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Abstract. In this paper, we consider the solutions of symmetric positive definite, but ill-
conditioned, Toeplitz systems Anx = b. Here we propose to solve the system by the recursive-based
preconditioned conjugate gradient method. The idea is to use the inverse of Am (the principal
submatrix of An) with the Gohberg–Semencul formula as a preconditioner for An. The inverse of
Am can be generated recursively by using the formula until m is small enough. The construction of
the preconditioners requires only the entries of An and does not require the explicit knowledge of the
generating function f of An. We show that if f is a nonnegative, bounded, and piecewise continuous
even function with a finite number of zeros of even order, the spectra of the preconditioned matrices
are uniformly bounded except for a fixed number of outliers. Hence the conjugate gradient method,
when applied to solving the preconditioned system, converges very quickly. Numerical results are
included to illustrate the effectiveness of our approach.
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1. Introduction. An n-by-n matrix An with entries aij is said to be Toeplitz
if aij = ai−j . Toeplitz systems of the form Any = b occur in a variety of applica-
tions in mathematics and engineering [10]. In this paper, we consider the solution of
symmetric positive definite Toeplitz systems. There are a number of specialized fast
direct methods for solving such systems in O(n2) operations. The original references
for these algorithms are Levinson [27], Durbin [15], and Trench [41]. Superfast al-
gorithms of complexity O(n log2 n) operations for Toeplitz systems were proposed by
different groups of researchers, for instance, Bitmead and Anderson [5], Brent, Gus-
tavson, and Yun [6], Morf [28], de Hoog [21], Ammar and Gragg [1], and Huckle [24].
The key to these fast and superfast direct methods is to solve the Toeplitz system
recursively.

1.1. Fast direct Toeplitz solvers. In the Levinson–Durbin method, we begin
with the solution of the 1-by-1 system and then increase the order, using the lower-
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order solution to obtain the next higher-order solution recursively. We try to obtain
the so-called inverse Choleski factorization of An:

Rt
nAnRn = Dn,(1.1)

where Rn is unit upper triangular and Dn is diagonal. This is done via a block UDL
decomposition of A−1

m at each iteration:

A−1
m =

[
Im−1 xm−1

0t 1

] [
A−1

m−1 0
0t (δ(m−1))−1

] [
Im−1 0
xtm−1 1

]
, m = 2, . . . , n.

(1.2)

The vector xm−1 and the scalar δ(m−1) are called the Szegö vector and Schur param-
eter, respectively. Once we have Rn and Dn, the solution of the system Any = b is
given by RnD

−1
n Rt

nb, which can be computed easily by using the recurrence relation.
We note that the fast Toeplitz solver can be divided into two phases: the fac-

torization phase to obtain the inverse Choleski factors Rn and Dn of An, and the
solution phase to find A−1

n b. Both phases require O(n2) operations. However, once
we have the factors, the solution phase can be reduced to O(n log n) operations by
using the celebrated Gohberg–Semencul formula [17]:

A−1
m =

1

δ(m−1)
[L(1)

m (L(1)
m )t − L(2)

m (L(2)
m )t], m = 2, . . . , n,(1.3)

where δ(m−1) is described in (1.2), and L
(1)
m and L

(2)
m are lower triangular Toeplitz

matrices given by

L(1)
m =




l1 0 · · · 0 0
l2 l1 0 0
... l2 l1

. . .
...

lm−1
. . .

. . . 0
lm lm−1 · · · l2 l1




and L(2)
m =




0 0 · · · 0 0
lm 0 0 0
... lm 0

. . .
...

l3
. . .

. . . 0
l2 l3 · · · lm 0



,

respectively, with

xm = [l1, l2, . . . , lm]t.

We note that δ(m−1) = l1, and, since An is symmetric positive definite, we must have
δ(m−1) > 0; see [19]. The Gohberg–Semencul formula provides an explicit represen-
tation of A−1

m in terms of its first column. We wish to find xm by solving

Amxm = em,(1.4)

where

em = [1, 0, · · · , 0]t

is the first unit m-vector. From (1.3), we see that A−1
n b can be obtained via Toeplitz

matrix-vector multiplications, i.e., the use of fast Fourier transforms (FFTs), in
O(n log n) operations; see, for instance, [38]. We replace the lower and upper tri-
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angular factors in (1.3) with circulant and skew-circulant matrices and thus further
reduce the cost of the solution phase; see [2] or section 4.

In [1], Ammar and Gragg used the generalized Schur algorithm (a doubling pro-
cedure) to compute xm for A−1

m , where m = 2, 4, . . . , n/2, and use the Gohberg–
Semencul formula to obtain A−1

n b. A detail implementation in [1] shows that the
cost is O(n log2 n) operations. In [28, 5, 24], their superfast methods are based on
repeatedly dividing the original problem into two subproblems half the size, namely
the leading principal submatrix and the related Schur complement. All occurring
matrices are represented explicitly by proper generating vectors of their displacement
characterization. Recently, Huckle [24] showed that the resulting superfast method
takes about 81.25n log2 n + O(n log n) operations.

1.2. Outline. The method of the superfast Toeplitz solver can be viewed as an
approach to use A−1

m/2 to generate A−1
m . In this paper, we will consider our precondi-

tioners for Am from the same viewpoint. The main aim of this paper is to construct
our preconditioners for Am by using A−1

m/2 with the Gohberg–Semencul formula (cf.

(1.3)). The inverse of Am can be generated recursively by using the formula until m
is small enough. Finally, A−1

n b can be obtained again by using the Gohberg–Semencul
formula. We remark that the construction of the preconditioners requires only the
entries of Am and does not require explicit knowledge of the generating function
f of Am. We show that if f is a nonnegative, bounded, and piecewise continuous
even function with a finite number of zeros of even order, the spectra of the pre-
conditioned matrices are uniformly bounded except for a fixed number of outliers.
Hence the conjugate gradient method, when applied to solving these m-by-m precon-
ditioned Toeplitz systems, converges in O(logm) iterations. Using this result, we will
show that the complexity of solving such n-by-n Toeplitz systems is of O(n log2 n)
operations. In contrast, the nonpreconditioned systems will have condition numbers
growing like O(n2pmax), where pmax is the maximal order of the zeros of f , and hence
the complexity for solving the systems will be of order O(npmax+1 log n).

For the case where the generating function f is strictly positive and continuous,
we will show that the conjugate gradient method, when applied to solving these
preconditioned Toeplitz systems, converges superlinearly. Therefore, the complexity
of solving such n-by-n Toeplitz systems is of O(n log n) operations.

