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Transport of a Brownian particle moving in a periodic potential is investigated in the presence of a sym-
metric unbiased external force. The viscous medium is alternately in contact with two heat reservoirs. We
present the analytical expression of the net current at the quasi-steady-state limit. It is found that the compe-
tition of the asymmetric parameter of the potential with the temperature difference leads to phenomena like
current reversal. The competition between the two driving factors is a necessary but not a sufficient condition
for current reversals.
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I. INTRODUCTION

Transport phenomena play a crucial role in many pro-
cesses from physical and biological to social systems. There
has been increasing interest in transport properties of nonlin-
ear systems which can extract usable work from unbiased
nonequilibrium fluctuations �1–4�. This comes from the de-
sire to understand molecular motors �5�, nanoscale friction
�6�, surface smoothing �7�, coupled Josephson junctions �8�,
optical ratchets and directed motion of laser-cooled atoms
�9�, and mass separation and trapping schemes at the
microscale �10�.

The focus of research has been on noise-induced unidirec-
tional motion over the last decade. A ratchet system is gen-
erally defined as a system that is able to transport particles in
a periodic structure with nonzero macroscopic velocity in the
absence of macroscopic force on average. In these systems,
directed Brownian motion of particles is generated by non-
equilibrium noise in the absence of any net macroscopic
forces and potential gradients. Typical examples are rocking
ratchets �4,11�, flashing ratchets �12�, diffusion ratchets �13�,
correlation ratchets �4,14�, and white-shot-noise ratchets �2�.
In all these studies, the potential is taken to be asymmetric in
space. It has also been shown that a unidirectional current
can also appear for spatially symmetric potentials if there
exists an external random force either asymmetric or spa-
tially dependent. If spatially periodic structures are exposed
to additive Poissonian white shot noise of zero average, a
macroscopic current occurs even in the absence of spatial
asymmetry �2�.

The current reversal is very important in new particle
separation devices such as electrophoretic separation of mi-
croparticles �15�. It is also of interest in biology �32�. Mo-
tions of macromolecules are probably responsible for the
vesicle transport inside eukaryotic cells. A typical example is
the motion of proteins along a microtubule, modeled usually
by a ratchet �29�. It is well known that the two typical pro-
teins kinesins and dyneins move along tubulin filaments in
opposite directions. This can be explained by the current
reversal.

Current reversal in ratchet systems can be engendered by
varying the system parameters �16–28�. The current can be

reversed, for example, by a noise of Gaussian force with a
nonwhite power spectrum in the presence of a stationary pe-
riodic potential �19�. The current reversal can also be ob-
tained in two-state ratchets if the long arm is kinked �20�.
Bier and Astumian �21� have also found current reversal in a
fluctuating three-state ratchet. In the presence of a kangaroo
process as the driving force, the current reversal can be trig-
gered by varying the noise flatness, the ratio of the fourth
moment to the square of the second moment �22�. The cur-
rent reversal can be induced by both an additive Gaussian
white and an additive Ornstein-Uhlenbeck noise in a corre-
lation ratchet �23�. The current reversal also appears in
forced inhomogeneous ratchets �17,18�.

The previous works on current reversal are limited to the
case of one heat reservoir. The present study extends the
study of current reversal to the case of two heat reservoirs.
When a positive driving factor competes with a negative one,
the current may reverse its direction. The competition be-
tween the competitive driving factors is necessary but not
sufficient for the current reversal. Our emphasis is on finding
the conditions that generate current reversal. This is achieved
by using a quasi-steady-state limit to solve the Fokker-
Planck equation.

II. NET CURRENT OF THE THERMAL RATCHET

Consider a Brownian particle moving in a sawtooth po-
tential with an unbiased external force where the medium is
alternately in contact with two heat reservoirs. This model
was first proposed to describe molecular motor in biological
systems �29�. The particle motion satisfies the dimensionless
Langevin equation of motion �30,31�

m
d2x

dt2 = − �
dx

dt
−

dU�x�
dx

+ F�t� + �2kBT�x����t� , �1�

where x stands for the position of the Brownian particle, m
the mass of the particle, � the viscous friction drag coeffi-
cient, kB the Boltzmann constant, and T�x� the absolute
temperature. ��t� is a randomly fluctuating Gaussian white
noise of zero mean and the autocorrelation function
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���t���s��=��t−s�. Here �¯� denotes an ensemble average
over the distribution of the fluctuating forces ��t�. F�t� is an
external periodic force �Fig. 1�b��, satisfying

