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In this paper we are concerned with the wave generation by a singular forcelet in a viscous fluid of
finite depth, where the singularity is located far from the bottom and not very near the free surface.
In the first part of this work, the image system of an Oseenlet bounded by a no-slip wall, is
considered. It is found that the resultant velocity field can be described by a planar distribution of
vertical Oseen doublets and a negative Oseenlet located at the mirror point of the singularity with
respect to the plane wall. In the second part of the work we deal with the generation of waves by
these solutions. By imposing the linearized free-surface conditions on the solutions obtained from
the first part, the wave generated is shown to exhibit the Kelvin ship wave pattern that agrees with
observation. The effects of water depth and of submergence on the wave amplitude are also
investigated. ©1997 American Institute of Physics.@S1070-6631~97!02504-X#
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I. INTRODUCTION

When a submerged body cruises with constant velo
in an inviscid fluid, it induces on the free surface the ch
acteristic Kelvin’s ship wave pattern. Several methods
determining the wave generated by a moving source in
inviscid fluid are available~see Wehausen and Laitone1!.
Cumberbatch2 studied viscous ship waves for a pressure d
turbance. Dugan3 studied the two-dimensional version of th
problem by considering the viscous drag of bodies mov
near a free surface. Wilson4 developed a linear theory for th
free surface flow of a viscous fluid past point mass sour
and forcelets. Chan and Chwang5 have solved for the prob
lem of ship wave generation in a viscous fluid of infini
depth. In this paper, we investigate the waves generated
singular force~an Oseenlet! moving with a uniform velocity
in a fluid of finite depth, which creates a laminar far wa
downstream of itself.

As discussed by Chan and Chwang,5 the solution for the
case of infinite depth has been successfully obtained by
of Fourier’s transform. The solutions, which satisfy the li
earized free-surface conditions, possess many character
of Kelvin’s ship wave pattern, except that they also includ
viscous decay term. These solutions will be used as
building blocks for the present study. The major proble
thus, lies in finding an ‘‘image system’’ to remove the n
slip boundary. In solving the problem, two boundary con
tions must be satisfied: one on the free surface and the o
on the horizontal plane. The free surface can be treated i
linearized form, with linearized solutions serving as the b
sis. The no-slip boundary condition on the horizontal pla
however, is less frequently dealt with for an Oseenlet.

In the first part of this paper, we shall derive the ima
system of an Oseenlet bounded by a no-slip boundary. In
second part we will extend the first part of the work to der
the solutions for the wave generated by an Oseenlet.

II. THE IMAGE SYSTEM OF AN OSEENLET NEAR A
NO-SLIP BOUNDARY

We first consider the problem of a steady thre
dimensional Oseen flow past a horizontal no-slip bounda
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with the presence of a singular force acting at the oppo
direction to the flow. The fundamental singular solution fo
point force, known as the Lagerstrom needle, has b
known for many years. We want to remove the physi
boundary by finding the complementary terms to the Ose
let situated at a distance from a stationary plane bound
such that the no-slip boundary condition can be satisfied
the boundary.

Let us consider an unbounded viscous fluid moving w
a constant velocityU along the positivex direction. The
appropriate nondimensional Oseen equations to be sati
in the domain are

“–u50, ~1!

]u

]x
52“p1e ¹2u, ~2!

where

e5
mg

rU3 , ~3!

r andm are the density and dynamic viscosity of the flui
respectively. In Eqs.~1! and ~2!, the dimensionless pressur
p is nondimensionalized byrU2, the velocity vectoru by U,
and distance byU2/g, whereg is the gravitational constant
The dimensionless parametere can be regarded as the reci
rocal of the Reynolds number with respect to the deep-w
wavelengthU2/g. It will be used as the perturbation param
eter throughout the asymptotic expansions in this paper.

For a singular force located at~0,0,h! with magnitude
4pF, normalized with respect torU2(U2/g)2, along the
negativex direction, the solution to~1! and ~2! for an un-
bounded fluid is given by Moore6 as

uu@x,y,z2h#52
F

e

e~x2r !/2e

r
ex1F“S e~x2r !/2e21

r D ,
~4!

pu@x,y,z2h#52
Fx

r 3
, ~5!

where
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andex is the unit vector in thex direction.
If the fluid only occupies the upper half-space~z.0! and

is bounded below by an infinite plate atz50, the no-slip
boundary condition must be imposed on the horizontal pl
boundary. Similar to Blake,7 we locate an Oseenlet of equ
magnitude but opposite in sign at the mirror image po
~0,0,2h! with respect to the plane wall. Therefore the resu
ant velocity field can be written as

u5uu@x,y,z2h#2uu@x,y,z1h#1ub , ~7!

p5pu@x,y,z2h#2pu@x,y,z1h#1pb , ~8!

whereub and pb are the unknown functions introduced
satisfy the no-slip boundary conditions. In order to make
tangential component of the total velocityu given by ~7!
vanish on the plane boundary, the tangential componen
ub must also vanish on the plane boundary. Hence the p
lem is much simplified in the sense that the boundary con
tions are simpler to deal with.