The outline of this paper is as follows. In section 2, we review the definition of
Toeplitz matrices and describe our recursive-based preconditioned conjugate gradient
(PCG) method by using the Gohberg–Semencul formula. In section 3, we analyze the
spectra of the preconditioned matrices. In section 4, we compare our method with
other iterative methods. Numerical results are given in section 5 to illustrate the
effectiveness of our approach. Finally, some concluding remarks are given.

2. Recursive-based method (RBM). To begin with, let C+ be the set of all
nonnegative, bounded, and piecewise continuous even functions defined on [−π, π].
The Fourier coefficients of a function f in C+ are given by

ak =
1

2π

∫ π

−π

f(θ)e−ikθ dθ, k = 0,±1,±2, . . . .

Clearly ak = a−k for all k. Let An be the n-by-n symmetric Toeplitz matrix with the
(i, j)th entry given by ai−j , i, j = 0, . . . , n−1. The function f is called the generating
function of the matrices An. We say that θ0 is a zero of f of order ν if f(θ0) = 0 and
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ν is the smallest positive integer such that f (ν)(θ0) �= 0 and f (ν+1)(θ) is continuous
in a neighborhood of θ0. By Taylor’s theorem,

f(θ) =
f (ν)(θ0)

ν!
(θ − θ0)ν + O((θ − θ0)ν+1)

for all θ in that neighborhood. If f is nonnegative, f (ν)(θ0) > 0 and ν must be even.
In the following, we denote the essential infimum and the essential supremum of

f by fmin and fmax, respectively. From the assumptions, we see that fmax �= fmin.
Then by using the fact that

ztAnz =
1

2π

∫ π

−π

∣∣∣∣∣∣
n∑

j=1

zje
i(j−1)θ

∣∣∣∣∣∣
2

f(θ)dθ(2.1)

for any f ∈ C+ and any n-vector z = (z1, . . . , zn)t, Chan [7, Lemma 1] proved that

λmin(An) > fmin.(2.2)

Here λmin(An) is the smallest eigenvalue of An. Since f is nonnegative and is not
identically zero, An is positive definite for all n.

In this paper, we consider that f attains fmin at finitely many points in [−π, π]
and that f is smooth around these points. More precisely, we assume that f(θ)−fmin

has finitely many zeros in [−π, π] and that the orders pj of these zeros are finite and
positive. Notice that the matrix An is unchanged when f is redefined at finitely many
points. Thus we can always assume without loss of generality that f is continuous
at those minimum points. We remark that the condition number of An generated by
such an f grows like O(n2pmax), where pmax = maxj pj ; see [32]. However, if fmin > 0,
then the condition number of An generated by such an f is bounded. The systems
Any = b will be solved by the RBM which has employed the PCG method with A−1

m

as preconditioners.
Our idea is to partition a Toeplitz matrix Am as the following form:

Am =

[
Am′ Tm′,m−m′

T t
m′,m−m′ Am−m′

]
,(2.3)

where Am′ and Am−m′ are principal submatrices of Am and Tm′,m−m′ = (am′+(l−k))k,l
is also an m′-by-(m−m′) Toeplitz matrix. We propose to use

Rm =

[
Am′ 0

0 Am−m′

]
(2.4)

as the preconditioner for Am with m > m′.
Given a Toeplitz system Anxn = en, we define a sequence of subsystems on

different levels:

Amxm = em, l ≤ m ≤ n,

where em is the first unit m-vector and l is the smallest size of the subsystem. The
matrix is inverted exactly at the level l. If An is symmetric positive definite, so are
Am′ , Am−m′ , A−1

m , and A−1
m−m′ . The procedure of our RBM is given as follows:
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Procedure RBM-I (Am,m,m′).
If m ≤ l, then xm := A−1

m em;

else

(i) construct A−1
m′ by xm′ via the Gohberg-Semencul formula (1.3);

xm′ := RBM-I (Am′ ,m′,m′
1), where m′

1 and m′ − m′
1 are the sizes

of Toeplitz systems in the next level.

(ii) construct A−1
m−m′ by xm−m′ via the Gohberg-Semencul formula

(1.3); xm−m′ := RBM-I (Am−m′ ,m−m′,m′
2), where m′

2 and m−m′−
m′

2 are the sizes of Toeplitz systems in the next level.

(iii) solve the linear system Amxm = em by using the

PCB method with Rm defined as in (2.4) as the preconditioner.

After we obtain the vector xn, we see from (1.3) that the solution A−1
n b can

be obtained via Toeplitz matrix-vector multiplications in O(n log n) operations. The
advantage of the RBM is that it not only solves n-by-n Toeplitz systems Anxn = en,
but it also solves other m-by-m Toeplitz systems Amxm = em. We remark that some
signal processing applications [22, 39] require us to solve different sizes of Toeplitz
systems to obtain the optimal filter.

Below we give a more efficient implementation of the RBM when m′ = m/2. Let

Jm =




0 0 · · · 1
...

... . .
. ...

0 1 · · · 0
1 0 · · · 0




be the m-by-m anti-identity matrix. We note that

Jm/2Am/2Jm/2 = Am/2, Jm/2T
t
m/2 = Tm/2Jm/2 = Hm/2,

and here Tm/2 = Tm/2,m/2 in (2.3) and Hm/2 is a Hankel matrix. It follows that[
Im/2 0

0 Jm/2

] [
Am/2 Tm/2

T t
m/2 Am/2

] [
Im/2 0

0 Jm/2

]
=

[
Am/2 Hm/2

Hm/2 Am/2

]
.(2.5)

Next we transform the matrix in the right-hand side of (2.5) into two Toeplitz-plus-
Hankel matrices:

1

2

[
Im/2 Im/2

Im/2 −Im/2

] [
Am/2 Hm/2

Hm/2 Am/2

] [
Im/2 Im/2

Im/2 −Im/2

]

=

[
Am/2 + Hm/2 0

0 Am/2 −Hm/2

]
.(2.6)

From (2.6), the solution of the linear system Amxm = em can be found by solving

(Am/2 + Hm/2)y
(1)
m/2 = em/2(2.7)

and

(Am/2 −Hm/2)y
(2)
m/2 = em/2,(2.8)

respectively. We recall that em/2 = [1, 0, . . . , 0]t is the first unit m/2-vector. By using
the transformation

xm =

[
Im/2 0

0 Jm/2

] [
Im/2 Im/2

Im/2 −Im/2

][
y
(1)
m/2

y
(2)
m/2

]
=

1

2

[
y
(1)
m/2 + y

(2)
m/2

Jm/2(y
(1)
m/2 − y

(2)
m/2)

]
,

(2.9)
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the linear system Amxm = em can be solved. Therefore, we need only to determine

y
(1)
m/2 and y

(2)
m/2 in (2.7) and (2.8), respectively. We note that

[
Im/2 Im/2

Im/2 −Im/2

]−1

=
1

2

[
Im/2 Im/2

Im/2 −Im/2

]

and [
Im/2 0

0 Jm/2

]−1

=

[
Im/2 0

0 Jm/2

]
.