F�t + �� = F�t�, �
0

�

F�t�dt = 0. �2�

The geometry of the symmetric potential U�x�=U�x+L�
is displayed in Fig. 1�a� and U�x� within the interval 0�x
�L is described by

U�x� = 	
U

L1
x , 0 � x � L1,

U

L2
�L − x� , L1 � x � L ,
 �3�

where L=L1+L2 is the period of the potential. The tempera-
ture T�x� has the same period as the potential U�x�. There-
fore, T�x�=T�x+L�,

T�x� = �T + � , 0 � x � L1,

T , L1 � x � L .
� �4�

Because the motion of the ratchet is highly overdamped in
general �30�, the inertia term can be neglected. Hence, Eq.
�1� reduces, when �=1 and kB=1, to

dx

dt
= −

dU�x�
dx

+ F�t� + �2T�x���t� . �5�

The probability density satisfies the associated Fokker-
Planck equation �30,31�

�P�x,t�
�t

=
�

�x

�U��x� − F�t��P�x,t� +

�

�x
�T�x�P�x,t���

= −
� j�x,t�

�x
, �6�

j�x,t� = − �U��x� − F�t��P�x,t� −
d

dx
�T�x�P�x,t��; �7�

here j is the probability current density. The prime stands for
the derivative with respect to the space variable x. P�x , t� is
the probability density for the particle at position x and at
time t. It satisfies the normalization condition and the peri-
odicity condition,

P�x,t� = P�x + L,t� , �8�

�
0

L

P�x,t�dx = 1. �9�

If F�t� changes very slowly with respect to t, namely, its
period is longer than any other time scale of the system,
there exists a quasi-steady-state. In this case, by following
the method in �30,31�, we can obtain the current j(F�t�) from
Eqs. �7�–�9�,

j„F�t�… =
− Q

G1G2 + HQ
, �10�

where Q, G1, G2, and H are

Q = ea−b − 1,

G1 =
L + 	

2a�T + ��
�1 − e−a� +

L − 	

2bT
e−a�eb − 1� ,

G2 =
L + 	

2a
�ea − 1� +

L − 	

2b
ea�1 − e−b� ,

H = A + B + C ,

A =
1

T + �

L + 	

2a
�2

�a + e−a − 1� , �11�

FIG. 1. Potential and driving force. �a� Potential U�x�
=U�x+L�; U�x� is a piecewise linear and periodic potential; the
period of the potential is L=L1+L2; 	=L1−L2; the temperature
profile is also shown. �b� Driving force F�t� which preserved the
zero mean �F�t��=0; F�t+��=F�t�; F0 is amplitude of F�t�.
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B =
L2 − 	2

4abT
�1 − e−a��eb − 1� ,

C =
1

T

L − 	

2b
�2

�eb − 1 − b� , �12�

a =
2U0 − F�t��L + 	�

2�T + ��
,

b =
2U0 + F�t��L − 	�

2T
. �13�

The average current is

J =
1

�
�

0

�

j„F�t�…dt , �14�

where � is the period of the driving force F�t�. � is assumed
to be longer than any other time scale of the system at quasi-
steady-state. For the external force F�t� shown in Fig. 1�b�,

J =
1

2
�j�F0� + j�− F0�� . �15�

When both the potential and the temperature are symmet-
ric ��=0, F0=0�, the current J reduces to

J =
1

2�2T + ��
U0

2L
�2
 1

eU0/�T+�� − 1
−

1

eU0/T − 1
� . �16�

Therefore, the net current is not zero even when both the
potential and the temperature are spatially symmetric. The
direction of the current is determined by the sign of �. The
particle tends to move from the high- to the low-temperature
region. In fact, this agrees with the diffuse law.

III. RESULTS AND DISCUSSION

Figure 2 shows the current J as a function of the asym-
metric parameter 	 of the potential at �=0. The current is
negative for 	�0, zero at 	=0, and positive for 	
0.
Therefore, we can have the current reversal by changing the
sign of 	, the asymmetry of the potential.

Figure 3 shows the current J versus temperature differ-
ence � in a symmetric potential 	=0. The temperature dif-
ference � controls not only the magnitude but also the direc-
tion of the current. When �=0 and 	=0, there is no current.
For asymmetric potentials, varying the temperature differ-
ence is another way of inducing a net current.