The velocityub at the plane boundary can be express
in terms of the Fourier integral as

ubuz505
F

2p E
2`

` E
2`

`

ei ~k1x1k2y!

3
2~e2Bh2e2Ah!

AB
dk1 dk2 ez , ~9!

where

A5Ak121k2
2 and B5Ak1

21k2
21

ik1
e
. ~10!

It follows from Olmstead8 that a solution of the Osee
equations~1! and ~2! that satisfies the boundary condition
can be given by a distribution of vertical Oseen doublets
its higher derivatives in the form of

ub52E
2`

` E
2`

` ]uu
]z

@x2x8,y2y8,z#N@x8,y8#dx8 dy8,

~11!

whereN[x,y] is the distribution function of Oseen double
on the plane wall.

By applying the boundary conditions to~11! and apply-
ing the convolution theorem, we obtain the Fourier transfo
of N[x,y] as

N̂@k1 ,k2#5
2~e2Bh2e2Ah!

B2A
, ~12!

whereN̂[k1 ,k2] is the Fourier transform ofN[x,y].
By writing k15 i j, inverse Fourier transform ofN̂ with

respect tox, denoted byI 1, can be shown to be

I 152
1

2p E
2`

`

eik2yE
2`

`

2ie2xj
e2hB82e2hA8

B82A8
dj dk2 ,

~13!

where
Phys. Fluids, Vol. 9, No. 4, April 1997

Downloaded¬10¬Nov¬2006¬to¬147.8.21.97.¬Redistribution¬subject¬to
e

t
-

e

of
b-
i-

d

r

B85Ak2
22S j21

j

e D5Ak222a2 ~14!

and

A85Ak222j2. ~15!

Thek2 integral is more complicated, due to the presen
of branch cuts atA8 and B8, respectively. However, the
evaluation can be simplified by considering the contour a
Fig. 1. After performing the contour integrations, we obta
the distribution functionN[x,y] as

N@x,y#5
8

p E
0

`E
0

j

e2xj cosyz

3
cos@hAa22z2#2cos@hAj22z2#

Aa22z22Aj22z2
dj dz.

~16!

With the substitutions

z5j cosl and j5
cosl

e sin2 l cosq
, ~17!

Eq. ~16! can be expressed in terms of trigonometric functio
as

N@x,y#5
32e

p E
0

p/2E
0

p/2

e2xC cos@yC cosl tanq#

3
cos@hC#2cos@hC~cosl/cosq!#

cosq2cosl

3cot l dl dq, ~18!

where

C5
cosl

e sin2 l cosq
. ~19!

Equations~18! and ~19! cannot be further integrated t
give exact solutions. However, Eq.~18!, despite its compli-
cated form, does give some important information about
distribution of Oseen doublets on the plane. First of all, it c
be shown that~18! is convergent, whereas in~16! this is not
explicit. From ~18! it also shows that the distribution func
tion N[x,y] is of the order ofe, which has important conse
quences on two aspects. Physically, ase decreases to zero
the two Oseenlets actually become a three-dimensional in
cid source-like singularity, and the distribution function va
ishes. This agrees with the simple mirror image theory fo

FIG. 1. Contour used in evaluating thek2 integral.
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plane wall in potential flow theory. Second, it will be show
later that this distribution of singularities has little effect o
the generation of surface waves for large Reynolds num
in the wave amplitude evaluation. This is because, as sh
by Chan and Chwang,5 the major contribution to surfac
waves generated by moving submerged bodies is due to
inviscid terms, which are of the order ofO@1#, while the
contribution due to the viscous terms is of the order ofAe.

The distribution functionN[x,y] also decays exponen
tially along the positivex direction, and the upstream of th
singularity has no effect on the flow field. This is very sim
lar to the two-dimensional case derived by Olmstead
Gautesen.9 Although the distribution function is now muc
more complex than in the two-dimensional case, this cha
teristic, which originates because of the asymmetry of
Oseen flow field, is still retained.

With immediate reference to Blake,7 it is clear that the
Oseenlet image system is more complicated than that of
Stokeslet because of the inclusion of the inertial effect. T
Stokeslet image system is simply the sum of the Stokes d
blet, a negative Stokeslet, and a source doublet. Ano
point worth mentioning is that the presence of the no-s
boundary does not allow simple superposition. This has b
illustrated for the Stokeslet case by Blake and Chwan10

The image system, for higher derivatives of the Oseen
which requires extensive work, is expected to be much m
complex.