Hence the matrices Am/2 ± Hm/2 are both positive definite. The procedure of our
RBM-I is rewritten as follows.
Procedure RBM-II (Am,m).

if m ≤ l, then xm := A−1
m em;

else

(i) construct A−1
m/2 by xm/2 via the Gohberg-Semencul formula (1.3);

xm/2 := RBM-II (Am/2,m/2);

(ii) solve linear systems (Am/2 + Hm/2)y
(1)
m/2 = em/2 and

(Am/2−Hm/2)y
(2)
m/2 = em/2 by using the PCG method with A−1

m/2 as the

preconditioner.

(iii) xm := [y
(1)
m/2 + y

(2)
m/2;Jm/2(y

(1)
m/2 − y

(2)
m/2)]/2.

In the next section, we analyze the performance of our proposed preconditioners
Rm.

3. The spectra of the preconditioned matrices. In this section, we study
the spectra of the preconditioned matrices R−1

m Am on different levels. We will need
the following theorem.
Theorem 3.1. Let Bm be an m-by-m symmetric matrix and Cm be an m-by-m

symmetric positive definite matrix. Let the eigenvalues λj of C−1
m Bm be arranged in

increasing order, i.e., λ1 ≤ λ2 ≤ · · · ≤ λm. Suppose Sk is a given k-dimensional
subspace of R

m, where 1 ≤ k ≤ m. If there exists a constant c1 independent of m
such that

xtBmx

xtCmx
≥ c1 ∀x ∈ Sk,

then

λm ≥ λm−1 ≥ · · · ≥ λm−k+1 ≥ c1.

Moreover, if there exists a constant c2 such that

xtBmx

xtCmx
≤ c2 ∀x ∈ Sk,

then

λ1 ≤ λ2 ≤ · · · ≤ λk ≤ c2.

Proof. The theorem can be proved by using Theorem 4.3.21 in [26, p. 191].
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Using the above theorem, we can derive the following corollary.
Corollary 3.2. Let Bm be an m-by-m symmetric matrix and Cm be an m-by-m

symmetric positive definite matrix. Suppose Ωp is an (m − p)-dimensional subspace
of R

m, where (1 ≤ p ≤ m/2). If there exists a constant γ > 0 such that∣∣∣∣xtBmx

xtCmx

∣∣∣∣ ≤ γ ∀x ∈ Ωp,(3.1)

then at least m− 2p eigenvalues of C−1
m Bm lie in the interval [−γ, γ].

Proof. Let c1 = −γ and c2 = γ in Theorem 3.1, respectively; then we have

−γ ≤ λp+1 ≤ · · · ≤ λm−p ≤ γ

by using the notation in Theorem 3.1.

3.1. The spectra of R−1
m Am. Next we have our main theorem which states

that the spectra of the preconditioned matrices are essentially bounded if f is a
function in C+ with multiple zeros of even order. We recall that f is not necessary to
be a continuous function on [−π, π].
Theorem 3.3. Let f ∈ C+ and have µ zeros of order 2pj at θj ∈ [−π, π] for

1 ≤ j ≤ µ. Let p =
∑µ

j=1 pj. Then there exist two positive constants α, β (α < β),

independent of m, such that for all m > p + 1, at most p + 1 eigenvalues of R−1
m Am

are outside the interval [α, β].
Proof. By definition of zeros (see section 2), such f can be written in the general

form

f(θ) =

µ∏
j=1

(θ − θj)
2pjh(θ),(3.2)

where h is a strictly positive function in C+ and continuous at {θj}µj=1. It follows that
there exist two positive constants γ1 and γ2 (independent of m) such that

γ1 ≤ f(θ)

gp(θ)
≤ γ2 ∀θ ∈ [−π, π],

where

gp(θ) =

µ∏
j=1

sin2pj

(
θ − θj

2

)
;

see [9].
Let z = (z0, z1, . . . , zm′−1, zm′ , . . . , zm−1)t ∈ R. We denote

q1(θ) =

m′−1∑
k=0

zke
ikθ

and

q2(θ) =

m−1∑
k=m′

zke
ikθ = eim

′θ
m−m′−1∑

k=0

zm′+ke
ikθ.
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We can get from [7, Theorem 1] that

ztAmz =

∫ π

−π

f(θ)|q1(θ) + q2(θ)|2dθ

and

ztRmz =

∫ π

−π

f(θ)|q1(θ)|2dθ +

∫ π

−π

f(θ)|q2(θ)|2dθ.

Therefore, we have

ztAmz = ztRmz +

∫ π

−π

f(θ)q1(θ)q2(θ)dθ +

∫ π

−π

f(θ)q2(θ)q1(θ)dθ.(3.3)

Next we study the spectrum of R−1
m Am or Im + R−1

m (Am −Rm).
For simplicity, we let s = �p/2�. We assume

Ω2s = {z = (z0, z1, . . . , zm−1)t ∈ R
m | zk = 0, k = m′ − s,m′ − s+ 1, . . . ,m′ + s− 1}.

We see that Ω2s is a subspace of R
m with the dimension m − 2s. For z ∈ Ω2s, we

obtain

∫ π

−π

f(θ)q1(θ)q2(θ)dθ =

∫ π

−π

f(θ)e−i(2s+1)θ


m′−s−1∑

k=0

zke
−i(m′−s−1+k)θ




·

m−m′−s−1∑

k=0

zk+m′+se
−ikθ


 dθ(3.4)

and

∫ π

−π

f(θ)q2(θ)q1(θ)dθ =

∫ π

−π

f(θ)ei(2s+1)θ


m′−s−1∑

k=0

zke
i(m′−s−1−k)θ




·

m−m′−s−1∑

k=0

zk+m′+se
ikθ


 dθ.(3.5)

