
1870 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 49, NO. 12, DECEMBER 2002

[14] T. Ieko, Y. Ochi, and K. Kanai, “Digital redesign of linear state-feedback
law via principle of equivalent areas,”J. Guid. Control Dyn., vol. 24, pp.
857–859, 2001.

[15] S. M. Guo, L. S. Shieh, G. Chen, and C. F. Lin, “Effective chaotic orbit
tracker: A prediction-based digital redesign approach,”IEEE Trans. Cir-
cuits Syst. I, vol. 47, pp. 1557–1570, Nov. 2000.

[16] T. Chen and B. A. Francis,Optimal Sampled-Data Control Sys-
tems. New York: Spring-Verlag, 1995.

[17] M. E. Polites, “Ideal state reconstructor for deterministic digital control
systems,”Int. J. Control, vol. 49, pp. 2001–2011, 1989.

[18] L. S. Shieh, G. Chen, and J. S. H. Tsai, “Hybrid suboptimal control of
multi-rate multi-loop sampled-data systems,”Int. J. Syst. Sci., vol. 23,
pp. 839–852, 1992.

[19] B. D. O. Anderson and J. B. Moore,Optimal Control Linear Quadratic
Methods. Englewood Cliffs, NJ: Prentice-Hall, 1989, pp. 139–143.

[20] R. C. Dorf and R. H. Bishop,Modern Control Systems. New York:
Addison-Wesley, 1995, p. 310.

Local Stability of Limit Cycles for Time-Delay
Relay-Feedback Systems

Chong Lin, Qing-Guo Wang, Tong Heng Lee, and James Lam

Abstract—This brief is concerned with the local stability of limit cy-
cles for linear systems under relay feedback, for the cases where the linear
system includes a time-delay in its dynamics and the relay can possess asym-
metric hysteresis. The limit cycle considered can be asymmetric, have more
than two switchings a period, zero output derivatives at the switching in-
stants. It shows that if a certain constructed matrix is Schur stable, then,
the local stability of the considered limit cycle is guaranteed. The effective-
ness of the presented results is illustrated by a numerical example.

Index Terms—Hysteresis, limit cycles, local stability, relay-feedback sys-
tems, time delay.

I. INTRODUCTION

Relay-feedback systems have been widely employed in a rather
broad range of settings for many decades. One of the important par-
ticularity of relay-feedback systems, as well as many other nonlinear
systems, is that periodic motions may occur in the trajectories. These
periodic orbits are often termed limit cycles if they are isolated and
have a limiting nature that attracts and/or repels nearby trajectories.
The limit cycle property is very useful in modern control applications
such as automatic tuning of controllers and identification [2], [3], [15].
This activates the intensive investigation for limit cycle behaviors. The
involved study consists in establishing their existence, determining
their frequency and form, investigating their stability and so on. For
single-input single-output (SISO) systems, the existence problem
was investigated early by describing the function method [4], [13].
Exact methods are reported recently in [1] to determine limit cycles
with two switches a period. This type of periodic orbits is revisited
and investigated further in [14] for delay-free systems. Another work
[8] presents a sufficient condition for the existence of a symmetric
stable limit cycle with chattering. For evaluating limit cycle periods
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and characteristics for multi-input multi-output (MIMO) systems, see
[11], [12].

Another important analysis topic is the stability of limit cycles. This
includes mainlylocal stability andglobalstability of limit cycles. The
local stability ensures that all nearby trajectories converge asymptoti-
cally to the limit cycle as time tends to infinity while the global stability
means that such converge is ensured for all trajectories. Some classical
techniques such as phase–plane approach are employed in [7], [13].
Exact methods have also been reported. See [1], [6], [8]–[10] and the
references therein. Astrom [1] gives elegant criteria for the local sta-
bility of limit cycles by considering the linear approximation of the
Poincare map. Johanssonet al.[8], [9] emphasize the fast switches and
present local stability results for limit cycles with sliding motion. In
[5], the method of linear matrix inequalities is used to compute a local
stability bound. Another discussion for the local stability is given in
[10]. For the global stability of limit cycles, a recent paper [6] obtains
sufficient conditions in terms of a set of linear matrix inequalities by
finding the so-called surface Lyapunov function of Poincare maps. As
seen, in the stability analysis, a limit cycle is always assumed to exist
a priori.

In this brief, we consider the local stability of limit cycles for a time-
delay relay-feedback system with the relay containing asymmetric hys-
teresis. The relay is not required merely to switch two times a period
and the assumed limit cycle is not confined to be symmetric. Besides, it
is not required that the trajectory of the limit cycle is nontangent with
the switching planes at the switching instants. From an engineering
point of view, time-delay systems are of considerable interest (most
industrial processes have time delay). Theoretically, the nonzero time
delay ensures a system trajectory evolves uniquely at the intersecting
points. Also, the nonzero time delay makes it possible to relax the non-
tangent condition of the trajectory of the limit cycle at the traversing
points. This relies on the continuity at the intersecting points, and in-
tuitively it is the “overshoot” effect. For delay-free systems, the non-
tangent condition at traversing points has to be assumed, like the case
considered in [1], [8], and [10]. Such a condition makes the local sta-
bility analysis simpler. We will includes this case for delay-free systems
in Remark 3.1.

