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A11 is assumed to be stable so that(�1)p det(M0) > 0. The critical
stability for the above inequality is

det(Ip + "2cM1M
�1

0 + "
2

2cM2M
�1

0 )

= 0 for " < "2c (15)

and (15) is equivalent to the following equation [25]:

det(I2p + "2cAM) = 0:

Then the upper bound", to guarantee the condition 3) of Lemma 3
to be satisfied, can be given by" < "2c.

APPENDIX B
PROOF OF THEOREM 2

The proof of conditions 1) and 2) of Lemma 3 are similar to
those of Theorem 1, so we concentrate on searching the bound"2.
Connecting Lemma 2 with (8c) and (9), we can assert that matrixE is
Hurwitz. ThenE is invertible, and the third condition of Lemma 3 is
now equivalent to computing the minimum real eigenvalue ofFE

�1.
Hence, the upper bound, to guarantee the third condition of Lemma
3 to be satisfied, is given by"2.
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Improvement of Parametric Stability
Margin Under Pole Assignment

Tingshu Hu and James Lam

Abstract—In this paper, the improvement of the parametric stability
margin of state-space uncertain systems via a maximization formulation
under the constraints of pole assignment is investigated. The class of sys-
tems considered is where the uncertainty may be modeled as the, possibly
nonlinear, variation of a parameter appearing in the entries of the system
and input matrices. The continuity and differentiability properties of the
stability margin are discussed. A gradient-based approach is presented
for the improvement of the stability margin and a compact formula
to compute the gradient is provided. Numerical examples are used to
demonstrate the effectiveness of the approach.

Index Terms—Gradient, optimization, pole assignment, robustness,
stability margin.

I. INTRODUCTION

Over the last decade, a vast amount of research has been devoted to
robust stability analysis for systems with parametric uncertainties or
perturbations; see, e.g., [6], [10], [12], [14], and [15]. In these papers,
the perturbations in the system matrix are assumed to be affine,
multilinear, or polynomial functions of the uncertain parameters.
Some bounds on the parameters to ensure robust stability were
provided. However, less attention has been paid to designing a
controller to enhance robust stability.
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From the designer’s point of view, it would be important to
construct a closed-loop system so that it is maximally tolerable
toward uncertainties. A classical technique in control system design
for state-space systems is pole assignment. For a completely state
controllable realization, it is well known that the closed-loop poles
can be arbitrarily assigned. For systems with two or more inputs,
the feedback gain to achieve a given pole assignment specification
is in general nonunique. Such nonuniqueness may be exploited to
optimize a variety of system performance indexes. The most common
application of this idea is robust pole assignment. Research in this
area may be found in [1], [2], [4], [5], [8], and references therein.
There is little work on utilizing the freedom in the feedback matrices
to improve stability margin. The obvious reason is that the pole
assignment itself imposes constraints to the feedback systems and
inevitably reduces the overall achievable stability margin if only
closed-loop stability is concerned. However, it is often necessary
to fix or approximately fix the closed-loop poles due to practical
considerations, such as transient characteristics. The tradeoff between
pole assignment constraints and optimum performance is justifiable in
view of control system implementation since optimal solutions may
have undesirable transient behavior or unacceptably large gain.

Motivated by the aforementioned reasons, this paper considers the
improvement of a parametric stability margin under the constraints
of pole assignment via state feedback. As a first step toward a more
general computation procedure, it is assumed that the (nonlinear)
perturbation is parameterized by a single parameter. In contrast to
previous works, the development is given in terms of state-space
matrices with a gradient-based optimization treatment.

II. STABILITY MARGIN

Consider the following parametric uncertain system:

_x = M(F; p)x (1)

wherex 2 Rn is the state,F is a real matrix containing all the design
parameters,p 2 R is the uncertain parameter, andM(F; p) 2 Rn�n

is a matrix function that is continuously differentiable with respect
to F and p.

For a givenF , supposeM(F; 0) is stable, then there exists a real
numberr > 0 such thatM(F; p) is stable for allp 2 (�r; r). A
practical problem is to select anF such that thisr is maximized.
To formulate the problem, we define the function of stability margin
as follows.