Notice that 2s ≥ p and ∫ π

−π

eikθ = 0 ∀k �= 0;(3.6)

hence we have

∫ π

−π

gp(θ)q1(θ)q2(θ)dθ =

∫ π

−π

gp(θ)e−i(2s+1)θ


m′−s−1∑

k=0

zke
−i(m′−s−1+k)θ




·

m−m′−s−1∑

k=0

zk+m′+se
−ikθ


 dθ = 0 ∀z ∈ Ω2s
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and

∫ π

−π

gp(θ)q2(θ)q1(θ)dθ =

∫ π

−π

gp(θ)ei(2s+1)θ


m′−s−1∑

k=0

zke
i(m′−s−1−k)θ




·

m−m′−s−1∑

k=0

zk+m′+se
ikθ


 dθ = 0 ∀z ∈ Ω2s,

i.e.,

∫ π

−π

gp(θ)q1(θ)q2(θ)dθ =

∫ π

−π

gp(θ)q2(θ)q1(θ)dθ = 0.(3.7)

It follows by (3.3) and (3.7) that

∣∣∣∣zt(Am −Rm)z

ztRmz

∣∣∣∣
≤ | ∫ π

−π
[f(θ) − γ1gq(θ)]q1(θ)q2(θ)dθ| + | ∫ π

−π
[f(θ) − γ1gq(θ)]q2(θ)q1(θ)dθ|∫ π

−π
f(θ)(|q1(θ)|2 + |q2(θ)|2)dθ

≤ 2
∫ π

−π
[f(θ) − γ1gq(θ)]|q1(θ)||q2(θ)|dθ∫ π

−π
f(θ)(|q1(θ)|2 + |q2(θ)|2)dθ

≤
∫ π

−π
[f(θ) − γ1gq(θ)](|q1(θ)|2 + |q2(θ)|2)dθ∫ π

−π
f(θ)(|q1(θ)|2 + |q2(θ)|2)dθ

≤ 1 − γ1

γ2
∀z ∈ Ω2s.

The results follow by using Corollary 3.2.
Using the similar argument as in the proof of the above theorem, we show that if

f is a continuous function in C+ with multiple zeros of even order, then the spectra
of the preconditioned matrices are indeed clustered around 1.
Theorem 3.4. Let f be a continuous function in C+ and have µ zeros of order

2pj at θj ∈ [−π, π] for 1 ≤ j ≤ µ. Let p =
∑µ

j=1 pj. For any given ε > 0, there exists

a positive integer M such that for all m > M , at most M eigenvalues of R−1
m Am are

outside the interval [1 − ε, 1 + ε].
Proof. By definition of zeros, f (2pj) is continuous at {θj}µj=1; therefore h is con-

tinuous at {θj}µj=1. Since f is continuous on [−π, π], the function h in (3.2) is also
continuous on [−π, π]. For any given ε > 0, there exists a trigonometric polynomial q
of degree M ′ such that

|h(θ) − q(θ)| ≤ εhmin

2
∀θ ∈ [−π, π],

where hmin is the minimum value of the function h. It follows that

1 − ε

2
≤ f(θ)

gp(θ)q(θ)
≤ 1 +

ε

2
∀θ ∈ [−π, π].

The theorem follows by using the similar argument in the previous theorem by letting
γ1 = 1 − ε

2 and γ2 = 1 + ε
2 . Here M = p + M ′ + 1.
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3.2. The spectra of Im ± A−1
m Hm. When m′ = m/2, we need to study the

spectra of the preconditioned matrices Im ±A−1
m Hm on different levels.

Theorem 3.5. Let f ∈ C+ and have µ zeros of order 2pj at θj ∈ [−π, π] for
1 ≤ j ≤ µ. Let p =

∑µ
j=1 pj. Then there exist two positive constants α, β (α < β),

independent of m, such that for all m > p+1, at most p+1 eigenvalues of Im±A−1
m Hm

are outside the interval [α, β].
Proof. By similar arguments in Theorem 3.3, we note that

ztHmz =

m−1∑
k,l=0

a2m−(k+l)−1zkzl =

∫ π

−π

f(θ)eiθ

(
m−1∑
k=0

zke
i(m−k−1)θ

)2

dθ,(3.8)

where z is an m-vector. We can also get from [7, Theorem 1] that

ztAmz =

∫ π

−π

f(θ)

∣∣∣∣∣
m−1∑
k=0

zke
i(m−k−1)θ

∣∣∣∣∣
2

dθ.(3.9)

In this case, we let s = �p/2� and consider

Ωs = {z = (z0, z1, . . . , zm−1)t ∈ R
m | zk = 0, k = m− s, . . . ,m− 1}.

We see that Ωs is a subspace of R
m with the dimension m− s. Now we consider the

form

ztHmz

ztAmz
∀z ∈ Ωs.

According to the definition of Ωs, (3.8), and (3.9), we can get

ztHmz

ztAmz
=

∫ π

−π
f(θ)ei(2s+1)θ

(∑m−s−1
k=0 zke

i(m−s−1−k)θ
)2

dθ∫ π

−π
f(θ)

∣∣∣∑m−s−1
k=0 zkei(m−s−1−k)θ

∣∣∣2 dθ ∀z ∈ Ωs.(3.10)

By noting that 2s ≥ p and using (3.6), we have

∫ π

−π

gp(θ)ei(2s+1)θ

(
m−s−1∑
k=0

zke
i(m−s−1−k)θ

)2

dθ = 0.(3.11)

Since f − γ1gp ≥ 0, for all z ∈ Ωs, we have

∣∣∣∣ztHmz

ztAmz

∣∣∣∣ =

∣∣∣∣∣∣∣
∫ π

−π
(f(θ) − γ1gp(θ))ei(2s+1)θ

(∑m−s−1
k=0 zke

i(m−s−1−k)θ
)2

dθ∫ π

−π
f(θ)

∣∣∣∑m−s−1
k=0 zkei(m−s−1−k)θ

∣∣∣2 dθ
∣∣∣∣∣∣∣

≤
∫ π

−π
|f(θ) − γ1gp(θ)|

∣∣∣∑m−s−1
k=0 zke

i(m−s−1−k)θ
∣∣∣2 dθ∫ π

−π
f(θ)

∣∣∣∑m−s−1
k=0 zkei(m−s−1−k)θ

∣∣∣2 dθ
= 1 − γ1

∫ π

−π
gp(θ)

∣∣∣∑m−s−1
k=0 zke

i(m−s−1−k)θ
∣∣∣2 dθ∫ π

−π
f(θ)

∣∣∣∑m−s−1
k=0 zkei(m−s−1−k)θ

∣∣∣2 dθ
≤ 1 − γ1

γ2
.(3.12)

The result follows by using Corollary 3.2.
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Similar to Theorem 3.4, if f is a continuous function in C+ with multiple zeros of
even order, then the spectra of the preconditioned matrices are clustered around 1.
Theorem 3.6. Let f be a continuous function in C+ and have µ zeros of order

2pj at θj ∈ [−π, π] for 1 ≤ j ≤ µ. Let p =
∑µ

j=1 pj. For any given ε > 0, there exists

a positive integer M such that for all m > M , at most M eigenvalues of Im±A−1
m Hm

are outside the interval [1 − ε, 1 + ε].
We emphasize in Theorems 3.3–3.6 that we do not need explicit knowledge of

where the zero of f is in order to construct the preconditioners in our method. By
Theorem 3.3 (or Theorem 3.5) and using the fact that the smallest eigenvalue of
Im±A−1

m Hm tends to zero at the rate at most O(mpmax), the number of PCG iterations
required for convergence is of O(pmax logm); see [3].