This brief is organized as follows. Section II is the problem formula-
tion. Section III presents a sufficient condition for the local stability of
a limit cycle with two switchings a period. Section IV gives the exten-
sion result for limit cycles with more than two switchings a period. An
illustrative example is also given. This brief is concluded in Section V.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this brief, the following notations are adopted.
Field of real numbers.

n

n-dimensional real Euclidean space.
I Identity matrix.
A�1 Inverse of matrixA.
�(A), �(A) Eigenvalues, spectral radius of square matrixA.
2, 8, Belong to, for all, sum, respectively.
j � j, k � k Absolute value (or modulus), spectural norm, re-

spectively.
f(t ) = lim�!0 + f(t � �).

k

i=1
Ai = AkAk�1 � � �A1.

m! = m(m� 1) � � � 2 � � � 1 for nonnegative integerm.
O(tk) Infinitesimal of ordertk.

Consider a SISO plant described by

_x(t) =Ax(t) + bu(t� � )

y(t) =cx(t) (1)
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wherex(t) 2 n, y(t) 2 , andu(t � � ) 2 are the state, output,
and control input, respectively;A, b, c are constant real matrices or
vectors with appropriate dimensions;� > 0 stands for the time delay.
The plant is under relay feedback, as shown in (2), at the bottom of
the page, where�, � 2 with � � � stand for the hysteresis;u�,
u� 2 andu� 6= u� . Due to time delay� > 0, we specify the initial
functionu(~t) for ~t 2 [��; 0] as

u(~t) �
u� ; if y(0) > �

u�; if y(0) � �.
(3)

We call (1)–(3) a relay-feedback system and denote it by�.
We see for system�, if � > 0 then, the existence and uniqueness

of trajectories is guaranteed. If� = 0, the existence and uniqueness is
always guaranteed if� > �; if � = �, the existence of solutions is
discussed in [6]. Note that with the definition of relay as above or in
[6], even if existence is guaranteed, uniqueness is not.

We define the switching planes as

S� :=f� 2 n : c� = �g (4)

S� :=f� 2 n : c� = �g: (5)

Let S+� := f� 2 n : c� > �g andS
�� := f� 2 n : c� < �g,

and letS+� andS
�� be defined similarly. Starting at timet = 0 with

y(0) > � (respectively,y(0) � �), if a trajectory of system� in-
tersectsS� (respectively,S� ) at x� (respectively,x� ) from S+� (re-
spectively,S

�� ), we call the statex� (respectively,x� ) anintersecting
point. The time corresponding to the intersecting point is calledinter-
secting instant. It should be stressed that in our convention, if a trajec-
tory intersectsS� (respectively,S� ) atx� (respectively,x� ) fromS

��

(respectively,S+� ), the statex� (respectively,x� ) is not an intersecting
point and the corresponding time is not intersecting instant, since such
intersecting does not cause any switch inu(t). If a trajectory not only
intersects but also traversesS� (respectively,S� ) atx� (respectively,
x� ) fromS+� (respectively,S

��) toS
�� (respectively,S+� ), we call

such an intersecting pointx� (respectively,x� ) a traversing point. The
time corresponding to the traversing point is calledtraversing instant.
It should be noted that for� > 0, at traversing instant, the relayu(t��)
remainsu� (or u�) for a time duration of� after which it changes to
u� (or u�).

III. L OCAL STABILITY OF LIMIT CYCLES

In the local stability analysis for limit cycles of system�, we assume
that there exists a limit cyclex� of the following form.

Form 1: The limit cyclex� makes the relay switch twice a period
with traversing pointsx�� 2 S� andx�� 2 S� . The period is(� +
h�)+(� +h�) with h� > 0 andh� > 0, where� +h� (respectively,
� + h�) is the time forx� to move fromx�� to x�� (respectively, from
x�� to x��).

For illustration, see Fig. 1 wherex�(t) denotes the system solution
corresponding to the limit cyclex�. As for determining the existence
and the period of a limit cycle of the above form withh� = h� , a
numerical method is stated in [1], and, for� = 0, the result is further
developed in [14]. For determining a limit cycle in Form 1, the fol-
lowing is a straightforward necessary condition.

(a)

(b)

Fig. 1. (a) The trajectories ofx (t) andx(t) starting fromx 2 R . (b) The
trajectories ofcx (t) (solid) andcx(t) (dashed).

