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The three-dimensional elastic analysis of the vibration of open cylindrical shells are presented.
Transverse normal stress usually neglected in plate and shell higher-order theories has been
considered. The natural frequencies and vibration mode shapes have been obtained via a
three-dimensional displacement-based extremum energy principle. Excessive requirements for
memory and computational effort have been overcome, without sacrificing numerical accuracy, by
~i! decoupling the three-dimensional displacements into the product of a set of beam and shell shape
functions; and~ii ! classifying the vibration modes. The effects of subtended angle and aspect ratio
have been concluded for shells with various boundary conditions. Typical vibration mode shapes
demonstrating the dependence of vibration characteristics on boundary constraints are presented.
© 1998 Acoustical Society of America.@S0001-4966~98!01609-9#
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INTRODUCTION

Despite the practical importance of elastic vibration s
lutions to engineering design of thick structures, particula
in armed vehicles and nuclear power plants, direct thr
dimensional elasticity theory has rarely been exploited
numerical vibration analysis. This is because thr
dimensional numerical analysis of thick plates and shells
quires huge computational memory and long execut
hours.

The vibration of thick plates and shells has conventio
ally been solved using the first-order1,2 and higher-order
theories.3 Solutions to the vibration of thick shallow shel
have been presented by Lim and Liew4,5 and Liew and Lim6

for singly curved and doubly curved shells with arbitra
boundary conditions. Three-dimensional elastic solutions
particularly scarce and almost all investigations have b
concerned with rods and beams,7–9 parallelepipeds,10–16

cylinders,17–20 and hollow cones.21 To the authors’ knowl-
edge, only closed shells or hollow cylinders18–20and cones21

have been investigated. Numerical studies for thick, o
cylindrical shells have received relatively little attention d
spite their common applications in the armament indus
and nuclear storage designs such as protective tank walls
thick cylindrical covers.

The closed shells, being bodies of revolution, permit o
to assume whole periodic wave numbers (sinnu and cosnu)
in representing displacement variations in the circumferen
direction, yielding the proper periodicity inu. This also per-
mits one to separate out the modes by respective circum
ential wave numbers~n!, reducing the mathematical com

a!Present address: Department of Mechanical Engineering, The Univers
Hong Kong, Pokfulam Road, Hong Kong.
1436 J. Acoust. Soc. Am. 104 (3), Pt. 1, September 1998 0001-4966/9
-
y
e-
n
-
-

n

-

re
n

n
-
y
nd

e

al

r-

plexity to a set of two-dimensional analyses. For open she
the assumption of whole periodic wave numbers in the
cumferential direction is inappropriate and a set of compl
three-dimensional analysis is required. This forms a ma
deterrent so that analyses of open shells have not b
widely available.

In view of the lack of analytical solutions, this pape
presents an endeavor to investigate the free vibration cha
teristics of thick and open shells using a three-dimensio
displacement-based extremum energy principle. The st
energy integral considers transverse normal stress whic
usually neglected in first-order and higher-order theori
The solutions are therefore exact so far as the energy exp
sion is concerned. A Ritz energy functional is defined a
minimized to derive a governing eigenvalue equation. T
three-dimensional displacement field is characterized b
cylindrical coordinate system with orthogonal displacem
components. Although the analysis is completely thr
dimensional, excessive requirements for memory and c
putational effort have been overcome, without sacrificing n
merical accuracy, by~i! decoupling the three-dimensiona
displacements into the product of a set ofp-Ritz beam and
shell shape functions, and~ii ! classifying the vibration modes
into various symmetry classes. One- and two-dimensio
~1-D and 2-D! p-Ritz functions are formulated to describ
the thickness deformation and the midsurface deformat
respectively. By classifying the vibration modes, memo
requirements and execution time can be tremendously
duced while maintaining the same level of numerical ac
racy. The effects of subtended angle and aspect ratio h
been investigated for shells with various boundary con
tions. Typical vibration mode shapes demonstrating the

of
14368/104(3)/1436/8/$15.00 © 1998 Acoustical Society of America
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have been presented.

I. THEORY AND FORMULATION

A. Basic definition and cylindrical coordinate system

Consider an isotropic, open and thick cylindrical sh
with length a, midsurface radiusR, subtended angleu0 ,
thicknesst as shown in Fig. 1. The circumferential arc leng
is b5Ru0 . An orthogonal cylindrical coordinate syste
(r ,u,z) is defined withr the radial coordinate,u the angular
coordinate, andz parallel to the axis of cylindrical shell. Fo
brevity and generality, a dimensionless coordinate syste

r̄ 5
r

R
, ~1a!