Next we consider the case where the generating function f is strictly positive. We
note that the spectrum of Am is contained in [fmin, fmax], where fmin and fmax are
the minimum and maximum values of f ; see [7, Lemma 1]. Since fmin > 0, Am is
well-conditioned. In this case, the preconditioned system is also well-conditioned. By
Theorem 3.4 (or Theorem 3.6), its spectrum is also clustered around 1. In this case,
the PCG method, when applied to solving the preconditioned system, will converge
superlinearly; see, for instance, [10].

4. Comparisons with other iterative methods.

4.1. Circulant preconditioners. In 1986, Strang [38] and Olkin [29] indepen-
dently proposed the use of circulant matrices to precondition Toeplitz matrices in
conjugate gradient iterations. The details of circulant preconditioners for Toeplitz
matrices can be found in [10]. Recently, Chan, Yip, and Ng [13], Chan, Ng, and Yip
[11], and Potts and Steidl [30] have proposed using the generalized Jackson kernel to
construct circulant preconditioners for Toeplitz systems generated by a nonnegative
continuous function with a finite number of zeros of even order. Circulant precondi-
tioners based on Jackson kernels were proposed for the strictly positive case in [12] and
the nonnegative case in [33]. The results in [13, 11, 30] have shown that the conjugate
gradient method, when applied to solving circulant preconditioned Toeplitz systems
generated by nonnegative continuous functions, converges linearly. Therefore, the
complexity of solving n-by-n Toeplitz systems generated by nonnegative continuous
functions is of O(n log n) operations.

On the other hand, Yeung and Chan [43] have considered circulant preconditioners
for Toeplitz matrices generated by nonnegative, bounded piecewise continuous func-
tions. They have showed that the spectra of these circulant preconditioned Toeplitz
matrices cannot be clustered around one. More precisely, they have showed that for all
sufficiently small ε > 0, the number of eigenvalues of circulant preconditioned Toeplitz
matrices that lie outside (1− ε, 1 + ε) will be at least of O(log n). The number of iter-
ations required for convergence increases like O(log n) and hence the convergence rate
of the method cannot be superlinear. Therefore, the complexity of solving Toeplitz
systems generated by nonnegative, bounded, and piecewise continuous functions is of
O(n log2 n) operations.

In Table 4.1, we compare the theoretical convergence rates between the RBM
and the circulant preconditioning method. We see that the RBM is competitive for
ill-conditioned symmetric positive definite Toeplitz systems.

4.2. Banded Toeplitz preconditioners. Banded Toeplitz preconditioners have
also been proposed; see [7, 31, 37]. The basic idea behind these preconditioners is to
find a function g that matches the zeros of the generating function f . Then the pre-
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Table 4.1
The comparison of the theoretical results about the convergence rates between the RBM and the

circulant preconditioning method.

Continuous function Piecewise continuous function
Positive Nonnegative Positive Nonnegative

Recursive-based converges in converges in
PCG superlinearly O(logn) linearly O(logn)

method iterations iterations
Circulant converges in converges in

preconditioning superlinearly linearly O(logn) O(logn)
method iterations iterations

conditioners are constructed based on the function g. These approaches work when
knowledge of the position, number, and order of the zeros of the generating function
f is known. In [37], Serra has proposed an algorithm to economically determine the
knowledge of the generating function allowing us to choose and define the banded
Toeplitz preconditioner.

4.3. Multigrid methods. In the literature, Fiorentino and Serra [16], Chan,
Chang, and Sun [8], Huckle [25], Serra [35], and Sun, Jin, and Chang [40] have
considered the use of multigrid method for solving ill-conditioned Toeplitz systems.
Their idea is to generate a sequence of Toeplitz subsystems on different levels by
interpolation and restriction operators. However, their generated Toeplitz matrices
are not the principal submatrices of An. Compared with their multigrid methods, our
method requires no coarse grid corrections at all that may be viewed as a “one-way”
multigrid.

4.4. Computational cost. In this subsection, we analyze the computational
costs of our method and compare it with other iterative methods.

The main cost for each subsystem depends on the matrix-vector multiplications
Amv and Rmv vector v in each PCG iteration. For each subsystem, Amv can be
computed in two 2m-length FFTs; see, for instance, [10]. For the preconditioner Rm,
we need to compute two matrix-vector products A−1

m′v and A−1
m−m′v; see (2.4). The

details of fast structured matrix-vector multiplications can be found in [20].
By using the Gohberg–Semencul formula, we have

A−1
k =

1

δ(k−1)
[L

(1)
k (L

(1)
k )t − L

(2)
k (L

(2)
k )t] ∀k ≥ 2,

where L
(1)
k and L

(2)
k are lower and upper triangular Toeplitz matrices, respectively,

given in (1.3). Because of the displacement structure of Toeplitz matrices, we have

JkA
−1
k Jk = A−1

k , Jk(L
(i)
k )tJk = L

(i)
k , JkL

(i)
k Jk = (L

(i)
k )t, i = 1, 2.

It follows that

A−1
k =

1

δ(k−1)
[L

(1)
k (L

(1)
k )t − L

(2)
k (L

(2)
k )t] =

1

δ(k−1)
[(L

(1)
k )tL

(1)
k − (L

(2)
k )tL

(2)
k ].

We also note from (1.3) that L
(1)
k + (L

(2)
k )t is a circulant matrix and L

(1)
k − (L

(2)
k )t is

a skew-circulant matrix. Thus the matrix [L
(1)
k (L

(1)
k )t −L

(2)
k (L

(2)
k )t] can be expressed

as the products of circulant and skew-circulant matrices:

[L
(1)
k (L

(1)
k )t − L

(2)
k (L

(2)
k )t]

=
1

2
{[L

(1)
k + (L

(2)
k )t][(L

(1)
k )t − L

(2)
k ] + [(L

(1)
k )t + L

(2)
k ][L

(1)
k − (L

(2)
k )t]}.
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Since

[(L
(1)
k )t + L

(2)
k ][L

(1)
k − (L

(2)
k )t]Jk = Jk[L

(1)
k + (L

(2)
k )t][(L

(1)
k )t − L

(2)
k ],

we have

[L
(1)
k (L

(1)
k )t − L

(2)
k (L

(2)
k )t]v

= [L
(1)
k + (L

(2)
k )t][(L

(1)
k )t − L

(2)
k ]v + [L

(1)
k + (L

(2)
k )t][(L

(1)
k )t − L

(2)
k ]Jkv.