III. SURFACE WAVE GENERATION BY AN OSEENLET
WITH A HORIZONTAL NO-SLIP BOUNDARY

In the previous section, we have removed the no-s
boundary by introducing the complementary terms to
Oseen equations. This means that the situation has cha
from an Oseenlet with a no-slip boundary to two Oseen
of different signs plus a distribution of vertical Oseen do
blets midway between them in an unbounded fluid.

Chan and Chwang5 have considered the problem of
submerged Oseenlet in infinitely deep water with a free s
face. The present problem is actually similar to that cons
ered by Chan and Chwang,5 but with two separate Oseenle
and a planar distribution of Oseen doublets. We now c
sider the general problem of finding the wave amplitude g
erated by an Oseenlet submerged at a depthh2 from the free
surface in a viscous fluid of depthh1 as in Fig. 2. We assum
thath12h2 is large enough so that at distances downstre
of the singularity, the wake region does not interact mu

FIG. 2. The coordinate system for an Oseenlet in a bounded fluid.
942 Phys. Fluids, Vol. 9, No. 4, April 1997
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with the boundary layer on the no-slip boundary, so that
Oseen equations are still valid. The submergence depthh2
should not be too small also, because of the assumptio
weak disturbance at the free surface in the use of linear
free surface boundary conditions and the governing Os
equations.

As mentioned earlier, the no-slip boundary can be
moved by locating an Oseenlet of opposite sign
~0,0,22h11h2! and a planar distributionN[x,y] of vertical
Oseen doublets atz52h1 . We now impose the free-surfac
conditions atz50. The linearized free-surface condition
represent the vanishing of normal and shear stresses atz50,

]u

]z
1

]w

]x
50, ~20!

]v
]z

1
]w

]y
50, ~21!

]p

]x
22e

]2w

]x ]z
2w50. ~22!

The procedure for deriving the wave amplitudeh is
similar to that of a single Oseenlet as in Chan and Chwan5

which will not be reproduced. However, we shall simp
quote the exact solution for the wave amplitude generated
a single Oseenlet located at depthz0 from the free surface:

h5hu1hFS, hFS5hFS
o 1hFS

v . ~23!

where the subscript FS denotes the free-surface effect
the superscriptso and v denote the contribution from the
inviscid terms“@1/r # and viscous terms of the Lagerstro¨m
needle, respectively, with

hFS
o @z0#5FE

2`

` E
2`

`

ei ~k1x1k2y!@~ ik112eA2!F̂0

12i ek2BĈ0#dk1 dk2 , ~24!

hFS
v @z0#5FE

2`

` E
2`

`

ei ~k1x1k2y!@~ ik112eA2!F̂v

12i ek2BĈv#dk1 dk2 , ~25!

F̂05
@2~k1

2/2A1 1
2!12i ek1A12e2A2~A1B!#e2Az0

D
,

~26!

F̂v5
~22i ek1B24e2A3B!e2Bz0

D
, ~27!

Ĉ05
~22ek1A14i e2A4!e2Az0

D
, ~28!

Ĉv5
@~ i /2!~k1

22A!12ek1A
222i e2A422i e2A3B#e2Bz0

D
,

~29!

and the pole equationD given by

D5~k1
22A!24i ek1A

214eA3~B2A!. ~30!
A. T. Chan and A. T. Chwang
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The asymptotic expressions for the wave amplitude g
erated by an Oseenlet with magnitude 4pF at a depth of
submergencez0 for small values ofe have been shown by
Chan and Chwang5 as

h'hFS5ho1hv1O@e#, ~31!

whereho andhv represent the wave amplitude contributio
lip

m
d
f

s

e
f
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-from the inviscid part and the remaining viscous part of~4!,
respectively. In a polar coordinate system~R,u! on the un-
disturbed free surface with

x5R cosu and y5R sin u, ~32!

the expressions forho andhv are given by
ho@z0#54FS 2p

R cosu D 1/2~128 tan2 u!21/4S Sm111

2 D 3/4e2~z0/2!~11m1!2~4eR/m1!@~m111!/2#3 cosu cosHRSm111

2 D 1/2
3Fcosu2Sm221

2 D 1/2 sin uG2
p

4 J 1Sm211

2 D 3/4e2~z0/2!~11m2!2~4eR/m2!@~m211!/2#3 cosu cosHRSm211

2 D 1/2
3Fcosu2Sm121

2 D 1/2 sin uG1
p

4 J D , ~33!

hv@z0#54A2eFS 2p

R cosu D 1/2~128 tan2 u!21/4S Sm111

2 D 3/2e2~z0 /A2e!~11m1!1/42~4eR/m1!@~m111!/2#3 cosu

3cosHRSm111

2 D 1/2Fcosu2Sm121

2 D 1/2 sin uG2
z0

A2e
~11m1!1/41

p

2 J
1Sm211

2 D 3/2e2~z0 /A2e!~11m2!1/4~4eR/m2!@~m211!/2#3 cosu cosHRSm211

2 D 1/2Fcosu2Sm221

2 D 1/2
3sin uG2

z0

A2e
~11m2!1/41pJ D , ~34!
for
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m65
cot2 u

4
~16A128 tan2 u!. ~35!

