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The three-dimensional elastic analysis of the vibration of open cylindrical shells are presented.
Transverse normal stress usually neglected in plate and shell higher-order theories has been
considered. The natural frequencies and vibration mode shapes have been obtained via a
three-dimensional displacement-based extremum energy principle. Excessive requirements for
memory and computational effort have been overcome, without sacrificing numerical accuracy, by
(i) decoupling the three-dimensional displacements into the product of a set of beam and shell shape
functions; andiii) classifying the vibration modes. The effects of subtended angle and aspect ratio
have been concluded for shells with various boundary conditions. Typical vibration mode shapes
demonstrating the dependence of vibration characteristics on boundary constraints are presented.
© 1998 Acoustical Society of Amerid&0001-496808)01609-9
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INTRODUCTION plexity to a set of two-dimensional analyses. For open shells,
. — C the assumption of whole periodic wave numbers in the cir-
Despite the practical importance of elastic vibration so- T .

cumferential direction is inappropriate and a set of complete

lutions to engineering design of thick structures, particularly

in armed vehicles and nuclear power plants, direct threet_hree-dlmensmnal analysis is required. This forms a major

dimensional elasticity theory has rarely been exploited irféterrent so that analyses of open shells have not been
numerical vibration analysis. This is because threeWidely available.
dimensional numerical analysis of thick plates and shells re-  In view of the lack of analytical solutions, this paper
quires huge computational memory and long executiorPresents an endeavor to investigate the free vibration charac-
hours. teristics of thick and open shells using a three-dimensional
The vibration of thick plates and shells has convention-displacement-based extremum energy principle. The strain
ally been solved using the first-ordérand higher-order energy integral considers transverse normal stress which is
theories® Solutions to the vibration of thick shallow shells usually neglected in first-order and higher-order theories.
have been presented by Lim and Lfehand Liew and Lifi  The solutions are therefore exact so far as the energy expres-
for singly curved and doubly curved shells with arbitrary sjon is concerned. A Ritz energy functional is defined and
boundary conditions. Three-dimensional elastic solutions arg,inimized to derive a governing eigenvalue equation. The
particularly scarce and almost all investigations ha2)’916beeﬂwree—dimensional displacement field is characterized by a
concerned with rods and bearfis, parallelepipeds, cylindrical coordinate system with orthogonal displacement
components. Although the analysis is completely three-

cylinderst’=?° and hollow cone$! To the authors’ knowl-
edge, only closed shells or hollow cylind&°and cone% ) \ . .
dimensional, excessive requirements for memory and com-

have been investigated. Numerical studies for thick, open ) . .
L . . ; . putational effort have been overcome, without sacrificing nu-
cylindrical shells have received relatively little attention de-

spite their common applications in the armament industr)fnerlcal accuracy, byi) decoupling the three-dimensional

and nuclear storage designs such as protective tank walls al%splacements in'to the product (?f .a setmRitz peam and
thick cylindrical covers. shell shape functions, ari) classifying the vibration modes

The closed shells, being bodies of revolution, permit ondnto various symmetry classes. One- and two-dimensional
to assume Who'e periodic wave numbers (Mnd COS’]&) (1'D and 2'D p'R|tZ functions are formulated to describe
in representing displacement variations in the circumferentialhe thickness deformation and the midsurface deformation,
direction, yielding the proper periodicity if This also per- respectively. By classifying the vibration modes, memory
mits one to separate out the modes by respective circumferequirements and execution time can be tremendously re-
ential wave numbergn), reducing the mathematical com- duced while maintaining the same level of numerical accu-
racy. The effects of subtended angle and aspect ratio have