Therefore, the matrix-vector multiplication A−1
k v is just equal to

1

2δ(k−1)
(Real(z) + JkImag(z)),

where

z = [L
(1)
k + (L

(2)
k )t][(L

(1)
k )t − L

(2)
k ](v + iJkv),

and Real(z) and Imag(z) denote the real and imaginary parts of z. The circulant
and skew-circulant matrix-vector products can be computed efficiently by using FFTs.
Therefore, A−1

k v can also be computed in roughly the same amount of time by two
2k-length FFTs. Thus the total cost per iteration for each subsystem is about two
2m-length, 2m′-length, and 2(m−m′)-length FFTs. In particular, when m′ = m/2,
the total cost per iteration for each subsystem is about four 2m-length FFTs.

In comparison, the circulant PCG method requires two 2m-length FFTs and two
m-length FFTs per iteration for the multiplication of m-by-m Toeplitz and circu-
lant matrix-vector products; see [10]. A more efficient implementation of circulant
preconditioners can be found in [23]. The band-Toeplitz PCG method requires two
2m-length FFTs and one band-solver where the bandwidth depends on the order of
the zeros [7]. For the multigrid method for solving Toeplitz systems, the total cost per
iteration is about eight 2m-length FFTs. Thus when m′ = m/2, the cost per iteration
of using RBM is about 4/3 times that required by the circulant PCG method [10], 2
times that required by the band-Toeplitz PCG method, and half of that required by
the multigrid method.

Next we estimate the total cost of the RBM for solving an n-by-n symmetric
positive definite Toeplitz system with n = 2ν . For simplicity, we consider the case of
m′ = m/2 in each level. Let l be the smallest size of the subsystem in the RBM (cf.
section 2). Therefore, our scheme will solve k subsystems with

l =
n

2ν−k
.

According to Theorem 3.5, the number of iterations required for convergence for
the 2ν−j-by-2ν−j subsystem is about cj(ν − j) (1 ≤ j ≤ k). Here cj are constants
independent of n. It follows that the total cost of the RBM is about

8

k∑
j=1

cj(ν − j) fcost(2ν−j+1),

where fcost(m) denotes the cost of an m-length FFT. The cost of an m-length FFT
is roughly the twice the cost of an m/2-length FFT. Hence the total cost of the RBM
is roughly bounded by

16 max
1≤j≤k

cj fcost(2n)ν ≈ O(n log2 n).(4.1)
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Table 4.2
The comparison of the theoretical complexities between the RBM and the circulant precondi-

tioning method.

Continuous function Piecewise continuous function
Positive Nonnegative Positive Nonnegative

RBM O(n logn) O(n log2 n) O(n logn) O(n log2 n)

Circulant preconditioning O(n logn) O(n logn) O(n log2 n) O(n log2 n)

When the original Toeplitz system is well-conditioned (the number of iterations re-
quired for convergence for 2ν−j-by-2ν−j subsystem is about cj (1 ≤ j ≤ k)), the total
cost of the RBM is O(n log n) operations. In Table 4.2, we compare the theoretical
complexities between the RBM and the circulant preconditioning. We see that the
RBM is better than the circulant preconditioning when the generating function is
positive and piecewise continuous.

We note that the RBM not only solves n-by-n Toeplitz systems, but also solves
Toeplitz systems of sizes n/2-by-n/2, n/4-by-n/4, . . . , l-by-l together. However, if we
have a procedure that costs at most qn log n operations (q is a fixed universal constant)
for solving n-by-n Toeplitz systems, then the cost of solving any set of Toeplitz linear
systems of size m-by-m with m ∈ {n, n/2, n/4, . . . , 1} is of order 2qn log n plus lower
order terms. In particular, by using the circulant preconditioning method, the total
cost of solving all Toeplitz systems of sizes n-by-n, n/2-by-n/2, n/4-by-n/4, . . . , l-by-l
is of O(n log n) operations which is less expensive than that of using the RBM (cf.
(4.1)).

In the next section, we will demonstrate the effectiveness of the RBM by some
numerical examples. We will show that the total computational cost of the RBM
for solving all the systems together is less than that of the circulant preconditioning
method (cf. Table 5.7). We will also compare the performance of the RBM with the
other iterative methods such as the banded Toeplitz preconditioning method and the
multigrid method.

5. Numerical examples. In this section, we apply the RBM in section 2 to
solve symmetric positive definite Toeplitz systems Anxn = en for n = 128, 256, 512,
1024, and 2048. The initial guess is the zero vector. The stopping criteria at the
finest level and at the coarser levels are ‖rq‖2/‖r0‖2 ≤ 1× 10−7 and ‖rq‖2/‖r0‖2 ≤ τ ,
respectively, where rq is the residual vector after q iterations. In the tests, the coarsest
level is n = 64, and different stopping criteria for τ (= 1 × 10−3, 1 × 10−4, 1 × 10−7)
are used.

In Tables 5.1–5.4, we give the number of iterations required for convergence by
using Rn as the preconditioner for solving n-by-n Toeplitz systems; see the column
under R(τ). We remark that the preconditioners are constructed recursively. For
instance, when we solve A512x512 = e1, the preconditioners are constructed by solving
two Toeplitz systems A256x256 = e1 and A128x128 = e1 using the PCG method with
the stopping criteria being τ , and using the direct solver for A64x64 = e1.

For comparison, we also give the number of iterations by the full multigrid method
(M) [8], the PCG method with no preconditioner (I), the Strang circulant precondi-
tioner (S) [38], the T. Chan circulant preconditioner (T ) [14], the Jackson kernel-type
preconditioner (J) of order 6 [13], and also the banded preconditioner (B) [7]. More-
over, the double asterisk ** in the tables signifies that more than 200 iterations are
required. We also note that the Strang preconditioner in general is not positive def-
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Table 5.1
Number of iterations for well-conditioned systems.

θ4 + 1

n I S C J B R(1× 10−3) R(1× 10−4) R(1× 10−7)
128 71 7 8 7 15 5 5 5
256 78 7 7 7 17 5 5 5
512 80 7 7 7 17 5 5 5
1024 81 7 7 7 17 5 4 4
2048 82 7 7 7 17 4 4 4

Table 5.2
Number of iterations for functions with order 2 zeros.