Therefore the resultant wave amplitude for the no-s
boundary system can be expressed as

h0
B5h0@h2#2h0@2h12h2#1E

2`

` E
2`

`

h0@x2x8,y

2y8,h1#N@x8,y8#dx8 dy8, ~36!

hv
B5hv@h2#2hv@2h12h2#1E

2`

` E
2`

`

hv@x2x8,y

2y8,h1#N@x8,y8#dx8 dy8. ~37!

We now look at the relative order of the respective ter
for small values ofe. It has been shown by Chan an
Chwang5 and Cumberbatch2 that the asymptotic behavior o
the viscous wave amplitudehv is of the order ofAe. At the
same time, the distribution is of the order ofe exp@2x/e#,
which diminishes rapidly for smalle and large distance
from the singularity. The relative order of theN[x,y] distri-
bution terms also decreases with increasing submergenc
the wave amplitudeh0 and hv decrease with the order o
exp@2z0/e#.
s

as

Therefore, the dominant terms in the wave amplitude
small values ofe are still the inviscid part of the Oseenle
solution plus its mirror image solution, which is of the sam
order as the Oseenlet, except for the different submerge
Therefore all the properties of the viscous Kelvin’s wa
pattern described by Chan and Chwang5 are expected to re
tain, except that the wave amplitude is significantly reduc
for smaller depthh1. The free-surface profile for an Oseenl
with magnitudeF51

4 at e50.001, h1510, andh251 are
shown in Fig. 3.

An interesting point of study is to investigate the effe
of water depthh1 on the wave amplitude. The maximum
wave amplitude along the line of motion is plotted in Fig.
as a surface against the normalized depthh1 at e50.001 and
h251. An immediate conclusion drawn from the plots is th
the wave amplitude increases with increasing water de
h1. Far away from the Oseenlet, the effect of the no-s
boundary is so small that the wave amplitude asymptotic
reaches the value for the infinite water depth case, as in C
and Chwang.5 Physically the no-slip boundary acts to redu
the velocity and generates vorticity at its near field. The
fore for smallh1, the effect of the no-slip boundary tends
reduce the overall velocity of the system, and thus a sma
wave is expected to be generated. In fact, the wave ampli
is only significantly reduced whenh25O[h1]: that is, either
the water depth is very small, or the Oseenlet is very clos
943A. T. Chan and A. T. Chwang
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the no-slip boundary. We can also see that at small depth
wave is much reduced and at the hypothetical positionh151,
meaning that the Oseenlet actually touches the horizo
boundary, the entire movement is debarred, and thus
wave is expected.

In Fig. 5, the maximum wave amplitude is plotte
against the submergence depthh2 with the relative submer-
gence depthh2/h150.5 at e50.001. We see that the wav
amplitude first rises to a maximum value and then drops
zero as the water depth increases. From the previous gra
we know that the wave amplitude increases with water de
due to the diminishing effect of the no-slip boundary. Ho
ever, at the same time, ash2/h1 is kept constant, the subme
gence of the Oseenlet also increases, which reduces the
amplitude like exp@2z0/e#.

FIG. 3. The free-surface profile generated by an Oseenlet of strengF
5

1
4 at e50.001,h1510, andh251.

FIG. 4. The maximum wave amplitude along the line of motion of
Oseenlet versus water depthh1 at e50.001 andh251.
944 Phys. Fluids, Vol. 9, No. 4, April 1997

Downloaded¬10¬Nov¬2006¬to¬147.8.21.97.¬Redistribution¬subject¬to
he

al
o

o
hs,
th
-

ave

IV. CONCLUSIONS

The wave amplitude due to an Oseenlet moving in wa
of finite depth is derived when the singularity is located
from the bottom and not very near the free surface. The w
amplitude can be expressed as the wave generated by
Oseenlet minus that of its mirror image plus the contribut
due to a planar distribution of vertical Oseen doublets. T
dominant terms of the wave amplitude, however, are thos
the Oseenlet and its mirror image only. The presence of
no-slip boundary is found to reduce the wave amplitude
cause of the reduced velocity of the system.
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