ū5
u

u0
, ~1b!

z̄5
z

a
, ~1c!

is defined such that the shell is bounded by 12t/2R< r̄<1
1t/2R, 20.5<ū<0.5, and20.5< z̄<0.5. The midsurface
is defined asr̄ 51. The orthogonal displacement compone
areur , uu , anduz .

B. Three-dimensional strain and kinetic energy
expressions

For linear and elastic free vibration, the strain energy
a three-dimensional solid is

U5
1

2 E E E
V
@~D12G!~e rr

2 1euu
2 1ezz

2 !

12D~e rr euu1euuezz1ezze rr !

1G~guz
2 1gzr

2 1g ru
2 !#r dr du dz, ~2!

whereV is the volume,G is the shear modulus, and

FIG. 1. Geometry of a thick cylindrical shell.
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E
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in which E is the Young’s modulus.
The normal and shear strain-displacement relations

e rr 5
]ur

]r
, ~4a!

euu5
1

r

]uu

]u
1

ur

r
, ~4b!

ezz5
]uz

]z
, ~4c!

guz5
]uu

]z
1

1

r

]uz

]u
, ~4d!

gzr5
]uz

]r
1

]ur

]z
, ~4e!

guz5
1

r

]ur

]u
1

]uu

]r
2

uu

r
. ~4f!

The kinetic energy is

T5
r

2 E
V
F S ]ur

]t D 2

1S ]uu

]t D 2

1S ]uz

]t D 2G dV, ~5!

wherer is the mass density per unit volume.
For linear, small deformation vibration, the displac

ment components assume temporal simple harmonic fu
tions in the forms

ur~ r̄ ,ū,z̄,t !5Ur~ r̄ ,ū,z̄! sin vt, ~6a!

uu~ r̄ ,ū,z̄,t !5Uu~ r̄ ,ū,z̄! sin vt, ~6b!

uz~ r̄ ,ū,z̄,t !5Uz~ r̄ ,ū,z̄! sin vt, ~6c!

whereUr , Uu , Uz are the displacement amplitude functio
andv is the angular frequency of vibration.

The maximum strain and kinetic energy integral expr
sions Umax and Tmax can be derived easily by substitutin
Eqs. ~6a!–~6c! into Eqs. ~2! and ~5! and determining the
extremum with respect to timet.

C. Elastic energy functional and eigenvalue equation

The displacement amplitude functions for a vibrati
thick cylindrical shell can be expressed by a set of thr
dimensional~3-D! p-Ritz functions. These functions are th
products of 2-Dp-Ritz functionsf r( ū,z̄), fu( ū,z̄), fz( ū,z̄)
1437Lim et al.: Open cylindrical shells
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for midsurface deformation and 1-Dp-Ritz functionsc r( r̄ ),
cu( r̄ ), cz( r̄ ) for thickness deformation. The displaceme
amplitude functions are

Ur~ r̄ ,ū,z̄!5(
i 51

m

(
j 51

n

cr
i j f r

i ~ ū,z̄!c r
j ~ r̄ !, ~7a!

Uu~ r̄ ,ū,z̄!5(
i 51

m

(
j 51

n

cu
i j fu

i ~ ū,z̄!c u
j ~ r̄ !, ~7b!

Uz~ r̄ ,ū,z̄!5(
i 51

m

(
j 51

n

cz
i j fz

i ~ ū,z̄!c z
j ~ r̄ !, ~7c!

in which cr
i j , cu

i j , cz
i j are unknown coefficients.

An energy functional is defined as the difference of t
maximum strain and kinetic energy components

P5Umax2Tmax. ~8!

Numerical frequency solutions can be obtained by minim
ing this energy functional with respect to the coefficients
accordance with the Ritz procedure

]P

]ca
i j 50, a5r , u, and z, ~9!

which leads to the governing eigenvalue equation

~K2L2M !$C%5$0%, ~10!

where

L5
l

u0
, ~11a!

l5vbAr

E
~11b!

are the dimensionless frequency parameters in whichb
5Ru0 is the circumferential arc length.

The stiffness and mass matrices are

K5F krr kru krz

kuu kuz

sym kzz

G , ~12!

M5F mrr @0# @0#

muu @0#

sym mzz

G , ~13!

and the vector or unknown coefficients is

C5H $cr%
$cu%
$cz%

J . ~14!

The elements in the stiffness submatrix are
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and the elements in the mass submatrix are

mrr
ik j l 5I f

rr
ikc
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muu
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uu
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uu
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I f
ab
ik c

ab
j l

abcde,e f~g!
5E E

Ā

]a1bfa
i ~ ū,z̄!