θ2

n I S C J B M R(1× 10−3) R(1× 10−4) R(1× 10−7)
128 170 – 16 10 10 12 5 5 5
256 ** – 20 10 10 12 5 5 5
512 ** – 24 9 10 12 5 5 5
1024 ** – 32 9 10 12 5 5 5
2048 ** – 43 9 10 12 6 5 5

(θ2 − 1)2

n I S C J B R(1× 10−3) R(1× 10−4) R(1× 10−7)
128 ** 9 30 14 11 6 6 6
256 ** 10 27 14 12 6 6 6
512 ** 8 36 13 12 6 6 6
1024 ** 12 46 13 12 6 6 6
2048 ** 13 52 13 12 6 6 6

θ2(π2 − θ2)2

n I S C J B R(1× 10−3) R(1× 10−4) R(1× 10−7)
128 119 10 17 11 13 6 6 6
256 ** 13 20 11 14 6 6 6
512 ** 15 26 11 14 6 6 6
1024 ** 17 33 12 15 6 6 6
2048 ** 19 46 12 16 6 6 6

J(θ)

n I S C J B M R(1× 10−3) R(1× 10−4) R(1× 10−7)
128 81 19 17 12 14 8 8 8 8
256 173 24 21 13 15 8 8 8 8
512 ** 46 27 13 15 8 9 9 9
1024 ** 81 34 14 15 8 9 9 9
2048 ** 105 51 16 15 8 9 9 9

inite; see [10]. When some of the eigenvalues are negative, we denote the iteration
number by “–” as the PCG method does not apply to nondefinite systems and the
solution thus obtained may be inaccurate.

The first test function in Table 5.1 is a positive function and therefore corresponds
to a well-conditioned system. Notice that the number of iterations for the nonprecon-
ditioned systems tends to a constant when n is large, indicating that the convergence
is linear. In this case, we see that all preconditioners work well and the convergence
is fast. We also remark that the full multigrid method cannot be applied to this test
function since the order of the minimum point of θ4 + 1 is 4; see [8].
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Table 5.3
Number of iterations for functions with order 4 zeros.

θ4

n I S C J B R(1× 10−3) R(1× 10−4) R(1× 10−7)
128 ** – 71 16 24 7 7 7
256 ** – 161 18 27 8 8 8
512 ** – 167 17 29 8 8 8
1024 ** – ** 18 30 9 10 10
2048 ** – ** 19 31 19 15 11

θ4(π2 − θ2)

n I S C J B R(1× 10−3) R(1× 10−4) R(1× 10−7)
128 ** – 33 18 24 8 8 8
256 ** – 45 18 26 8 8 8
512 ** – 60 18 29 11 11 11
1024 ** – 82 21 30 12 12 12
2048 ** – 135 22 32 15 14 13

Table 5.4
Number of iterations for other functions.

|θ|
n I S C J B R(1× 10−3) R(1× 10−4) R(1× 10−7)
128 56 8 9 8 7 6 6 6
256 77 8 9 8 7 6 6 6
512 110 8 10 8 7 6 6 6
1024 144 8 10 9 7 7 6 6
2048 ** 8 10 9 7 7 7 7

|θ|3
n I S C J B R(1× 10−3) R(1× 10−4) R(1× 10−7)
128 ** – 41 13 53 7 7 7
256 ** – 62 12 55 8 8 8
512 ** – 98 14 56 8 8 8
1024 ** – 152 15 58 9 9 9
2048 ** – ** 15 59 15 10 10

The four test functions in Table 5.2 are nonnegative functions with single or
multiple zeros of order 2 on [−π, π]. They are θ2, (θ2 − 1)2, θ2(π2 − θ2)2, and

J(θ) =

{
θ2, |θ| ≤ π/2,
1, |θ| > π/2.

Thus the condition numbers of the Toeplitz matrices are growing like O(n2), and hence
the number of iterations required for convergence without using any preconditioners is
increasing like O(n). Moreover, since the zero of (θ2−1)2 is not at θ = 0, the multigrid
method cannot be applied directly; see [8]. Recently, Huckle [25] proposed a method
to handle this case. We remark that the construction of circulant preconditioners
and our preconditioners requires only the entries of An and does not require explicit
knowledge of the zero of the generating function.

We note from Table 5.2 that for these generating functions, the number of it-
erations required for convergence by using T. Chan preconditioner increases as n
increases. The PCG with the Strang, Jackson circulant preconditioners and banded
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Table 5.5
Numbers of outliers of the preconditioned matrices for θ2.

R(1× 10−3) R(1× 10−4) R(1× 10−7) J
n ε = 0.1 ε = 0.01 ε = 0.1 ε = 0.01 ε = 0.1 ε = 0.01 ε = 0.1 ε = 0.01
64 1 2 1 2 1 2 5 12
128 1 2 1 2 1 2 5 12
256 1 2 1 2 1 2 5 12
512 1 2 1 2 1 2 5 12

Table 5.6
Number of outliers of the preconditioned matrices for θ4.

R(1× 10−3) R(1× 10−4) R(1× 10−7) J
n ε = 0.1 ε = 0.01 ε = 0.1 ε = 0.01 ε = 0.1 ε = 0.01 ε = 0.1 ε = 0.01
64 2 3 2 3 2 3 17 35
128 2 4 2 3 2 3 16 36
256 3 5 2 3 2 3 16 36
512 4 8 3 4 2 3 16 36

preconditioners, the multigrid method, and the RBM perform quite well. However,
the number of iterations required by the RBM is less than those required by the other
methods. We find that for different τ (the stopping criteria at the coarser levels), the
numbers of iterations required by the RBM are about the same.

We also consider two functions with zeros of order 4. They are θ4 and θ4(π2−θ2).
The condition number of Toeplitz matrices will increase like O(n4), and the matrices
will be very ill-conditioned even for moderate n. We remark again that the full multi-
grid method [8] cannot be applied to solving Toeplitz systems generated by a function
with zeros of order 4. Recently, Serra [35] also presented a new multigrid scheme to
handle generating function with zeros of higher order. However, the numerical results
are not given. We see from Table 5.3 that both the Strang and T. Chan circulant
preconditioners do not work. In fact, Tyrtyshnikov [42] has proved that the Strang
[38] and the T. Chan [14] preconditioners both fail in this case. Other transform
based preconditioners also fail; see [4]. The RBM, the Jackson circulant precondi-
tioners, and the banded preconditioners perform quite well. However, the number
of iterations required by the RBM is less than those required by the other methods.
However, when τ is large (i.e., the stopping criteria at the coarser levels are large),
the RBM needs more iterations to converge at the finest level. In Table 5.4, we test
functions that our theory does not cover. The first two functions are not differentiable
at their zeros. Table 5.4 shows that both the Jackson circulant preconditioners and
the RBM perform quite well.