Definition 1: Let F be the set ofF such thatM(F; 0) is stable.
For F 2 F , define

�M(F ) :=
minfjpj: M(F; p) is unstableg
1; if M(F; p) is stable for allp:

(2)

In this paper, we are particularly interested in the following closed-
loop system:

_x = M(F; p)x = [A(p) +B(p)F ]x (3)

where F 2 R
m�n is the state feedback matrix andA(p) 2

R
n�n, B(p) 2 Rn�m are matrix functions that are continuously

differentiable with respect to the uncertain parameterp 2 R. Our
objective is to select anF such that�M (F ) is maximized under
the constraint of pole assignment. For simplicity, denoteA(0) =
A0; B(0) = B0.

Sincep is a scalar, for a givenF , �M (F ) can be computed by
the bisection method. It is clear that functions of this kind are very
complicated and can possess discontinuities. To maximize�M (F )
based on gradient information, one must have knowledge about under
what conditions�M (F ) is continuous and differentiable.

Assume thatM(F; 0) is stable. Denote

Q(F; p) =
M(F; p) 0

0 M(F; �p)

then

�M (F ) =
minfp > 0: Re�i[Q(F; p)] = 0; for someig
1; if Re�i[Q(F; p)] 6= 0; for all p > 0 andi

(4)

whereRe�i[�] denotes the real part of theith eigenvalue of a matrix.
For a givenF , each locus�i[Q(F; p)] is continuous and piecewise
smooth and�M (F ) equals the smallestp at which one of the loci
hits the imaginary axis.

Theorem 1: For a givenF0, letp0 = �M (F0). SupposeQ(F0; p0)
has` distinct eigenvalues�i[Q(F0; p0)], 1 � i � ` on the imaginary
axis, then we have the following.

1) �M (F ) is continuous in a neighborhood ofF0 if there is one
i; 1 � i � ` such that

@ Re�i[Q(F0; p0)]

@p
6= 0:

2) �M (F ) is differentiable atF0 if

@ Re�i[Q(F0; p0)]

@p
6= 0; for all 1 � i � `

and the following` items are equal:

@ Re�i[Q(F0; p0)]

@F
@ Re�i[Q(F0; p0)]

@p

; 1 � i � `:

In this case, the partial derivative of�M (F ) at F0 is given as

@�M (F0)

@F
= �

@ Re�1[Q(F0; p0)]

@F
@ Re�1[Q(F0; p0)]

@p

: (5)

To prove the above theorem, define

�iM(F ) :=
minfp > 0: Re�i[Q(F; p)] = 0g
1; if Re �i[Q(F; p)] 6= 0 for all p > 0:

i = 1; 2; � � � ; 2n:

It is easy to see that

�M (F ) = minf�iM(F ); i = 1; 2; � � � ; 2ng: (6)

For each�iM(F ), we have the following result.
Lemma 1: For a givenF0, assume�iM(F0) < 1. Let p0 =

�iM(F0), then by definitionRe�i[Q(F0; p0)] = 0. Suppose that the
following conditions are satisfied:

1) �i[Q(F0; p0)] is a simple eigenvalue ofQ(F0; p0);
2) (@ Re�i[Q(F0; p0)])=@p 6= 0;

then�iM(F ) is continuously differentiable in a neighborhood ofF0
with

@�iM(F0)

@F
= �

@ Re�i[Q(F0; p0)]

@F
@ Re�i[Q(F0; p0)]

@p

: (7)
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Proof: From Condition 2 and the definition of�iM(F ) we have

@ Re �i[Q(F0; p0)]

@p
> 0: (8)

From Condition 1, there exist�1, �1 > 0 such that whenkF �F0k <

�1, jp�p0j < �1, �i[Q(F; p)] is continuously differentiable. So there
exists � 2 (0; �1) such that

@ Re�i[Q(F0; p)]

@p
> 0; for all p 2 (p0 � �; p0 + �): (9)

By the implicit function theorem, there exists�2 2 (0; �1], such
that whenkF � F0k < �2, there is a uniquep 2 (p0 � �; p0 + �)

satisfyingRe�i[Q(F; p)] = 0. By the definition of�iM(F ), we also
havemaxfRe�i[Q(F0; p)]: p 2 [0; p0 � �]g < 0. Hence there
exists � 2 (0; �2] such thatmaxfRe�i[Q(F; p)]: p 2 [0; p0 �

�]; kF � F0k � �g < 0. Thus for anyF such thatkF � F0k � �,
there is a uniquep0 2 (0; p0 + �) satisfyingRe�i[Q(F; p0)] = 0.
This implies that�iM(F ) = p0, wherep0 2 (0; p0 + �) is uniquely
determined fromRe�i[Q(F; p)] = 0. By using the implicit function
theorem again, we know that�iM(F ) is continuously differentiable
in a neighborhood ofF0 with the partial derivative given by (7).

The following result is similar to Proposition 2.1 in Hinrichsen
and Pritchard [3].

Lemma 2: �iM(F ) is semicontinuous from above. That is, given
F0, if �iM(F0) > �, then there exists� > 0, such that�iM(F ) > �

wheneverkF � F0k < �.
Proof: Since �iM(F0) > �, thusmaxfRe�i[Q(F0; p)]: p 2

[0; �]g < 0 and there exists� > 0 such that

maxfRe�i[Q(F; p)]: p 2 [0; �]; kF � F0k � �g < 0

and the result follows.
Proof of Theorem 1:Notice that�iM(F0) = �M (F0) for i � `

and �iM(F0) > �M (F0) for i > `.

1) Without loss of generality, assume that(@Re�1 [Q(F0; p0)])=

@p 6= 0, and it follows from Lemma 1 that�1M(F ) is
continuous atF0. Thus for any� > 0, there exists�1 > 0 such
that whenkF � F0k < �1, j�1M(F ) � �1M(F0)j < �. Since
�iM(F0) > �1M(F0)� �, by Lemma 2, there exists� 2 (0; �1]

such that whenkF � F0k < �, �iM(F ) > �1M(F0) � �,
i = 2; � � � ; 2n. This implies�M (F ) > �M (F0) � �. On the
other hand, since�1M(F ) < �M (F0) + �, we have�M (F ) <

�M (F0) + � by (6). It follows that j�M (F ) � �M (F0)j < �

for all F satisfying kF � F0k < �. This shows�M (F ) is
continuous atF0.

2) When the conditions are satisfied,�iM(F ), i � ` are continuous
at F0. Let � = 1=2 mini>`(�

i
M(F0)� �M (F0)), there exists

� > 0 such that whenkF �F0k < �, j�iM(F )� �M (F0)j < �

for i � ` and�iM(F ) > �M (F0) + � for i > ` (by Lemma 2).

This shows�M (F ) = minf�iM(F ); i = 1; 2; � � � ; `g when
kF � F0k < �. Thus, together with the conditions, we know
�M (F ) is continuously differentiable and the partial derivative
formula (5) follows.

Here, we provide a formula to compute(@�M(F0)=@F ). De-
note the left eigenvector and the right eigenvector ofQ(F0; p0)
corresponding to�1 astT andv, tT v = 1. Furthermore,t; v are par-
titioned astT = [tT1 tT2 ]; v

T = [vT1 vT2 ]; t1; t2; v1; v2 2 C
n. It

can be shown (see (10) at the bottom of the page) thatA0(p0); B
0(p0)

denote the derivatives ofA(p); B(p) at p0, respectively.
With the above formula, a gradient-based algorithm can be devised

to increase�M (F ). The constraint thatA0 + B0F is stable will be
guaranteed in each step since�M (F ) is increased after each iteration.
In the following section, we present a method to increase�M (F )
under the pole assignment constraint.

III. OPTIMIZING STABILITY MARGIN UNDER POLE ASSIGNMENT

Let f�1; �2; � � � ; �ng be a set of self-conjugate complex numbers
corresponding to the set of desired poles. Assume that there aren0

complex conjugate pairs,�2i�1; �2i = �i � j�i; i = 1; 2; � � � ; n0,
then one can define the real block diagonal matrix shown in (11), at
the bottom of the page. It is assumed that the eigenvalues of� are
distinct, then for a given controllable pair(A; B); A 2 Rn�n and
B 2 Rn�m, the problem of pole assignment by state feedback is to
choose feedback matrixF , such that