]ūa] z̄b

]c1dfb
k ~ ū,z̄!

]ūc] z̄d dū dz̄

3E
t̄

]ec a
j ~ r̄ !

] r̄ e

] fc b
l ~ r̄ !

] r̄ f r̄ g dr̄, ~17!

wherea, b5r , u, z; i, j, k, l 51,2,...,m, andm is the total
number of terms employed in thep-Ritz shape functions.
The normalized midsurface area is denoted asĀ and the
normalized thickness ist̄.
1438Lim et al.: Open cylindrical shells
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TABLE I. Convergence ofl5vbAr/E for a thick cylindrical shell withn50.3, a/b52, t/b50.2, andu0

5180°.

B.C. puz3pr

Mode sequence number

S-1 S-2 A-1 A-2

CFFF 832 0.093 645 0.49 279 0.15 593 0.26 904
932 0.093 542 0.49 237 0.15 580 0.26 873

1032 0.093 479 0.49 207 0.15 572 0.26 851
1033 0.093 425 0.49 122 0.15 509 0.26 772
1034 0.093 421 0.49 119 0.15 507 0.26 769

SS-1 SA-1 AS-1 AA-1

CFCF 632 0.48 287 0.46 806 1.1378 1.0451
832 0.48 134 0.45 980 1.0838 1.0196

1032 0.48 068 0.45 868 1.0805 1.0168
1033 0.47 935 0.45 416 1.0754 1.0040
1034 0.47 927 0.45 403 1.0752 1.0035

CCCC 632 2.6317 1.8671 2.5180 2.2833
832 2.6314 1.8630 2.5165 2.2778

1032 2.6313 1.8620 2.5160 2.2768
1033 2.6034 1.8174 2.5144 2.2341
1034 2.5993 1.8113 2.5142 2.2285
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D. The 1-D and 2-D p-Ritz admissible functions

The midsurface and thickness displacements denote
ur( r̄ ,ū,z̄), uu( r̄ ,ū,z̄), anduz( r̄ ,ū,z̄) are truncated finite se
ries given in Eqs.~6a!–~6c!. The midsurface deformation
admissible functions are sets of geometrically compliant 2
polynomials f r( ū,z̄), fu( ū,z̄), and fz( ū,z̄) derived such
that the geometric boundary conditions are satisfied at
outset. They are composed of the product of a series
simple two-dimensional polynomials~degree of polynomial
puz) and boundary-compliant basic functionsf r

b( ū,z̄),
fu

b( ū,z̄), andfz
b( ū,z̄). The latter are geometric expressio

of the cylindrical shell boundary raised to an appropri
basic power in accordance with various boundary c
straints. These 2-Dp-Ritz admissible functions have bee
developed and formulated4–6 for shallow shell studies using
a higher-order shell theory. Similarly, the 1-D thickness a
missible functionsc r(r ), cu(r ), andcz(r ) are the products
of sets of 1-D polynomials~degree of polynomialpr) and
appropriate basic functionsc r

b(r ), cu
b(r ), andcz

b(r ).
Classification of vibration modes is possible by groupi

terms with odd and even powers inf r( ū,z̄), fu( ū,z̄), and
fz( ū,z̄).4,5 This tremendously reduces the number of ter
in each series and thus the determinant size of the eigenv
equation is considerably smaller. Huge computational ef
can be saved as discussed in detail in the next section.

II. RESULTS AND DISCUSSION

A. Convergence and comparison of eigenvalues

The convergence characteristics of the dimension
frequency parameterl are presented in Table I for CFF
~cantilevered!, CFCF, and CCCC shells. In these cases
denotes a clamped edge and F denotes a free edge wit
quence fromz̄520.5 going anticlockwise~see Fig. 1!. The
vibration modes are classified into various symmetry clas
A CFFF shell has two symmetry classes while CFCF a
oc. Am., Vol. 104, No. 3, Pt. 1, September 1998
by
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d

CCCC shells have four symmetry classes. The degree
2-D and 1-D polynomial,puz andpr , are related to the num
ber of terms in each series bymuz5(puz11)(puz12)/2 and
mr5pr11. Classification of modes has a significant effe
on the efficiency of algorithm as the determinant size of
eigenvalue problem can be greatly reduced and tremend
numerical computation can be saved while maintaining
same level of numerical accuracy.

