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Ay is assumed to be stable so thatl)? det(M,) > 0. The critical [17] G. Blankenship, “Singularly perturbed difference equations in optimal

stability for the above inequality is control problems,1EEE Trans. Automat. Contryol. 26, pp. 911-917,
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det(Iop + EZCKA/]) —0. [20] J. H. Liand T.-H. S. Li, “On the composite and reduced observer-based

Then the upper boung, to guarantee the condition 3) of Lemma 3
to be satisfied, can be given hy< e..
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From the designer’'s point of view, it would be important to Assume thatM (F, 0) is stable. Denote
construct a closed-loop system so that it is maximally tolerable
toward uncertainties. A classical technique in control system design Q(F, p) = {M(F, p) 0
for state-space systems is pole assignment. For a completely state ’ 0 M(F, —p)
controllable realization, it is well known that the closed-loop poles
can be arbitrarily assigned. For systems with two or more inpuf@,en

the feedback gain to achieve a given pole assignment specification {Inin{p > 0: ReM[Q(F, p)] = 0, for somei}

is in general nonunique. Such nonuniqueness may be exploiteghto( F') = ~o, if ReM[Q(F, p)] £ 0, forallp >0 andi 4)

optimize a variety of system performance indexes. The most common

application of this idea is robust pole assignment. Research in tWﬁereReAg[-] denotes the real part of thith eigenvalue of a matrix.

area may be found in [1], [2], [4], [5], [8], and references thereirk, ., oienr each locus\:[Q(F, p)] is continuous and piecewise
Thgre is little WO!’|.( on utlllglng the freedom in the fegdback matriceg,\ - oih andpy (F) equals the smallest at which one of the loci
to improve stability margin. The obvious reason is that the po

. . . . ts the imaginary axis.
assignment itself imposes constraints to the feedback systems ang, .. f Forya givenF,

inevitably reducg§ the overall achievable stapll!ty margin if Onl%asf distinct eigenvalues,
closed-loop stability is concerned. However, it is often necess
to fix or approximately fix the closed-loop poles due to practica
considerations, such as transient characteristics. The tradeoff betwe
pole assignment constraints and optimum performance is justifiable in
view of control system implementation since optimal solutions may dRe \i[Q(Fy,
have undesirable transient behavior or unacceptably large gain. op

Motivated by the aforementioned reasons, this paper considers the
improvement of a parametric stability margin under the constraintsz) pn (F) is differentiable atFy if
of pole assignment via state feedback. As a first step toward a more ‘

letpo = par(Fo). Suppos&(Fo, po)
[Q(Fo. po)], 1 < i < (on the imaginary
Xis, then we have the following.

el pu(F) is continuous in a neighborhood &% if there is one
i, 1 < i < ( such that

i) £0.

general computation procedure, it is assumed that the (nonlinear) O Re X [Q(Fo. po)] .
S . . - #0, forall 1 <i</¢

perturbation is parameterized by a single parameter. In contrast to ap

previous works, the development is given in terms of state-space

matrices with a gradient-based optimization treatment. and the following( items are equal:

O Re X [Q(Fo, po)]

Il. STABILITY MARGIN

. . ) . , : or . 1<i<U
Consider the following parametric uncertain system: 9 Re \i[Q(Fo, po)]
= M(F, p)x (1) o
wherex € R" is the stateF’ is a real matrix containing all the design In this case, the partial derivative pf, (F) at It is given as
parametersy; € R is the uncertain parameter, add(F, p) € R"*" O Re M1 [Q(Fo, po)]
is a matrix function that is continuously differentiable with respect Opu (Fo) oF :
to F andp . . OF - O Re )\1[()2(17\07 PO)] . (5)
For a givenF', supposeV (F, 0) is stable, then there exists a real op
numberr > 0 such thatM (F, p) is stable for allp € (—r, r). A
practical problem is to select ai such that thisr is maximized. To prove the above theorem, define
To formulate the problem, we define the function of stability margin
as follows. i (F) = min{p > 0: Re ;[Q(F, p)] = 0}
Definition 1: Let F be the set off’ such thatM (F, 0) is stable. P Tl oo, ifReN[Q(F, p)]#0forallp> 0.
For F € F, define i=1.2 . om.
(F) = min{|p|: M(F, p) is unstablé @) _
PMAE) = oo, if M(F, p) is stable for allp. It is easy to see that
In this paper, we are particularly interested in the following closed- pur(F) = min{ph(p)_, i=1,2,---,2n}. (6)
loop system:
& = M(F, p)e = [A(p) + B(p)Fla ®) For eachp’y, (F'), we have the following result.

