1 1
2 2 1 0 1 0 2 2
3 1 0 2 1 0 3 1
4 1 0 0 1 0 0 3
Z; Attributes
15 16 17 18 19 20 21
1/0 1 0 0 0 3 0
2 0 0 0 4] 0 3 1
3 1 1 0 0 0 0 0
4 0 0 0 2 1 0 0
(@
Z; Attributes
1 2 3 4 5 6 7
1 0 1 2 0 0 3 1
2 1 1 2 1 0 3 1
3 6 0 2 1 0 1 0
4 6 0 0 2 1 1 2
Z; Attributes
8 9 10 11 12 13 14
1 2 0 2 0 0 1 1
2 2 1 0 1 0 2 2
3 1 0 2 1 0 3 1
4 1 0 0 1 0 0 3
Z; Attributes
15 16 17 18 19 20 21
1 ¢ 1 0 0 0 3 0
2 0 0 0 0 0 3 1
3 1 1 0 0 0 0 0
4 0 0 0 2 1 0 0
(b)

indeed produce different clusters. By looking at the accuracies
of the two clustering results, we found that the number of
records correctly classified by the hakdmodes algorithm
was 43 while the number of records correctly classified by
Thee fuzzy k-modes algorithm was 45. In this case, there was
4.2% increase of accuracy by the fuzkymodes algorithm.

We found such an increase occurred in most cases. However,
in a few cases, the clustering results produced by the hard
modes algorithm were better than those by the fuzzyodes
algorithm (see Fig. 1).

The partition matrix produced by the fuzZymodes al-
gorithm provides useful information for identification of the
boundary objects which scatter in the cluster boundaries. This
can be shown by the following example. Five records are listed
in Table 1V together with their dissimilarity values to their cor-
responding modes, their part of partition matrices, their cluster
memberships assigned and their true classes. In Table IV,

duced by them from the same initial modes. Table Il givagenotes the misclassified records. In the clustering result of
the modes of four clusters produced by the two algorithmihe hardk-modes algorithm [Table IV(a)], four recordks,
The modes obtained with the two algorithms are not identicatss, X39, andX 4, were misclassified. The misclassification of

This indicates that the hard and fuzzymodes algorithms

recordsX; and X 39 was due to the same dissimilarities to the
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TABLE IV cases, the dissimilarities of objects to the mode of the assigned
(@) THE DisSIMILARITY MEASURE BETWEEN MISCLASSIFIED RECORDS AND THE  ¢|yster may be same but the confidence values of objects
CLUSTER CENTERS AND THE CORRESPONDINGPARTITION MATRICES . dt th t | t b t dff tb
ProbucED BY THE HARD k-MoDES AND (b) Fuzzy k-MoDEs as_S|gne 0 that cluster can be quite difrerent because some
ALGORITHMS. HERE THE MISCLASSIFIED OBJECTSARE DENOTED BY * objects may also be closer to other cluster modes but other
47, X)) objects are only closer to one of them. The former objects will
Record X; |1 2 3 4 have less confidence and can also be considered as boundary
*1 76 13 15 objects. In many applications, it is reasonable to consider
*353 ? g }8 i; cluster boundaries as zonal areas. The kamtbdes algorithm
*39 6 6 11 13 provides no information for identifying these boundary objects.
*42 5 7 10 14
Wi cluster | true
1 2 3 4| assigned | class B. Efficiency
01 0 0 2 2 _
1.0 0 0 1 D) The purpose of the second experiment was to test the
1 000 1 2 efficiency of the fuzzyk-modes algorithm when clustering
1 8 8 8 } ; large categorical data sets. For the harthodes algorithm
Huang [7] has reported some preliminary results in clustering
@ a large real data set consisting of 500 000 records, each being
% described by 34 categorical attributes. These results have
Record X: | 1 02( “3 i) 4 shown a good scalability of the-modes algorithm against the
(6 6 13 15 number of clusters for a given number of records and against
*5 7 7 10 14 the number of records for a given number of clusters. The
gg &; Z }‘1) g CPU time required for clustering increased linearly as both
49 6 5 10 14 the number of clusters and the number of records increased.
Wi Tuster T true In th|§ experiment we used an artlflqal data set to test
1 2 3 4 assigned | class the efficiency of the fuzzyk-modes algorithm. The data set
0.4999  0.4999  0.0001 0.0001 1 2 had two clusters with 5000 objects each. The objects were

0.4928 0.4928 0.0139 0.0005 described by five categorical attributes and each attribute