It can be observed in Table I that good convergence ol
has been achieved for admissible functions withpuz3pr

51034. These degrees of polynomial have been adopted
all subsequent calculation unless stated otherwise. All
eigenvalues converge downwards as expected becaus
Ritz method overestimates stiffness and vibration freque
and underestimates displacement. The determinant siz
7923792 without mode classification. With mode classific
tion, it is only 4323432 for the symmetric class~S! and
3603360 for the antisymmetric class~A! for CFFF shell. For
CFCF and CCCC shells, the determinant sizes are 2523252
for the SS class and 1803180 for the SA, AS, and AA
classes. Details of vibration mode classification have b
addressed in Limet al.14,15

A comparison of frequency parameters with finit
element solutions~FEM! is presented in Table II. The FEM
solutions are obtained usingLUSAS, a commercial finite ele-
ment package, with two different elements. The QT
elements,22 are eight-node thick shell elements for the ana
sis of arbitrarily curved shell geometries. These eleme
take account of membrane, shear, and flexural deformati
The HX8M elements22 are eight-node three-dimensional is
parametric solid elements where the variation of stres
within an element is regarded as linear.

As observed in Table II, thep-Ritz solutions agree wel
with the FEM solutions and agreement is excellent with
solutions using HX8M elements. This is expected as
HX8M elements are 3-D elements which consider transve
normal stress similar to the present analysis. Convergenc
1439Lim et al.: Open cylindrical shells
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TABLE II. Comparison ofl5vbAr/E for a thick cylindrical shell withn50.3, t/b50.2, andu05180°.

B.C.

a

b Sources

Mode sequence number

S-1 S-2 A-1 A-2

CFFF 1 FEMa 0.34079 1.1483 0.40619 0.69750
FEMb 0.34295 1.1476 0.40706 0.70120
3-D 0.34299 1.1347 0.40676 0.70092

2 FEMa 0.093042 0.48893 0.15497 0.26706
FEMb 0.093433 0.49583 0.15507 0.26792
3-D 0.093425 0.49122 0.15509 0.26772

SS-1 SA-1 AS-1 AA-1

CFCF 1 FEMa 1.3101 1.1981 2.6625 2.5794
FEMb 1.3386 1.2269 2.7589 2.6855
3-D 1.3235 1.2141 2.7000 2.6257

2 FEMa 0.47587 0.45196 1.0668 0.99628
FEMb 0.48591 0.45796 1.1029 1.0281
3-D 0.47935 0.45416 1.0754 1.0040

CCCC 1 FEMa 2.8071 2.2988 3.6263 3.5733
FEMb 2.9055 2.3672 3.6855 3.6826
3-D 2.8696 2.3383 3.6567 3.6346

2 FEMa 2.5140 1.7504 2.5110 2.1692
FEMb 2.6422 1.8477 2.5243 2.2680
3-D 2.6034 1.8174 2.5144 2.2341

aLUSAS solutions with 30330 QTS8 thick shell elements~Ref. 22!.
bLUSAS solutions with 1531536 HX8M 3-D isoparametric solid elements~Ref. 22!.
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the FEM solutions for 30330 QTS8 elements and 1531536
HX8M elements used in the computation have been chec
It is emphasized here that it takes 1.5–4 h to obtain a c
verged FEM solution usingLUSAS while it takes less than a
minute to obtain equally accurate solutions using thep-Ritz
approach with mode symmetry classification. Noting th
some of the finite-element solutions are higher than the
Ritz solutions and keeping in mind that solutions from t
Ritz approach are always upper-bounded, the 3-D Ritz s
tions presented in Table II not only require considerably l
time than the finite-element method, but are also more ac
rate.

B. Vibration frequency and mode shapes

A set of new results for the free vibration of CFFF c
lindrical shells with aspect ratioa/b varying from 1 to 2,
wherea and b are the length and arc of the open shell,
presented in Figs. 2 and 3. The corresponding results
CFCF and CCCC cylindrical shells are presented in Figs
and 5, and 6 and 7. The subtended angleu0 ranges from 10°
to 180°. Because the aspect ratio is constant, the open
radius varies whileu0 is changed, keeping the thicknesst
constant. The idea or initiative of the authors is to investig
the effects of subtended angle while the deepness of an
shell is changed by bending a given plate with fixed lengta
and widthb.

