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approach assumes that the linear plant and compensator are positive 
real, while the class of inuut nonlinearities that can be addressed 
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is quite general. To guarantee global asymptotic stability, the linear 
compensator is modified to form a nonlinear compensator that coun- 
teracts the effects of the input nonlinearity by recovering the passivity 

~~ 

of the plant. We demonstrated special cases of this result by simu- 
lating control systems having quadratic and saturation nonlinearities. 
Future extensions will focus on extending the result to larger classes 
of linear plants and compensators. 
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I. INTRODUCTION 
Recently there have been many research works on the approxima- 

tions of delay systems of the form 

G ( s )  = e C S T g ( s )  ( 1 )  

where g(s)  is a rational transfer function [1]-[4]. In particular, L ,  
and LZ convergence are guaranteed where G ( s )  is approximated by 
R,,(sT)g(s) with Rmn(sT) as the [m/n] Pad6 approximant of 
e--sT.  The use of Pad6 approximation for eCST has been well known, 
but the so called Laguerre formula given by 

is also sometimes employed [5] ,  [6]. It is referred to as the Laguerre 
formula since it has only one pole, of multiplicity n, which resembles 
to the Laplace transform of Laguerre functions [6]. Due to the 
simplicity of (2), it can be realized by analog elements a lot easier 
than using Pad6 approximants. This is especially true when the order 
of the Pad6 approximation becomes large. The present note provides 
a detailed analysis on the approximation of G(s) by 

Ln(sT)g(s). (3) 

It will be shown that the approximation scheme converges in the 
frequency domain under the L,  and Lz norms and corresponding 
error bounds will be given. Scalar G ( s )  will be considered here 
although the multivariable case can be extended naturally as in [2], 

11. MAIN RESULTS 

131, and 141. 

First, we give a characterization of the frequency response error for 

(4) En(sT):  = e-sT - L,(sT) 

with n E IN = { 1, 2 , .  . .}, the set of natural numbers. 
Proposition I :  For w 2 0, n E IN 

where &(UT): = ( w T / n ) .  
Proof: We have 

(cos d n  + 9 sin dn - I )  + j (+ - sin dn + 9 cos dn)  
1 + j +  

8 + 24; + (24; - 8) cos dn - 8& sin 4n 
= I  
- - 

4+42, 

4; 
'12 

where the details of the last two inequalities can be found in Appendix 
A. Therefore 

(7 )  

but we also have ILn(jwT)I = 1, lr -JdTl  = 1 and hence 
0 IE,(jwT)I I 2. Thus the result follows. 

Remark I :  The upper bound for I E,  ( j  w T )  1 given by 

 UT)^ 
12nZ 

corresponds to the first nonzero term of the Maclaurin series expan- 
sion of I E,  ( j w  T )  I. Equalities in (7) hold when and only when w = 0 
which implies & = 0. In fact, it is possible to calculate exactly the 
value of U such that the monotonic increasing function 

~ 

reaches a value of two. That is, if w = cv is such that 

if and only if 

n z ( $ ) 6  = 14++ (q 
then it can be shown that (see the equation at the bottom of the page). 

Although the bound 

n4; 
6 d m  

in (7) is more accurate than that given by (n/12)&, the latter is 
easier for the development of error bounds. The following corollary 
of Proposition 1 provides a form of the upper bound of IE,(juT)I 
which is more useful in the present work. 

Corollary I :  For U 2 0, n E IN. 

where ,!?:= 2(3ll3). 
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Proof Observe that ( ( ~ T ) ~ / l 2 n ' )  = 2 when dT = Jn(' / ' )  
0 

Suppose the rational part, g(s), of G ( s )  has relative degree k and 
and the result follows immediately from Proposition 1. 

has a continuous upper bound along the imaginary axis given by 

(9) 

where Mh 2 0, w, > 0 such that 

n!f&d: = Aw,LwT (10) 

and k E W , m  E Z and m 5 3 where Z is the set of integers. The 
constraint on m is due to the fact that ( E ,  ( J U J T )  I increases with a rate 
of 0(w3) around w = 0, thus in order that lEn( juT)g ( jd ) l  is to be 
well defined at w = 0, m cannot be greater than three. The condition 
on g ( s )  can be satisfied by most strictly proper systems, namely, 
systems with no poles on the imaginary axis except a possibility of 
no more than three poles at the origin. 