dpPresent address: Department of Mechanical Engineering, The University (J:f.’een mve.s“gat.ed f_or shells with various bound.ary condi-
Hong Kong, Pokfulam Road, Hong Kong. tions. Typical vibration mode shapes demonstrating the de-
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in which E is the Young’s modulus.
The normal and shear strain-displacement relations are
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FIG. 1. Geometry of a thick cylindrical shell.
au,
pendence of vibration characteristics on boundary constraints ~ €zz= " (40)
have been presented.
_duy 1y, 4
l. THEORY AND FORMULATION Yoo~ YT g (4d)
A. Basic definition and cylindrical coordinate system
Consider an isotropic, open and thick cylindrical shell y :% ﬂ (49
with length a, midsurface radiuR, subtended angld,, oo 9z
thicknesd as shown in Fig. 1. The circumferential arc length
is b=R#,. An orthogonal cylindrical coordinate system 14u, du, uy
(r,6,2) is defined withr the radial coordinateq the angular Yoot ot ar T (4f)
coordinate, and parallel to the axis of cylindrical shell. For o _
brevity and generality, a dimensionless coordinate system,  The kinetic energy is
o p aug\? [oug\? [au,)|?
=& (1a) T= 5 fv ( pm +( P + pr dv, (5)
wherep is the mass density per unit volume.
- 0 (1) For linear, small deformation vibration, the displace-
6 ment components assume temporal simple harmonic func-
tions in the forms
_z L o
Y (109 u.(r,8,z,t)=U.(r,8,z) sin wt, (6a)
is defined such that the shell is bounded bytI2R<r=<1 AT =UAT 8 si ob
+1/2R, —0.5<6#=<0.5, and—0.5<z=0.5. The midsurface Ug(r.0,2,) =U(r, 6,2) sin ot, (6b)
is defined as = 1. The orthogonal displacement components L L
areu,, U,, andu,. U,(r,0,z,t)=U,(r,0,z) sin wt, (60

B. Three-dimensional strain and kinetic energy
expressions

For linear and elastic free vibration, the strain energy o

a three-dimensional solid is

U=%fffv[(A+2G)(eﬁ+e§9+e§z)

+2A (€ €gpt €€t €x5Err)
+G(¥j+ ¥art 7)1 dr d6 dz, )

whereV is the volumeG is the shear modulus, and
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whereU, , Uy, U, are the displacement amplitude functions
and w is the angular frequency of vibration.
The maximum strain and kinetic energy integral expres-

fsions U max @and T, can be derived easily by substituting

Egs. (6a—(6¢) into Egs.(2) and (5) and determining the
extremum with respect to time

C. Elastic energy functional and eigenvalue equation

The displacement amplitude functions for a vibrating
thick cylindrical shell can be expressed by a set of three-
dimensional(3-D) p-Ritz functions. These functions are the
products of 2-Dp-Ritz functionse,(6,2), ¢4(6,2), ¢,(6,2)
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for midsurface deformation and 14®Ritz functionsy, (r),

Wo(r), ¥,(r) for thickness deformation. The displacement

amplitude functions are

g = 223 g ongoian  osgoso-)
¢I’I’l//='|' ¢Tr¢f’l’

0000,1Q0 0000,010
A gl )
Ul(r,0,2)=2, > ¢l (0,291, (7a)
=151 E _|01010(()1 1 1010001 (153
TER el TR el |
m n
Uy(r,6.2)= 2, 2, cjd(0.9}(D), (7b) AL2G
i=1j=1 kik“ _ 0010, 0@ 1) I0010 ,1Q0)
ro E6q Sty E00 S
m n
T 07)= i b (0D (T G
VT 0.2)=2, 2, c/¢y(0:2)wiD), (79 4o (110000 1000001y (15
0 ro” ro Dol o
in whichc}', ¢!l , ¢!/ are unknown coefficients.
An energy functior_lal i_s defined as the difference of the il _A_R [|0001,_0®0) |°Q°1’-1Q1)]+ GR |0100011)
maximum strain and kinetic energy components = #kyll oyl a iyl
(159
=U a— Trmax- (8)
Numerical frequency solutions can be obtained by minimiz- i _A+2G 101000~ 1) G[R? |0101.001)
ing this energy functional with respect to the coefficients in 00 Efy Sl g E B g
accordance with the Ritz procedure
Jrloooo 111)+|oooo ,00-1) Ioooo ,100) Ioooo ,010)
¢' Wy ¢' w ¢' l# ¢' w ’
(QH 06 66 06 66
%,TZO, a=r, 6, andz, 9 (150)
which leads to the governing eigenvalue equation
ikjl _ A 1001,0Q0) G o110 ,000)
k(}z —ﬁ E |¢|k¢j| +E |¢| gl , (15@
(K—AZM){C}={0}, (10) 0 02" 6z 0z" 0z
where
Kikil = m 0101 0@1)
2z Ea’ g
N
A=—, (11a
0o n E i |1(i)k10,_|0(o71)+|0(i>80,%11) (15f)
E 0% ¢ZZ¢IZZ ¢ZZ¢ JZZ '
)\zwb\ﬁ (11b and the elements in the mass submatrix are
E
are the dimensionless frequency parameters in which m"‘JI —I?b?og?(nl), (163
=R4, is the circumferential arc length. e
The stiffness and mass matrices are 0000 0(01>
b0 =gyl s (16b
krr kra krz
K = kgg kgz , (12) |Z|<ZJ| — I f;?kogvﬁml) , (16C)
Sym kzz z2z" 72z
in which
my [0] [O] b g
a C
M= Mge [0 |, (13) ahcdeerte)_ f J P0G, (0.2) F(6,2) 07 dz
sym m,, 36292° 96°9Z°
and the vector or unknown coefficients is () ﬁfl#,g(f) -
x ¢ or® ar' S dr, (a7