The current J as a function of T is shown in Fig. 4 for
different combinations of 	 and �. The curve is observed to
be bell shaped, which shows the feature of resonance. When
T→0, J tends to zero for all values of � and 	. Therefore,
the particle cannot pass the barrier and there is no current.
When T→� so that the thermal noise is very large, the
ratchet effect disappears and J→0, also. There is an opti-

FIG. 2. Current J versus asymmetric parameter 	 of the poten-
tial at U0=5, F0=3.0, L=1.0, T=1.0, and �=0.

FIG. 3. Current J versus temperature difference � at U0=5,
F0=3.0, L=1.0, T=10, and 	=0.

FIG. 4. Current J versus temperature T for different asymmetric
parameters � and 	 at U0=5, F0=3.0, and L=1.0.
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mized value of T at which the current J takes its maximum
value. There is no current reversal at �=0.1, 	=0.9; �=0.1,
	=0.1; �=−0.1, 	=−0.1; and �=−0.1, 	=−0.9. In fact, the
temperature cannot lead to current reversal if 	�
0
�Figs. 2–4�.

In Fig. 5�a�, we plot the current J as a function of tem-
perature T for different combinations of 	 and �. When the
temperature difference ��=0.1� is positive, the current may
reverse its direction on increasing temperature for negative
	 �	=−0.8�. It is observed that the current reversal may
occur for negative � and positive 	 ��=−0.1,	=0.8�. We
can also have the current reversal twice at �=0.1, 	=−0.4
�Fig. 5�b��. Therefore, there may exist current reversal

for 	��0. However, 	��0 is not a sufficient condition
for current reversal. For example, the current is always posi-
tive for �=0.1, 	=−0.3 and negative for �=−0.1, 	=0.2
�Fig. 5�a��.

In order to illustrate the current reversal in detail, the
current contours are shown in Figs. 6 and 7, respectively.
When T
Ta or 	
	c, the current is always positive; there
is no current reversal �Fig. 6; also see the case �=0.1,
	=−0.3 in Fig. 5�a��. The current reversal may, however,
occur by varying T or 	 when T�Ta or 	�	c �Fig. 6; also
see the case �=0.1, 	=−0.8 in Fig. 5�a��. In particular, the
current may reverse its direction twice if 	b�	�	c �Fig. 6;
also see the case �=0.1, 	=−0.4 in Fig. 5�b��.

The current is always negative and there is no current
reversal for ��0 and 	=−0.6 �Fig. 7�. When �a����c, the
current may reverse its direction on increasing temperature.

FIG. 5. �a� Current J versus temperature T for different values of
the asymmetric parameters 	 at U0=5, F0=3.0, L=1.0. �b� Current
J versus temperature T at U0=5, F0=3.0, L=1.0, �=0.1, and
	=−0.4.

FIG. 6. Current contours on the 	-T plane at U0=5, F0=3.0,
L=1.0, and �=0.1:	c �−0.3987� is the maximum 	 for the curve
J=0; 	b �−0.4913� is the asymmetric parameter of the potential at
the crossing point of J=0 and T=0; Ta is the temperature at the
crossing point of J=0 and 	=−1.0.

FIG. 7. Current contours on the �-T plane at U0=5, F=3.0,
L=1.0, and 	=−0.6:�a=0; �b �0.138� is the temperature difference
at the crossing point of J=0 and T=0; �c �0.151� is the maximum
temperature difference for J=0.

AI, WANG, AND LIU PHYSICAL REVIEW E 72, 031101 �2005�

031101-4



The current may change its direction twice, in particular,
when �b����c.

Therefore, we cannot have current reversal when �	�0.
When �	�0, the current may reverse its direction. How-
ever, �	�0 is not a sufficient condition for current reversal.

IV. CONCLUDING REMARKS

The transport of a Brownian particle moving in a periodic
potential is studied in the presence of an unbiased fluctuation

and two heat reservoirs. In the quasi-steady-state limit, we
obtain the current analytically. It is found that the asymmet-
ric parameter 	 of the potential and the temperature differ-
ence � are the two pivotal factors for obtaining a net current.
For two positive or two negative driving factors such that
	�
0, the current cannot reverse its direction. Current re-
versal cannot occur either if there is only one driving factor
such that 	�=0. For two opposite driving factors so that
	��0, current reversal may occur. Current reversal can also
occur twice in certain conditions. The condition 	��0 is a
necessary but not a sufficient condition for current reversal.
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