For a given transfer function F ( s ) ,  we define 

and 

as the L ,  and Lp norms of F ( s )  if they exist. In this case, we 
say that F ( s )  E L ,  (respectively, F ( s )  E L2) if llF(s)ll,  < cc 
(respectively llF(s)112 < CO). Theorem 1 below gives L ,  and LZ 
error bounds for E, ( s T ) g (  s ) .  

Theorem 1: Let G(s) = e - " T g ( s )  with g ( s )  satisfies (9), (10) 
for some constants kfi 2 0, Mh 2 0, k E IN, d ,  > 0, and m E Z 
( m  5 3). If G ( s )  is approximated by L , ( s T ) g ( s ) ,  and 

a) if w,T 2 p n 2 / 3 ,  then 

if wcT 5 then 

Proof First notice that IE,(juT)llg(ju)I is guaranteed to 
be well defined at UJ = 0 and nondecreasing for 0 < wT < 
~ n i n ( d n ~ / ~ .  J ~ T ) .  

For the L ,  case, when d,T 2 3 n 2 / 3  the product of the upper 
bounds of IE,(jdT)I (Corollary 1) and I g ( j d ) I  in [/3n2/3/T. 4 1  
is nonincreasing if m 2 0 and nondecreasing if m 5 0. In the 
former case, the maximum value of the product of the upper bounds 
is achieved at I' = $ n 2 / 3 / T .  but for m 5 0 this occurs at w = wc. 
The error bounds in ( 1  1 )  are then obtained by evaluating the product 
of the upper bounds of lEn(jdT)l  and I g ( j u ) (  at appropriate w. 
When U J ~ T  5 / 3 n 2 / ' ,  the corresponding product in [dC. $ T L * / ~ / T ]  
is nonincreasing (respectively, nondecreasing) if k 2 3 (respectively, 
k 5 3) ,  and this gives a maximum value at d = LJ, (respectively, 
LJ = ;3rr2"//T). Similarly, the upper bounds in (12) can be calculated. 

For the La case, when dU',T 2 fin2I3 with W O : =  @ T L ' / ~ / T ,  the 
upper bound in (13) can be calculated by the definition of La error 

b) if w,T 2 $ n 2 l 3 ,  then using (IO), which is the required result 
Similarly, when w J , T  5 dn2I3.  the upper bound is obtained by 

calculating 

if w,T 5 13n2I3, then 

3 2 k - 1  8M2 
7 r ~ ? ~ ( 7  - 2 k )  [(s) 2 k - 1  

IIG - L S l I :  I 

where p = 2(3) '13.  
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4M: T 2k-1  1 
'R(p) [m 

(7 - 2m) 

LJ?'(7 - 2k) 

- - 

w P ' ( 7  - 2k) 

8 M i  
7ru?-'(7 - 2k) 

3 2 k - 1  [(s) 2 k - 1  
- - 

using (10). Hence the result. U 
Remark 2: From (12), we can see that and 

Notice that in this case we have Mi = MI, = w, = T = 1, k = 2 
and m = 0 in earlier notation. Since 1 = wc < pn2'3 for n E IN, 
the L ,  and L2 bounds for the approximation error transfer function 
E,  (s)g( s) according to Theorem 1 are given by 

n 1 

In other words, the fastest convergence rate achievable is O( n-') at 
most for an arbitrarily large roll-off rate of g(s ) .  The larger the value 
of k implies the smoother the impulse response of g(s) at t = 0. The 
optimal rate of convergence of an N t h  order rational approximants 
is O ( A - k )  (see [2]), thus the Laguerre approximation formula is 
far away from achieving the optimal rate of convergence especially 
when k is large. The same observation also occurred in the Lz case 
where from (14) we have 