1
0.0037 0.9963 0.0000 0.0000 ; had five categories. This means the maximum dissimilarity
0.1389 0.8602 0.0008 0.0000 2 between any two objects was five. We purposely divided
®) objects in each inherent cluster into three groups by, I 1;
2) d. = 2; and 3)d. = 3, whered, was the dissimilarity
measure between the modes of the clusters and objects. Then
modes of clusterg; andZ,. In such a situation the algorithmwe specified the distribution of objects in each group as: 1)
arbitrarily assigned them to the first cluster. Such records &@00; 2) 1500; and 3) 500, respectively. In creating this data
called boundary objects, which often cause problems in claset, we randomly generated two categorical objeftand Z;
sification. Some of these misclassifications can be correcteith d.(Z,, Z;) = 5 as the inherent modes of two clusters.
by the fuzzyk-modes algorithm. For instance, in Table IV(b)Each attribute value was generated by rounding toward the
the classification of objecksg was corrected because it hasearest integer of a uniform distribution between one and six.
different dissimilarities to the modes of clustefs and Z,. Then we randomly generated an objétwith d.(X, Z;) less
However, objectX; still has a problem. Furthermore, othethan or equal to one, two, and three and added this object to
two objects X33 and X42, which were misclassified by thethe data set. Since the dissimilarity between the two clusters
hardk-modes algorithm, were correctly classified by the fuzawas five, the maximum dissimilarity between each object
k-modes algorithm. However, objedt,; , which was correctly and the mode was at most three. Nine thousand objects had
classified by the hard-modes algorithm was misclassifieddissimilarity measure at most two to the mode of the cluster.
by the fuzzy one. Because the dissimilarities of the objecthie generated data set had two inherent clusters. Although
X; and X, to the centers of clusters 1 and 2 are equal, thee used integers to represent the categories of categorical
algorithm arbitrarily clustered them into cluster 1. attributes, the integers had no order.
From this example we can see that the objects misclassifiedrable V gives the average CPU time used by the fukzzy
by the fuzzyk-modes algorithm were boundary objects. But inodes algorithm and the conceptual version of tameans
was not often the case for the hareémodes algorithm. Another algorithm on a POWER2 RISC processor of IBM SP2. From
advantage of the fuzzj-modes algorithm is that it not only Table V, we can see that the clustering accuracy of the flizzy
partitions objects into clusters but also shows how confident arodes algorithm was better than that of the conceptual version
object is assigned to a cluster. The confidence is determineddfyhe k-means algorithm. Moreover, the CPU time used by the
the dissimilarity measures of an object to all cluster modes. Fozzy k-modes algorithm was five times less than that used by
instance, although both objecfs;; and X393 were assigned the conceptual version of themeans algorithm. In this test, as
to cluster 2, we are more confident fdfsg’s assignment for the comparison, we randomly selected 1000 objects from
because the confidence valugy » = 0.9963 is greater than this large data set and tested this subset with a hierarchical
the confidence valuess3 o = 0.7717 for cluster 2. In many clustering algorithm. We found that the clustering accuracies

0.2030 0.7717 0.0218 0.0035

N BN NN
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TABLE V
AVERAGE CLUSTERING ACCURACY AND AVERAGE CPU TIME REQUIRED IN
SECONDS FORDIFFERENT CLUSTERING METHODS ON 10 000 QBJECTS

Conceptual | Fuzzy
k-means k-modes
Accuracy 0.949 0.992
CPU time [1]
in seconds 6.56 1.28

[2]
of the hierarchical algorithm was almost the same as that of th[(3e]
fuzzy k-modes algorithm, but the time used by the hierarchical
clustering algorithm (4.33 s) was significantly larger than that*!
used by the fuzzy-modes algorithm (0.384 s). Thus, when the
number of objects is large, the hierarchical clustering algorithnt!
will suffer from both storage and efficiency problem. This
demonstrates the advantages of famodes-type algorithms [6]
in clustering large categorical data sets. 71

V1.

Categorical data are ubiquitous in real-world databaseE]
However, few efficient algorithms are available for clustering®!
massive categorical data. The development of Aheodes- [10]
type algorithm was motivated to solve this problem. We
have introduced the fuzz¥-modes algorithm for clustering [
categorical objects based on extensions to the fuzmyeans
algorithm. The most important result of this work is the
consequence of Theorem 4 that allows thmeans paradigm
to be used in generating the fuzzy partition matrix from
categorical data. This procedure removes the numeric-orlyl
limitation of the fuzzyk-means algorithm. The other important4
result is the proof of convergence that demonstrates a nice
property of the fuzzyk-modes algorithm. [15]

The experimental results have shown thatih®modes-type
algorithms are effective in recovering the inherent clusterirggl
structures from categorical data if such structures exist. More-
over, the fuzzy partition matrix provides more information tg17)
help the user to determine the final clustering and to identify
the boundary objects. Such information is extremely usef l8]
in applications such as data mining in which the uncertain

CONCLUSIONS
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boundary objects are sometimes more interesting than objects
which can be clustered with certainty.
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