V �1(A+BF )V = � (12)

for some nonsingularV .
Now we turn back to (3). At the nominal working pointp = 0,

the closed-loop state matrix isA0 + B0F . It is required that the
eigenvalues ofA0+B0F be the setf�1; �2; � � � ; �ng. Our objective
is to choose anF such that the stability margin�M (F ) is maximized.
This problem can be formulated as

sup �M (F ) s.t. V �1(A0 +B0F )V = �: (13)

In the following, we will follow the idea of [1] and [2] to parameterize
all the feedback matricesF that satisfy (12) as the function of a free
parameterU 2 Rm�n. In this way,�M (F ) becomes a function of
the free parameterU . Explicit formulas to compute the gradient can
be derived.

Given a controllable pair(A0; B0) and a real block diagonal
matrix� with the form in (11) such thatA0 and� have no common
eigenvalues, then a functionf : U ! F is defined as follows. For
U 2 Rm�n, solve

A0V � V � = �B0U (14)

for V and if V is nonsingular, letF = UV �1. The function is
denoted asF = f(U). The domain off is

Df := fU 2 Rm�njV in (14) is nonsingularg

and the range off is Rf = f(Df).

@�M (F0)

@F
= �

[Re(v1t
T
1 )B(p0) + Re(v2t

T
2 )B(�p0)]

T

ReftT1 [A
0(p0) +B0(p0)F ]v1 � tT2 [A

0(�p0) +B0(�p0)F ]v2g
(10)

� := diag
�1 �1

��1 �1
; � � � ;

�n �n
��n �n

; �2n +1; � � � ; �n (11)
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The condition thatA0 and� have no common eigenvalues ensures
that (14) always has a unique solution for eachU .

The following result justifies the use of the parameterU as a means
to optimize the stability margin under pole assignment constraints.

Theorem 2 [1], [4]:

1) Df is a dense open set inRm�n.
2) fF : V �1(A0 + B0F )V = �g = Rf = f(Df).

This shows that all theF ’s satisfying the constraint in (13) can be
parameterized as the function of a free parameterU . Since�M(F )
is a function ofF which is in turn uniquely determined byU ,
consequently, it can be expressed asJ(U) := �M (F (U)). By
Theorem 2, the constraint in (13) can be relaxed and we get an
equivalent optimization problem

sup
U2D

J(U): (15)

As F = f(U) is a rational function andDf is an open set, then
F is differentiable with respect toU for all U 2 Df . Thus(@J=@U)
exists if �M (F ) is differentiable with respect toF . To facilitate the
derivation of the gradient formula, we first state, with the proof
omitted, the following lemma.

Lemma 3: For M; N; Q; R; X; Y 2 Rn�n satisfying

MX +XN = Q; Y M +NY = R

tr(RX) = tr(QY ).
Theorem 3: SupposeU 2 Df and

A0V � V � = �B0U; F = UV �1:

If (@�M (F )=@F ) exists, then the gradient ofJ(U) = �M (F (U))
is given by

@J

@U
=

@�M
@F

V �T +BT
0 Y

T (16)

whereV �T denotes(V �1)T andY is the unique solution of

Y A0 � �Y = V �1
@�M
@F

T

F: (17)

Proof: ConsiderU = [uij ]m�n, and we have

@U

@uij
= eie

T
j

where ei and ej are theith and thejth basis vectors ofRm and
R
n, respectively. Also

@F

@uij
=

@UV �1

@uij
= eie

T
j V

�1 � F
@V

@uij
V �1

where (@V=@uij) satisfies

A0

@V

@uij
� @V

@uij
� = �B0eie

T
j : (18)

Write F asF = [fij ]m�n, and we have

@J

@uij
=

m

p=1

n

q=1

@�M
@fpq

@fpq
@uij

=tr
@�M
@F

T
@F

@uij

= eTj V
�1 @�M

@F

T

ei � tr V �1
@�M
@F

T

F
@V

@uij
:

By Lemma 3

�tr V �1
@�M
@F

T

F
@V

@uij
= tr[(B0eie

T
j )Y ] = eTj Y B0ei

Fig. 1. Variation of real parts as functions ofp in Example 1.

whereY is the unique solution of (17). Consequently

@J

@uij
= eTj V �1

@�M
@F

T

+ Y B0 ei

= eTi V �1
@�M
@F

T

+ Y B0

T

ej

and the result follows.
With (@J=@U), the stability marginJ(F (U)) can be increased

with a gradient algorithm.