The corresponding optimal rate of convergence with an N t h  order 
rational approximation is O( A-'+'/') which again depends on 
the smoothness of the impulse response of g(s) at t = 0. It can 
be seen that in both Lm and LZ norms considered, there is a 
maximum achievable convergence rate O(n-') which is rather slow. 
As a result, a high order n for L,(sT) is required for accurate 
approximations. Also, the upper bound of IEIL( juT)(  in (8) used 
in the derivation is tight since a) it matches exactly the error rate at 
w = 0 as explained in Remark 1, b) the upper bound value of 2 is 
always achievable. Therefore, as long as the upper bound of I g ( j w ) l  
in (9) truly reflects the low- and high-frequency characteristics of 
Ig(jw)l, the convergence rates provided above are the best that can 
be obtained. 

The Laguerre formula has a nice property that L,(sT)g(s) 
matches the Maclaurin series of e C S T g ( s )  up to and including the 
term s'. This gives zero steady-state errors between e - S T g ( s )  and 
L,  (sT)g(s) for polynomial time-inputs of the form CO + c l t  + czt' 

U 
We shall now illustrate the error bound formulas by means of an 

Example: Consider 

where c,, i = 1, 2, 3 are some real constants (see [7]). 

example. 

-s 

and hence g(s) = l / ( s  + l ) ' , T  = 1 with 

TABLE I 
L ,  AND Lz ERRORS AND BOUNDS 

1 9.891 x lop2 

2 5.023 x lo-' 

3 3.246 x lo-' 

4 2.349 x lo-' 

(2.404 x lo-') 

(9.539 x 10-2) 

(5.556 x lo-') 

(3.786 x lo-') 

1.087 x lo-' 
(1.869 x lo-') 
6.473 x lo-' 

(9.389 x lo-') 
4.619 x lo-' 

(6.265 x lo-') 

(4.700 x lo-') 
3.594 x lo-' 

The achieved errors for n = 1, 2, 3, 4 are summarized in Table I 
(figures in parentheses are the calculated bounds according to (15) 
and (16)). 

It can be observed that the bounds are about a factor of two higher 
than the actual errors. The close agreement between the true errors 
and their bounds depends very much on the upper bound estimation 
of Ig(jw)(. This is one of those examples where such estimation 
is good. When the approximation order becomes higher, it is also 
expected that the true error and its bound will become closer (in a 
relative sense) since the upper bound of Ig(jw)l is more and more 
accurate at high frequencies. 

111. CONCLUSION 
In this note, we presented a detailed analysis on the commonly 

used Laguerre formula for approximating delay systems of the form 
e-sTg( s). It was shown that the approximation scheme converges 
in L ,  and L:! when certain mild conditions on the rational part 
g(s) are satisfied. When g(s) is of relative degree greater than three, 
maximum rate of convergence can be achieved at O(n-'). Easily 
computable error bounds are also constructed for the approximants. 

APPENDIX A 
PROOF OF INEQUALITIES IN PROPOSITION 1 

&(UT)  2 0 and Consider with 4 
1 

36 
f(d): = -46 - (8 + 24' + (24' - 8 )  cos4 - 80 sin@) 

we have 
1 f(')(#) = c45 + 24'sind + 4dcos$ - 44 

f'*'(4) = -$J4 5 + (242 + 4)cosd - 4 

10 f3 ) (d )  = 343 - ( 2 4  + 4) sin 03 + 44 cos d 

f(4'($) = 2$(5d - @cos$ - 4sind)  

= 2 4 ( 4 ( 1 -  cosd) + 4(d - sind)). 

Since 

f ( o )  = p ( o )  = f ( 2 ) ( ~ )  = f ( 3 ) ( o )  = f ( " ) ( o )  = o 
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while f ‘ 4 ’ ( ~ )  > 0 for o > 0. Hence, for 9 > 0 

f‘”‘(4) > 0, f“’(Q) > 0, f“’(49)  > 0, f(o) > 0. 