In the figures, most of the frequencies have been co
puted usingpuz3pr51034 while lower polynomial degree
have been employed for smallu0 as indicated in the figure
because the matrix becomes ill conditioned. The fundam
tal mode for a CFFF shell is the S-1 mode while for CFC
oc. Am., Vol. 104, No. 3, Pt. 1, September 1998
d.
n-

t
D

u-
s
u-

or
4

ell

e
en
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n-

and CCCC shells the fundamental mode switches from
SS-1 mode to the SA-1 mode. The threshold ofu0 at which
switching of fundamental mode occurs varies depending
a/b and boundary conditions as indicated by the inters
tions of the SS-1 and SA-1 curves in Figs. 4–7, which a
respectively, 120°, 160°, 130°, and 120°, approximately

FIG. 2. Effect of subtended angle~degree! on frequency for a thick cylin-
drical shell~CFFF! with n50.3, t/b50.2, anda/b51.
1440Lim et al.: Open cylindrical shells
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gular
,
and
should be emphasized that the curves do not actually cros
these curves were to cross, then, for some subtended an
two different vibration modes would exist at the same f
quency, which is indeed a violation of the uniqueness o
vibration mode. In this respect, computations have been c
ducted at very small intervals ofu0 and it is realized that the
frequency curves belonging to different modes appro
each other but they never coalesce. In fact, after the ‘‘c
lescence,’’ the frequency curves interchange their co

FIG. 3. Effect of subtended angle~degree! on frequency for a thick cylin-
drical shell~CFFF! with n50.3, t/b50.2, anda/b52.

FIG. 4. Effect of subtended angle~degree! on frequency for a thick cylin-
drical shell~CFCF! with n50.3, t/b50.2, anda/b51.
1441 J. Acoust. Soc. Am., Vol. 104, No. 3, Pt. 1, September 1998
. If
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-
a
n-

h
-
-

sponding types. This almost coalescence is not novel an
occurs in many problems whether in structural dynami
acoustics, or fluid mechanics.

For a CFFF shell witha/b51 and 2, the S-1 and A-2
frequencies increase with increasingu0 while the A-1 fre-
quency decreases. The S-2 frequency demonstrates irre
tendency with respect tou0 . For CFCF and CCCC shells
the SS-1 and AS-1 frequencies increase while the SA-1
AA-1 frequencies decrease for shells with largeru0 . The

FIG. 5. Effect of subtended angle~degree! on frequency for a thick cylin-
drical shell~CFCF! with n50.3, t/b50.2, anda/b52.

FIG. 6. Effect of subtended angle~degree! on frequency for a thick cylin-
drical shell~CCCC! with n50.3, t/b50.2, anda/b51.
1441Lim et al.: Open cylindrical shells
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increasing rate of AS-1 frequency for a CCCC shell w
a/b52 ~Fig. 7! decreases rapidly asu0 approaches 150° an
onwards. In all these shell configurations, the frequency
smaller for longer shells~higher a/b) but it is larger for
shells with stronger boundary constraints~from CFFF, CFCF
to CCCC!.

New vibration mode shapes for the CFFF, CFCF, a
CCCC shells are depicted in three-dimensional displacem
meshes in Fig. 8. Various vibration modes can be obser
from these figures, for instance, the S-1 and S-2 modes
the first and second flapwise bending modes. The A-1
A-2 modes look alike but they are in fact the first twistin
mode and the first in-surface mode in the circumferen
direction, respectively. The free end of the A-1 mode
twisted while the free end of the A-2 mode is displaced in
circumferential direction. Because the cylinders are thi
not all lower frequency modes have the normal compon
Ur , as the predominant component. For instance, the
mode is circumferential dominant. The dependence of vib
tory characteristics on boundary conditions are illustrated
these figures. The frequencies of a CFFF shell are lower
the CFCF and CCCC shells while the frequencies of a CC
shell are the highest.

III. CONCLUSIONS

A new analysis method using a three-dimensional e
ticity approach for free vibration of thick, open cylindrica
shells has been developed. The spatial integrals for st
with transverse normal stress, and kinetic energy com
nents have been formulated. An energy functional has b
defined and its extremum determined to arrive at a govern
eigenvalue equation. The two-dimensionalp-Ritz admissible
functions previously used in thick shallow shell studies ha

FIG. 7. Effect of subtended angle~degree! on frequency for a thick cylin-
drical shell~CCCC! with n50.3, t/b50.2, anda/b52.
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been generalized to three-dimensional functions by asso
ing the two-dimensional functions with a one-dimension
p-Ritz admissible function.

Convergence of vibration frequencies has been ex
ined and excellent comparison with finite-element solutio
has been recorded. Classification of vibration modes
grouping terms in thep-Ritz functions tremendously reduce
the matrix determinant size and thus much computation
fort can been saved while maintaining the same level of
curacy. The algorithm developed here requires less tha
minute to obtain accurate solutions which take hours fo
finite-element package to compute. Most of the frequenc
show consistent tendency with respect to increasing s
tended angle. The frequency decreases for longer shells
shells with weaker boundary constraints. New thre
dimensional mode shapes have been presented.
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