{c}
C= {Ca} . (14
{c,}

The elements in the stiffness submatrix are
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wherea, B=r, 0, z i, j, k, 1=1,2,...m, andm is the total
number of terms employed in the-Ritz shape functions.
The normalized midsurface area is denotedAasnd the
normalized thickness is
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TABLE |. Convergence ol =wb+/p/E for a thick cylindrical shell withy=0.3, a/b=2, t/b=0.2, and§,

=180°.
Mode sequence number
B.C. PozX Py S-1 S-2 A-1 A-2
CFFF 8<2 0.093 645 0.49 279 0.15593 0.26 904
9x2 0.093 542 0.49 237 0.15 580 0.26 873
10%x2 0.093 479 0.49 207 0.15572 0.26 851
103 0.093 425 0.49 122 0.15 509 0.26 772
10x4 0.093 421 0.49 119 0.15 507 0.26 769
SS-1 SA-1 AS-1 AA-1
CFCF 612 0.48 287 0.46 806 1.1378 1.0451
8x2 0.48 134 0.45 980 1.0838 1.0196
102 0.48 068 0.45 868 1.0805 1.0168
103 0.47 935 0.45 416 1.0754 1.0040
10x4 0.47 927 0.45 403 1.0752 1.0035
ccce 6x2 2.6317 1.8671 2.5180 2.2833
8x2 2.6314 1.8630 2.5165 2.2778
102 2.6313 1.8620 2.5160 2.2768
103 2.6034 1.8174 2.5144 2.2341
10x4 2.5993 1.8113 2.5142 2.2285
D. The 1-D and 2-D p-Ritz admissible functions CCCC shells have four symmetry classes. The degrees of

-D and 1-D polynomialp,, andp, , are related to the num-
— — — . _ ber of terms in each series oy, = (py,+1)(py,+2)/2 and
u(r,0,2), ug(r,6,2), andu(r, 6,z) are truncated finite se m,=p, + 1. Classification of modes has a significant effect

ries given in Eqs(63—(60. The midsurface deformation on the efficiency of algorithm as the determinant size of the

admissible functions are sets of geometrically compliant 2'Dei envalue problem can be greatly reduced and tremendous
polynomials ¢,(68,2), ¢,(6,z), and ¢,(6,z) derived such 9 P greatly

. i o numerical computation can be saved while maintaining the
that the geometric boundary conditions are satisfied at the P . 9
ame level of numerical accuracy.

outset. They_ are c_:omposed of _the product of a Seres of It can be observed in Table | that good convergence of
simple two-dimensional polynomialglegree of polynomial h . o . .