The following inequalities thus hold for Q 2 0 

9 fJ o6 < - 8 + 20’ + (249‘ - 8) cos o - 89 sin Q 

4 + $92 36(4+ & )  - 144 

which implies 

and this is the required result. 0 
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An Eigenstructure Assignment Algorithm 
for the Design of Fault Detection Filters 

Jaehong Park and Giorgio Rizzoni 

Absfract-In this paper, we present an algorithm for the construction 
of detection spaces in a fault detection filter by direct eigenstructure 
assignment. The algorithm permits great flexibility and simplifies the 
process of designing fault detection filters. 

1. INTRODUCTION 
In recent years there has been growing interest in the application 

of model-based fault detection theory in the aerospace, chemical, and 
automotive industries. Among the various approaches that have been 
proposed, the fault detection filter (FDF) has received considerable at- 
tention in the literature; detection filters are designed so that the output 
error residual vector has directional characteristics that can be easily 
associated with a set of faults. Each additive fault event vector is 
associated with a detection space, spanned by eigenvectors which are 
colinear in output space. This property guarantees a fixed-direction 
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output residual, and permits straight forward isolation of each fault. 
The detection filter design process consists of assigning the eigen- 
structure of the detection space associated with each fault to achieve 
the desired directional properties. The construction of the detection 
space has been studied by many researchers [I]-[5] and is a critical 
aspect in the design and implementation of FDF’s. The subspace 
orthogonal to the detection space is termed the completion space; the 
design of the completion space is not of interest in the present note, 
although it will be shown that the algorithm introduced here can be 
used to iteratively assign the desired eigenstructure until no freedom 
is left (and therefore the completion space is the null space). 

As the detection space associated with a fault becomes of larger di- 
mension, the number of detection-equivalent faults (which are defined 
in [3])  is increased, and the isolation of the fault event vector becomes 
increasingly difficult. Therefore, for most practical applications, one- 
or two-dimensional detection spaces are the most common (and 
desirable) occurrence. While the construction of a one-dimensional 
detection space is a well understood procedure (consisting of the 
assignment of one eigen pair), there is a lack of simple algorithms 
for the design of two- (or greater) dimensional detection spaces. 

In this paper, we present an algorithm that permits the construction 
of two-dimensional detection spaces in a fault detection filter by 
direct eigenstructure assignment. The algorithm greatly simplifies 
the process of designing fault detection filters with respect to other 
constructive algorithms proposed in [ 11-[4]. Further, the procedure 
presented in this note can be applied iteratively to accommodate 
detection and isolation of multiple faults. 

11. A NEW FORMULATION OF THE FAULT DETECTION FILTER 
In this section a new formulation for the detection filter is proposed; 

the novelty in our approach lies in the ability to generate a closed- 
form expression for the detection filter, leading to a greatly simplified 
design procedure and to a more intuitive interpretation. In this paper, 
the formulation is used mainly to derive a very simple algorithm 
for the construction of a two-dimensional detection space by direct 
eigenstructure assignment. 

A. Preliminaries 

Consider a linear, time invariant system 

i ( t )  = Ar(f )  + Bu(f) + f z n ( t )  (2.1 ) 

Y ( t )  = C 4 t )  (2.2) 
where x E R’l is a state vector, U E RP is a control vector, y E R” 
is a measurement (or sensor) output vector, and A ,  B. C are real 
matrices of compatible dimensions. For simplicity, we shall omit the 
argument ( t )  from here on. 

In the remainder of this paper we shall assume that the pair (A.  C )  
is observable and that faults may be modeled by an additive term in 
(2.1): where fz E R” is defined as an actuator fault event vector, 
and n ( t )  is a scalar function which represents the evolution of the 
fault. It is well known that the fault model mentioned above applies 
to actuator and some component faults. Further, it has recently been 
shown [5], [6] that this model can also represent all sensor faults 
providing these are suitably modeled. 

B. Fault Detection Space and Order 

takes the form 
Consider the system described by (2.1)-(2.2). A detection filter 

(2.3) 
jj = cj: (2.4) 

E = Af+ Bu + D ( y  - $) 
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