Lemma 1: For a given Fy, assumep’,(F,) < oc. Let po =
where F € R™*" is the state feedback matrix and(p) € ri(Fo), then by definitionRe \i[Q(Fo, po)] = 0. Suppose that the
R"*", B(p) € R"*™ are matrix functions that are continuouslyfollowing conditions are satisfied:
differentiable with respect to the uncertain parametet R. Our 1) \[Q(Fo, po)] is a simple eigenvalue df(Fo, po);
objective is to select af’ such thatprs(F') is maximized under  2) (9 Re \[Q(Fo, po)])/dp # 0;

the constraint of pole assignment. For simplicity, dendt®) = then i, (F) is continuously differentiable in a neighborhood &f
Ao, B(0) = Bo. with

Sinceyp is a scalar, for a giver, pas(F) can be computed by
the bisection method. It is clear that functions of this kind are very v dRe Xi[Q(Fo, po)]
complicated and can possess discontinuities. To maximizérF’) 9phi(Fo) - _ oF ) @)
based on gradient information, one must have knowledge about under oF O Re N [Q(Fo, po)]

what conditionspas (F') is continuous and differentiable. Jp



1940 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 44, NO. 10, OCTOBER 1999

Proof: From Condition 2 and the definition gf,; (F) we have This showspas (F) = min{pi,(F), i = 1,2, -++, {} when
[|FF — Fo|| < 6. Thus, together with the conditions, we know
ORe N[Q(Fy, po)] pm(F) is continuously differentiable and the partial derivative
ey > 0. ®) formula (5) follows. O

Here, we provide a formula to comput@pa:(Fo)/0F). De-
From Condition 1, there exigt , £, > 0 such that whej F — Fy|| < note the left eigenvector and the right eigenvector(Xirs, po)
61, lp—po| < &1, M[Q(F, p)]is continuously differentiable. So therecorresponding to ast? andv, tTv = 1. Furthermoret, v are par-

exists¢ € (0, &) such that titioned ast’ = [t] 3], v =[v] W] t1, t2, v1, v2 € C". It
can be shown (see (10) at the bottom of the page)4haty), B’ (po)
9 Re N [Q(Fo, p)] denote the derivatives od(p), B(p) atpo, respectively.
o >0, forallp € (po — & po+¢).  (9) With the above formula, a gradient-based algorithm can be devised

to increaseps (F). The constraint thatly + Bo F is stable will be
guaranteed in each step since (F) is increased after each iteration.
In the following section, we present a method to increasg F')
under the pole assignment constraint.

By the implicit function theorem, there exists € (0, 6], such
that when||F — Fy|| < 62, there is a unique € (po — &, po + &)
satisfyingRe \;[Q(F, p)] = 0. By the definition ofp};(F), we also
have max{Re \;,[Q(Fo, p)]: p € [0, po — £]} < 0. Hence there

exists 5 € (0, 62] such thatmax{Re \;[Q(F, p)]: p € [0, po — [ll. OPTIMIZING STABILITY MARGIN UNDER POLE ASSIGNMENT

&), ||F = Fo|| < 6} < 0. Thus for anyF’ such that||F — Fo|| < 6, Let{\i, A2, --+, A\, } be a set of self-conjugate complex numbers
there is a uniqu@f € (0, po + &) satisfyingRe \;[Q(F. p')] = 0. corresponding to the set of desired poles. Assume that there’ are
This implies thatp', (F) = p’, wherep’ € (0, po + £) is uniquely complex conjugate pairsye;—1, de; = o; £j3;,i=1,2, .-+, n,

determined fromRe \;[Q(F, p)] = 0. By using the implicit function then one can define the real block diagonal matrix shown in (11), at
theorem again, we know thaf,, (F) is continuously differentiable the bottom of the page. It is assumed that the eigenvalués arfe
in a neighborhood of, with the partial derivative given by (7)d  distinct, then for a given controllable paid, B), A € R"*" and

The following result is similar to Proposition 2.1 in HinrichsenB € R"*", the problem of pole assignment by state feedback is to
and Pritchard [3]. choose feedback matrik’, such that

Lemma 2: piy;(F) is semicontinuous from above. That is, given

F—1 P
Fy, if pis(Fy) > «a, then there exist§ > 0, such that’, (F) > « V{A+BRV =A (12)
whenever||F — Fol| < 6. for some nonsingulaf’.
Proof: Since p’,; (Fb) > «, thus max{Re \;[Q(Fo, p)]: p € Now we turn back to (3). At the nominal working poipt= 0,
[0, o]} < 0 and there exists > 0 such that the closed-loop state matrix ido 4+ BoF. It is required that the
eigenvalues ofio+ By F be the se{\1, A2, ---, A, }. Our objective
max{Re i [Q(F, p)l: p € [0, a]. ||F — Fo|| <6} <0 is to choose aif’ such that the stability margim; (F) is maximized.
This problem can be formulated as
and the result follows. v O sup pu(F) st V7' (Ag + BoF)V = A. (13)
Proof of Theorem 1:Notice thatp, (Fo) = pa (Fo) for ¢ < ¢
and ply (Fo) > par(Fy) for i > (. In the following, we will follow the idea of [1] and [2] to parameterize