; . b as been achieved for admissible functions witk X p,
p%Z)—ind boupd_aLy-comphant basic functiong;(6,2),  _10x 4. These degrees of polynomial have been adopted for
$4(0,2), and¢;(6,2). The latter are geometric expressions 4| sypsequent calculation unless stated otherwise. All the
of the cylindrical shell boundary raised to an appropriategjgenvalues converge downwards as expected because the
basic power in accordance with various boundary CONngji; method overestimates stiffness and vibration frequency
straints. These 2-[p-Ritz admissible functions have been 5nq ynderestimates displacement. The determinant size is
developed and formulatéd® for shallow shell studies using 792x792 without mode classification. With mode classifica-

a higher-order shell theory. Similarly, the 1-D thickness ad'tion, it is only 432432 for the symmetric clas€S) and
missible functionsi(r), ¢,(r), andy,(r) are the products 360360 for the antisymmetric clags) for CFFF shell. For
of sets of 1-D polynomialddegree of polynomiap;) and  cECF and CCCC shells, the determinant sizes are<252
appropriate basic fungtioqﬁf’(r), wB(r), and {ﬂg(r)- _ for the SS class and 18080 for the SA, AS, and AA
Classification of vibration modes is possible by groupingg|asses. Details of vibration mode classification have been
terms with odd and even powers i (6,z), ¢4(6,z), and  gddressed in Linet al14®
&,(0,2).*° This tremendously reduces the number of terms A comparison of frequency parameters with finite-
in each series and thus the determinant size of the eigenvalggement solution$FEM) is presented in Table Il. The FEM
equation is considerably smaller. Huge computational effortolutions are obtained usingsas, a commercial finite ele-
can be saved as discussed in detail in the next section. ment package, with two different elements. The QTS8
elementg? are eight-node thick shell elements for the analy-
II. RESULTS AND DISCUSSION sis of arbitrarily curved shell geometries. These elements
take account of membrane, shear, and flexural deformations.
The HX8M element? are eight-node three-dimensional iso-
The convergence characteristics of the dimensionlesparametric solid elements where the variation of stresses
frequency parametex are presented in Table | for CFFF within an element is regarded as linear.
(cantilevered, CFCF, and CCCC shells. In these cases, C  As observed in Table I, thp-Ritz solutions agree well
denotes a clamped edge and F denotes a free edge with seith the FEM solutions and agreement is excellent with the
quence fromz=—0.5 going anticlockwisésee Fig. 1L The solutions using HX8M elements. This is expected as the
vibration modes are classified into various symmetry classe$iX8M elements are 3-D elements which consider transverse
A CFFF shell has two symmetry classes while CFCF andchormal stress similar to the present analysis. Convergence of

The midsurface and thickness displacements denoted

A. Convergence and comparison of eigenvalues
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TABLE Il. Comparison of\ = wb+/p/E for a thick cylindrical shell withv=0.3,t/b=0.2, andf,=180°.

Mode sequence number

a
B.C. b Sources S-1 S-2 Al A-2
CFFF 1 FEM 0.34079 1.1483 0.40619 0.69750
FEM® 0.34295 1.1476 0.40706 0.70120
3-D 0.34299 1.1347 0.40676 0.70092
2 FEM? 0.093042 0.48893 0.15497 0.26706
FEM® 0.093433 0.49583 0.15507 0.26792
3-D 0.093425 0.49122 0.15509 0.26772
Ss-1 SA-1 As-1 AA-1
CFCF 1 FEM 1.3101 1.1981 2.6625 2.5794
FEMP 1.3386 1.2269 2.7589 2.6855
3-D 1.3235 1.2141 2.7000 2.6257
2 FEM? 0.47587 0.45196 1.0668 0.99628
FEMP 0.48591 0.45796 1.1029 1.0281
3-D 0.47935 0.45416 1.0754 1.0040
Cccc 1 FEM 2.8071 2.2988 3.6263 3.5733
FEM® 2.9055 2.3672 3.6855 3.6826
3-D 2.8696 2.3383 3.6567 3.6346
2 FEM 2.5140 1.7504 2.5110 2.1692
FEM® 2.6422 1.8477 2.5243 2.2680
3-D 2.6034 1.8174 2.5144 2.2341