IV. NUMERICAL EXAMPLES

Consider the system of two identical penduli coupled by a spring
[11]

_x =

0 1 0 0

g

l
� k�2

ml2
0

k�2

ml2
0

0 0 0 1

k�2

ml2
0

g

l
� k�2

ml2
0

x +

0 0
1

ml2
0

0 0

0
1

ml2

u:

Example 1: Suppose� is the uncertain parameter and other pa-
rameters are constants:l = 1; k = 2; m = 0:2. The nominal value
of � is

p
0:5. Let p = �2 � 0:5, then

A(p) = A0 + pA1; B(p) = B0

where

A0 =

0 1 0 0
4:8 0 5 0
0 0 0 1
5 0 4:8 0

; B0 =

0 0
5 0
0 0
0 5

A1 =

0 0 0 0
�10 0 10 0

0 0 0 0
10 0 �10 0

: (19)

The open-loop system is unstable for allp and the nominal system
matrix A0 has eigenvalues�3:1305 and �j0:4472. The desired
closed-loop eigenvalues ofA0 + B0F are�1� j; �2; �3.

Let

U0 =
0 1 �1 0
1 0 0 �1

:
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Fig. 2. Intersections defining stability margin for different iterates (F0- -,
F1– �, F2� � �, F4—).

We obtain the initial feedback matrixF0 with stability margin given
by J(U0) = �M(F (U0)) = 0:0844. After four iterations, the
gradient algorithm terminates at a local minimumU4, with

F4 =
�2:0849 �0:9109 �1:6376 �0:2889
�0:1118 0:2245 �0:8832 �0:4891

and �M (F4) = 0:3004 which represents a significant improvement
of the stability margin. For the closed-loop system, the variation of
the real parts of the closed-loop poles as functions ofp is depicted
in Fig. 1 (the three circles correspond to the position of the real parts
of the three closed-loop poles whenp = 0). It can be seen that when
p � �0:3, the system has a pair of complex conjugate poles which
coalesce at the origin that destabilizes the system. Correspondingly,
this first intersection of one of the curves with the abscissa equals
the stability margin. To appreciate the improvement of the stability
margin, the first intersections corresponding to the iteratesF0, F1,
F2, andF4 are shown in Fig. 2.

Example 2: Now supposel is the uncertain parameter. The other
parameters are constants,k = 2; � =

p
0:5; m = 0:2. The nominal

value of l is one. Letp = (1=l) � 1, then

A(p) = A0 + pA1 + p2A2; B(p) = B0 + pB1 + p2B2

whereA0; B0 are the same as those in Example 1 and

A1 =

0 0 0 0
�0:2 0 10 0

0 0 0 0
10 0 �0:2 0

; B1 =

0 0
10 0
0 0
0 10

A2 =

0 0 0 0
�5 0 5 0
0 0 0 0
5 0 �5 0

; B2 =

0 0
5 0
0 0
0 5

:

The desired closed-loop eigenvalues are the same as Example 1.
By using the gradient algorithm, different local minima are de-

tected. It is very interesting to note that the value of�M (F ) at
these minima are exactly the same, as far as the computation results
showed. The optimal stability margin is�M (F �) = 0:2428. A
particular optimal feedback that achieves this stability margin isF �

F � =
�1:2510 �0:5367 �0:7251 �0:0740
�1:5804 �0:2938 �2:0610 �0:8633 :

V. CONCLUSION

We have studied the improvement of the parametric stability
margin of state-space uncertain systems via a maximization process
under the constraints of pole assignment. The uncertainty is modeled
as a one-parameter, generally nonlinear, variation in the system and
input matrices. The conditions on continuity and differentiability of
the stability margin as functions of the feedback matrix is analyzed.
A gradient-based approach is derived to improve the stability margin.
The effectiveness of the approach is demonstrated by numerical
examples.
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Mårtensson, Eds. Boston, MA: Birkhäuser, 1990, pp. 119–162.
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