1) Without loss of generality, assume thi&tRe A1 [Q(Fo, po)])/ all the feedrback fgzgiceg that satisfy (12) as the function of_ a free
ap # 0, and it follows from Lemma 1 thapl,(F) is pharafmetelb € Rdr' I;:Inl_th_lsfway,l,oM(F) become:;afung_tlon of
continuous afy. Thus for any > 0, there exist$, > 0 such tbee dr:rievggramet - Explicit formulas to compute the gradient can
that when||F — F, 81, |phs(F) — phs(F . Since : ‘ .y .

; I | oll < du, 1par(F) = prur(Fo)l < € Given a controllable paif Ay, Bo) and a real block diagonal

o (Fo) > pr(Fo) — &, by Lemma 2, there exists € (0, 1] . . ;
such that when|F — Fo|| < 8, piy(F) > phy(Fo) — & matrix A with the form in (11) such thatt, andA have no common
P M M ' eigenvalues, then a functiofr U — F is defined as follows. For

i=2,---,2n. This impliespas (F) > pam(Fy) — . On the I e R™" solve

other hand, sincel, (F) < pu(Fo) + £, we havepy (F) < ’

prm(Fo) + & by (6). It follows that|pas (F) — pa(Fo)| < & AV —VA=-ByU (14)

for all F satisfying||F' — Fy|| < 6. This showsp(F) is _ ) ) o

continuous atFy. for V and if V is nonsingular, letF = UV ~'. The function is
2) When the conditions are satisfigd, (F), i < ( are continuous denoted as” = f(U'). The domain off is

at Fjy. LetE = 1/2 lning>,¢‘([)fw(Fo) — /)A,/[(Fo)), there exists Dj' = {Lr c Ranl‘/ in (14) is nonsingula}r

& > 0 such that whet| F — Fo|| < 68, |ph(F) — par (Fo)| < €
fori < £ andpiy, (F) > pum(Fo)+ € fori > ¢ (by Lemma 2). and the range of is Ry = f(Dy).

dpm(Fo) _ [Re(vit] ) B(po) + Re(vats ) B(—po)]"
OF  Re{t{[A(po) + B'(po)Flos — t3[A'(=po) + B'(—po)Flva}

(10)

nomaing [0 P 0 2 ) an

[ 7
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The condition thatd, andA have no common eigenvalues ensures 2

that (14) always has a unique solution for edch
The following result justifies the use of the paraméfeas a means

to optimize the stability margin under pole assignment constraints.

Theorem 2 [1], [4]:
1) Dy is a dense open set R™*".
2) {F: V(Ao + BoF)V = A} = Ry = f(Dy).

This shows that all thé”’s satisfying the constraint in (13) can be

parameterized as the function of a free paramétesSincepns (F')
is a function of I which is in turn uniquely determined byf,
consequently, it can be expressed .B97) := pa(F(U)).

Theorem 2, the constraint in (13) can be relaxed and we get an

equivalent optimization problem

sup J(U).
veD,

(15)

As F = f(U) is a rational function an@d; is an open set, then

F is differentiable with respect t& for all U € Dy. Thus(9.J/8U)
exists if pas (F) is differentiable with respect té'. To facilitate the

1941
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Fig. 1. Variation of real parts as functions pfin Example 1.

derivation of the gradient formula, we first state, with the proof

omitted, the following lemma.
Lemma 3: For M, N, @, R, X, Y € R"*" satisfying

MX+ XN =Q, YM+NY =R
tr(RX) = tr(QY).
Theorem 3: Supposell € Dy and
AoV = VA = =BT, F=UV""'

If (pa(F)/OF) exists, then the gradient of(U) = pur(F(U))
is given by

)V’T +Bly” (16)