8 usas solutions with 330 QTS8 thick shell elementRef. 22.
b usas solutions with 1515x6 HX8M 3-D isoparametric solid elemen(Ref. 22.

the FEM solutions for 3830 QTS8 elements and ¥35x6  and CCCC shells the fundamental mode switches from the
HX8M elements used in the computation have been checke&S-1 mode to the SA-1 mode. The threshold®gfat which

It is emphasized here that it takes 1.5—4 h to obtain a conswitching of fundamental mode occurs varies depending on
verged FEM solution usingusas while it takes less than a a/b and boundary conditions as indicated by the intersec-
minute to obtain equally accurate solutions using@kRitz  tions of the SS-1 and SA-1 curves in Figs. 4—7, which are,
approach with mode symmetry classification. Noting thatrespectively, 120°, 160°, 130°, and 120°, approximately. It
some of the finite-element solutions are higher than the 3-D

Ritz solutions and keeping in mind that solutions from the

Ritz approach are always upper-bounded, the 3-D Ritz solu- bl I b N
tions presented in Table Il not only require considerably less I ]
time than the finite-element method, but are also more accu- 12k 5.2 ]
rate. - 4

o o a po;=4, pr=3 ]
B. Vibration frequency and mode shapes : o Pp.=5, pr=3 i

A set of new results for the free vibration of CFFF cy- o pg.=6, p,=3 |
lindrical shells with aspect ratia/b varying from 1 to 2, 0.8 o Pp.=8. p=3 _

wherea and b are the length and arc of the open shell, is
presented in Figs. 2 and 3. The corresponding results for

\

A-

Frequency Parameter \

T T T T T T T T T T T T

CFCF and CCCC cylindrical shells are presented in Figs. 4 0.6 ]
and 5, and 6 and 7. The subtended arfgleanges from 10° A1 1
to 180°. Because the aspect ratio is constant, the open shell 0.4 ]
radius varies whiled, is changed, keeping the thickness :
constant. The idea or initiative of the authors is to investigate S5-1 ]
the effects of subtended angle while the deepness of an open 0.2 .
shell is changed by bending a given plate with fixed lerayth ]
and widthb. ! | | 1 | | 1
In the figures, most of the frequencies have been com- 0-00 30 50 % 120 150 180

puted using 4, X p, = 10X 4 while lower polynomial degrees
have been employed for smal}, as indicated in the figures
because the matrix becomes ill conditioned. The fundamensig. 2. Effect of subtended angieegree on frequency for a thick cylin-
tal mode for a CFFF shell is the S-1 mode while for CFCFdrical shell(CFFP with »=0.3,t/b=0.2, anda/b=1.

Subtended Angle 6,
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05— T T T 1.4 [ T T T T T ]
s pp-=4, p,=3 - o Ppp.=5, pr=3 1
| a Pe-=9, pr=3 ] 1.2 B o Ppp,=6, p,=3 N
04 < paz:67 pT:3 —1 : o p0~:8, p7:3 :
I o Pp.=8, pr=3 : 1 0__ O—0— i
B 1 . 1op AA-1 ]
@ - . o - 1
° o3l . ] - AS-1 .
£ I i E o8| -
g s
o [ A-2 ] & ! ]
> > § N
s i 1 2 o0sl _
g o2r A-1 ] S 1
g - g o SA-1
w 5 g v 04} -1
- 1 SS-1 ]
01} — | ]
B S-l T 0.2+ ]
0.0 I R R R B oobm—t vy
0 30 60 90 120 150 180 0 30 60 90 120 150 180
Subtended Angle 6, Subtended Angle 8,

FIG. 3. Effect of subtended angléegre¢ on frequency for a thick cylin-  FIG. 5. Effect of subtended angldegreé on frequency for a thick cylin-
drical shell(CFFB with »=0.3,t/b=0.2, anda/b=2. drical shell(CFCB with »=0.3,t/b=0.2, anda/b=2.

should be emphasized that the curves do not actually cross. $ponding types. This almost coalescence is not novel and it
these curves were to cross, then, for some subtended anglegcurs in many problems whether in structural dynamics,
two different vibration modes would exist at the same fre-acoustics, or fluid mechanics.