To further compare the clustering property of our proposed preconditioner and
the Jackson circulant preconditioner, we give in Tables 5.5 and 5.6 the numbers of
outliers of the preconditioned matrices outside the interval (1− ε, 1 + ε). We see that
the spectra of our preconditioned matrices are more clustered than those of Jackson-
type kernel preconditioned matrices. The number of outliers keeps the same for the
generating function θ2. However, we find that for the generating function θ4, the
number of outliers of our preconditioned matrices increases when τ is large.

Next we compare the computational cost of the RBM and the circulant precon-
ditioning method with the Jackson kernel-type preconditioner. In Figures 5.1 and
5.2, we show the number flops required to solve Anxn = en for n = 128, 256, 512,
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Fig. 5.1. Number of flops required for different preconditioners. J: ......x...... , R(1 × 10−3):
—–o—– , R(1× 10−4): -.-.-.+-.-.-. , R(1× 10−7): - - - * - - - .
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Fig. 5.2. Number of flops required for different preconditioners. J: ......x...... , R(1 × 10−3):
—–o—– , R(1× 10−4): -.-.-.+-.-.-. , R(1× 10−7): - - - * - - - .

1024, and 2048. We see from the figures that the circulant preconditioning method
is more efficient than the RBM. The numbers of flops required by the RBM for dif-
ferent generating functions are greater than those by the circulant preconditioning
method. However, their differences in the numbers of flops are not significant. We
find that the computational cost of the RBM is roughly 1.5 times that of the circulant
preconditioning method with the Jackson circulant preconditioner.

In Table 5.7, we list the numbers of flops required to solve Toeplitz systems of sizes
128, 256, 512, 1024, and 2048 together. For circulant preconditioners, these numbers
are shown in brackets under the column J . Since the RBM with τ = 1 × 10−7 not
only solves 2048-by-2048 Toeplitz systems but also solves Toeplitz systems of sizes
128, 256, 512, and 1024 together, these numbers are just the same as the numbers
shown in Figures 5.1 and 5.2. We find in the table that the total computational cost
of the RBM for solving all the systems together is on average about 7/9 times that
of the circulant preconditioning method with the Jackson circulant preconditioner.
Therefore, the RBM is more efficient if we want to solve several Toeplitz systems of
different sizes together.

5.1. Block-Toeplitz systems. In this subsection, we remark that our recursive-
based PCG method can be adapted to handle kn-by-kn symmetric positive definite
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Table 5.7
Total numbers of million flops required for different generating functions.

Generating function J R Ratio of the computational cost of the RBM
over that of the circulant preconditioning method

θ4 + 1 5.80 4.74 0.82
θ2 7.53 5.64 0.75
(θ2 − 1)2 10.85 6.75 0.62
θ2(π2 − θ2)2 9.79 6.75 0.69
J(θ) 12.33 10.17 0.82
θ4 15.24 10.30 0.68
θ4(π2 − θ2) 17.37 13.65 0.79
|θ| 7.30 6.86 0.94
|θ|3 12.16 10.86 0.89

block-Toeplitz matrices

Tk,n =




A(0) A(1) · · · A(n−2) A(n−1)

A(1) A(0) A(1) A(n−2)

... A(1) A(0) . . .
...

A(n−2) . . .
. . . A(1)

A(n−1) A(n−2) · · · A(1) A(0)



,

where each A(i) is a k-by-k symmetric matrix. We are interested in solving the block-
Toeplitz linear system

Tk,nX = B,

where X and B are kn-by-k matrices. For multilevel Toeplitz matrices, Serra and
Tyrtyshnikov [36] proved that multilevel circulant preconditioners cannot produce a
superlinearly convergence rate in general.

To modify the recursive-based PCG method for the block-Toeplitz system, we
first note the following results of Gohberg and Heinig [18]:

T−1
k,m = Ψ

(1)
k,mΦk,m(Ψ

(1)
k,m)t − Ψ

(2)
k,mΦk,m(Ψ

(2)
k,m)t, m = 2, 3, . . . , n,(5.1)

where Ψ
(1)
k,m and Ψ

(2)
k,m are km-by-km lower triangular block Toeplitz matrices given

by

Ψ
(1)
k,m =




V (1) 0 · · · 0 0
V (2) V (1) 0 0

... V (2) V (1) . . .
...

V (m−1) . . .
. . . 0

V (m) V (m−1) · · · V (2) V (1)




and

Ψ
(2)
k,m =




0 0 · · · 0 0
V (m) 0 0 0

... V (m) 0
. . .

...

V (3) . . .
. . . 0

V (2) V (3) · · · V (m) 0



,
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Table 5.8
Number of Iterations required for the matrix-valued generating function with k = 3.

n R(1× 10−3) R(1× 10−4) R(1× 10−7)
64 3 3 3
128 3 3 2
256 2 2 2
512 2 2 2

respectively, and

Φk,m =




(V (1))−1

(V (1))−1

. . .

(V (1))−1




with

Tk,m




V (1)

V (2)

...
V (m)


 =




I
0
...
0


 .

We remark that V (i) are k-by-k matrices. Similar to the case of the Toeplitz matrix,
in the block case, we consider using

Rk,m =

[
Tk,m′ 0

0 Tk,m−m′

]

as the preconditioner for Tk,m with m > m′. The RBM can be derived similarly as in
section 2. In Table 5.8, we show the numbers of iterations required for convergence
for the block-Toeplitz systems [34] generated by the following matrix-valued function:

 θ2 + 1 |θ| θ2

|θ| θ2 + 1 |θ|
θ2 |θ| 2θ2 + 1


 .

In this test, the stopping criteria at the finest level and at the coarser levels are
‖rq‖2/‖r0‖2 ≤ 1 × 10−7 and ‖rq‖2/‖r0‖2 ≤ τ = 1 × 10−3, 1 × 10−4, 1 × 10−7, respec-
tively. The coarsest level is n = 32. Numerical results show that our method is quite
efficient. We plan to investigate the block case of the RBM in future research.

In summary, we have developed the recursive-based PCG method using the
Gohberg–Semencul formula to solve symmetric positive definite, but ill-conditioned,
Toeplitz systems. Theoretical and numerical results are given to illustrate the fast
convergence of the method.
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