0J _ (Opu
oU ~ \ OF

whereV =" denotes(V'~")" andY is the unique solution of

. 1 {9pm s
YAy —AY =V < oF ) F. (17)
Proof: Considerl/' = [ui;]mxn, and we have
oU T
é)utj s

wheree; ande; are theith and thejth basis vectors oR™ and
R", respectively. Also

oF _ouv—t o1 OV
du;;  Ouwy; cie; ¥ Ou,]v
where (9V/du,;) satisfies
.oV A T
‘40 au,:j - au,:j A = Boa,e] - (18)
Write F as F' = [f;;]lmxn, and we have
— a/)M Oqu
au,] ; qzl afm Ouij
—tr Opumr T oF
- oF Ougj
71 Opnr T 1 Opm T v
— TV i —tr |V F )
e; V <0F e tr |} OF Bu,
By Lemma 3

ov
a'u‘ij

:| = tr[(Boe,;e]T)Y] = e]TYBoe,-

4n =1 aﬂi’\d r
tr |:Y <3F ) F

whereY is the unique solution of (17). Consequently

T 0o\ | ,
Ougj — (1 <0F +Y Do Jei
"
0o\
=el <1 1<;1;1) +1 Bo> ej

and the result follows. O
With (9J/0U), the stability marginJ(F(U')) can be increased
with a gradient algorithm.

IV. NUMERICAL EXAMPLES

Consider the system of two identical penduli coupled by a spring
(11]

0 1 0 0 0 0
L2 2
g hu? kaQ 0 12 0
p= |1 m ml o+ | "
0 0 0 1 0 0
ko’ g ko 1
- S=-—G 0 )
ml? l ml? ml

Example 1: Supposex is the uncertain parameter and other pa-
rameters are constants= 1, &k = 2, m = 0.2. The nominal value

of « is v0.5. Let p = o? — 0.5, then
A(p) = Ao + pA1, B(p) = By
where
o 1 0 0 0 0
48 0 5 0 5 0
Ad=19 0 0 1 Bo=1p o
|5 0 48 0 0 5
0 0 0 0
—-10 0 10 0
A=l 0 0 o (19)
10 0 =10 O

The open-loop system is unstable for alend the nominal system
matrix 4o has eigenvaluest3.1305 and £50.4472. The desired
closed-loop eigenvalues of, + BoF' are—1 £ j, —2, —3.

Let
S _Jo1 -1 0
LU_L 0 0 —1}'
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Fig. 2. Intersections defining stability margin for different iteratég-(-,
Fi— ., Fy -, Fy—).

We obtain the initial feedback matrik, with stability margin given
by J(Uo) = pu(F(Us)) = 0.0844. After four iterations, the
gradient algorithm terminates at a local minimdm, with

—0.9109
0.2245

—1.6376
—0.8832

—0.2889
—0.4891

_ [~2.0849

Fo=1\_0111s
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V. CONCLUSION

We have studied the improvement of the parametric stability
margin of state-space uncertain systems via a maximization process
under the constraints of pole assignment. The uncertainty is modeled
as a one-parameter, generally nonlinear, variation in the system and
input matrices. The conditions on continuity and differentiability of
the stability margin as functions of the feedback matrix is analyzed.
A gradient-based approach is derived to improve the stability margin.
The effectiveness of the approach is demonstrated by numerical
examples.

(1]
(2]

(3]

(4]
(5]

(6]
(7]
(8]

and par(Fy) = 0.3004 which represents a significant improvement

of the stability margin. For the closed-loop system, the variation
the real parts of the closed-loop poles as functiong &f depicted

in Fig. 1 (the three circles correspond to the position of the real paﬁ%]

of the three closed-loop poles wher= 0). It can be seen that when

of9]

p = —0.3, the system has a pair of complex conjugate poles which

coalesce at the origin that destabilizes the system. Correspondind}]

this first intersection of one of the curves with the abscissa equals

the stability margin. To appreciate the improvement of the stabiliifz[z]

margin, the first intersections corresponding to the iterdigsF,
F,, and Fy, are shown in Fig. 2.

Example 2: Now supposé is the uncertain parameter. The othef13]

parameters are constanis= 2, a = +/0.5, m = 0.2. The nominal
value of! is one. Letp = (1/1) — 1, then

A(p) = Ao +pA; +p° Ay, B(p) = Bo+ pB1 + p° B>
where Ay, By are the same as those in Example 1 and
0 0 0 0 0 0
. _1-02 0 10 0 _ |10 0
A=l 9 0 0 o Bi=1y o
| 10 0 —-02 0 0 10
0 0 0 0 0 0
. _|-5 0 5 0 15 0
=100 ool B=1o 0
| 5 0 =5 0 0 5

[14]

[15]

The desired closed-loop eigenvalues are the same as Example 1.
By using the gradient algorithm, different local minima are de-

tected. It is very interesting to note that the value gaf (F) at

these minima are exactly the same, as far as the computation results

showed. The optimal stability margin isa(F*) = 0.2428. A
particular optimal feedback that achieves this stability margif™is

—0.5367
—0.2938

—0.7251
—2.0610

—0.0740
—0.8633 |

_ [~1.2510

= —1.5804
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