guency, which is indeed a violation of the uniqueness of a  For a CFFF shell wittre/b=1 and 2, the S-1 and A-2
vibration mode. In this respect, computations have been corfrequencies increase with increasifg while the A-1 fre-
ducted at very small intervals & and it is realized that the quency decreases. The S-2 frequency demonstrates irregular
frequency curves belonging to different modes approachendency with respect té,. For CFCF and CCCC shells,
each other but they never coalesce. In fact, after the “coathe SS-1 and AS-1 frequencies increase while the SA-1 and
lescence,” the frequency curves interchange their correAA-1 frequencies decrease for shells with larglr. The

30— 5.0 ——————
[ o AA-1 g 45 i
251 O—O—// — i E
i AS-1 ] a0l
i 1 I
~ f o Pp==5, pr=3 ] ~ 351
20 -
@ 5 © P€z=67 P1=3 i o [
] : 1 T 30l
£ I o pp.=8, py=3 ] £
s L - s [
o 15F - a 25}
> [ oy
§ SA-1 1 § 20k
= - D—O—O—//gg]_/_// 1 =4 |
9 1o} - 9
w L ] w {5} .
I ] - o Py.=9, pr:3 ]
05 ] 1'0__ o po-=6, p,=3 i
I ) o5k o pé‘::& pr:3 ]
ool t v 0, ] ool 1 00w
0 30 60 90 120 150 180 0 30 60 90 120 150 180
Subtended Angle 6, Subtended Angle 0,

FIG. 4. Effect of subtended angléegreé on frequency for a thick cylin-  FIG. 6. Effect of subtended angldegre¢ on frequency for a thick cylin-
drical shell(CFCPB with »=0.3,t/b=0.2, anda/b=1. drical shell(CCCQ with »=0.3,t/b=0.2, anda/b=1.
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3.5 L L L L .| B.C. Vibration Frequencies and Mode Shapes

CFFF
3.0

§-1: 0.067062 5-2: 0.37369 A-1: 0.18187 A-2: 0.23844

T T T T T
M R

o5l CFCF .
’f | $5-1: 0.37029 SA-1: 0.46641 AS-1: 0.88923 AA-1: 1.0178
3 5
S [
E 20} cccc
< 5 i -
nt-.:-; 2 §§-1: 1.7757 SA-1: 2.2678 AS-1: 1.9797 AA-1: 2.5691
> 5
s 15} FIG. 8. Vibration frequencied and mode shapes for a thick cylindrical
g [ SS-1 ] shell with v=0.3,t/b=0.2,a/b=2, andf,=90°.
g | ]
[T B T . . . . .
1.0~ a pp.=5, py=3 ] been generalized to three-dimensional functions by associat-
- 1 ing the two-dimensional functions with a one-dimensional
- o po.=6, p,=3 . . )
osl p-Ritz admissible function.
e o pp-=8, py=3 1 Convergence of vibration frequencies has been exam-
[ | ined and excellent comparison with finite-element solutions
oot L] has been recorded. Classification of vibration modes by
0 30 60 90 120 150 180 grouping terms in th@-Ritz functions tremendously reduces
Subtended Angle 6, the matrix determinant size and thus much computation ef-

fort can been saved while maintaining the same level of ac-
FIQ. 7. Effect of sub_tended angldegre¢ on frequency for a thick cylin- curacy. The algorithm developed here requires less than a
drical shell(CCCQ with v=0.3,1/b=0.2, anda/b=2. minute to obtain accurate solutions which take hours for a

finite-element package to compute. Most of the frequencies
increasing rate of AS-1 frequency for a CCCC shell withshow consistent tendency with respect to increasing sub-
a/b=2 (Fig. 7) decreases rapidly a# approaches 150° and tended angle. The frequency decreases for longer shells and
onwards. In all these shell configurations, the frequency ighells with weaker boundary constraints. New three-

smaller for |0nger She”i{h|gher a/b) but it is |arger for dimensional mode Shapes have been presented_
shells with stronger boundary constraiffitem CFFF, CFCF
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