Proposition 3.1: Assume thatA has no roots in the imaginary axis.
If there is a limit cycle in Form 1, thenh� andh� satisfy the following:

� =c I � e
A(2�+h +h )

�1

�
h +�+h

h

e
As

bu�ds+
2�+h +h

h +�+h

e
As

bu�ds

+
h

0

e
As

bu�ds

� =c I � e
A(2�+h +h )

�1

�
h +�+h

h

e
As

bu�ds+
2�+h +h

h +�+h

e
As

bu�ds

+
h

0

e
As

bu�ds (6)

andx�� andx�� are given by

x
�

� = I � e
A(2�+h +h )

�1

�
h +�+h

h

e
As

bu�ds+
2�+h +h

h +�+h

e
As

bu�ds

+
h

0

e
As

bu�ds

u(t) =

u� ; if y(t) > �, or y(t) > � andu(t�) = u� ,
u�; if y(t) < �, or y(t) < � andu(t�) = u�

u� or u�; if y(t) = � andu(t�) = u� or y(t) = � andu(t�) = u�

(2)
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x�� = I � eA(2�+h +h )
�1

�
h +�+h

h

eAsbu�ds+
2�+h +h

h +�+h

eAsbu�ds

+
h

0

eAsbu�ds : (7)

Proof: By assumption, we see thatI�eAt is invertible fort 6= 0.
The desired result follows easily from the expressions of the solution
corresponding to the limit cycle.

Without loss of generality, we sett0 = 0 corresponding to the time
instant when the trajectory ofx� makes the relay switch fromu� to
u� , see Fig. 1. We define

R� := f� 2 Rn : k� � x�0k � �g

= f� 2 Rn : � = x�0 +�;� 2 Rn; k�k � �g : (8)

Sincecx�0 > �, let a scalar�1 satisfy

0 < �1 < kck�1(cx�0 � �): (9)

Then, from (3),u(�� ) = u� holds for any trajectory starting from
R� .

To achieve our stability result, we need to establish some lemmas
first. Let

N = f0; 1; . . . ; n� 1g: (10)

The first lemma specifies two integersn�; n� 2 N , which will be used
in the development.

Lemma 3.1: For the limit cyclex� in Form 1, there exist two even
integersn�; n� 2 N such that

cAi+1x�� + cAibu� =0; i = 0; 1; . . . ; n� � 1

cAn +1x�� + cAn bu� <0 (11)

cAj+1x�� + cAjbu� =0; j = 0; 1; . . . ; n� � 1

cAn +1 + x��cA
n bu� >0: (12)

Proof: See Appendix.
It is seen that ifn� = n� = 0, then, the trajectory of the limit cycle

is nontangent with the switching planes,S� andS� , at the traversing
points. The conditions in Lemma 3.1 ensures that the vector fields point
in the “right” direction on both sides of the switching planes, e.g., the
trajectory of the limit cycle traverses the switching planes. Here, for
convenience, we introduce some quantities for later use. Fort 2 ,
define

F�(t) :=(eAt � I)x�� +
t

0

eAsbu�ds

f�(t) :=cF�(t)

F�(t) :=(eAt � I)x�� +
t

0

eAsbu�ds

f�(t) :=cF�(t): (13)

By defining

f�(t)

tn +1
t=0

:= lim
t!0

f�(t)

tn +1

=
1

(n� + 1)!
cAn +1x�� + cAn bu� < 0

f�(t)

tn +1
t=0

:= lim
t!0

f�(t)

tn +1

=
1

(n� + 1)!
cAn +1x�� + cAn bu� > 0

there exist two scalarsr�� > 0 andr�� > 0 such thatf�(t)=tn +1 <
0 andf�(t)=tn +1 > 0 are continuous ont 2 [�r��; r

�
�] and t 2

[�r�� ; r
�
� ], respectively. Let

rmin = min h�; h� ; r
�
�; r

�
� : (14)

We denote

S(�;x ) := f� 2 S� : k� � x��k � �g (15)

S(�;x ) := � 2 S� : � � x�� � � : (16)

Now, we analyze the trajectory starting from a nearby point tox�0 .
By continuity, ifkx0�x�0k is small enough, then the trajectory ofx(t)
starting fromx0 will traverseS� at a nearby point tox��. Besides, the
time taken by the trajectory to move to the traversing point is close
to h� . To study the local stability ofx�, we need to verify the occur-
rence of successive switchings. The next lemma is useful, which char-
acterizes a fixed scalar�� > 0 such that any trajectory evolving from
traversing points inS(� ;x ) (or S(� ;x )) will traverseS� (or S�).

Lemma 3.2: For any�0 2 (0; rmin], there exists a scalar�� > 0
such that the trajectory evolving from any traversing point inS(� ;x )

(orS(� ;x )) (Here, set the traversing instant to be zero.) will traverse
S� (orS�), and the traversing instant� + ttrav satisfiesjttrav�h�j <
�0 (or jttrav � h� j < �0).

Proof: See Appendix.
Let the first traversing point bex(t1) 2 S�. Then,kx(t1)�x��k can

be made arbitrarily small by choosingx0 close tox�0 . The next lemma
concerns the second traversing point.

Lemma 3.3: There exists�2 2 (0; �1] such that any trajectory
starting fromR� will traverseS� after the first traversing instantt1,
and the second traversing pointx(t1 + � + t2) satisfies

x(t1 + � + t2)� x�� = I �
F�(t2 � h�)c

f�(t2 � h�)

�eA(�+t )(x(t1)� x��) (17)

where� + t2 with t2 > 0 is the time duration forx(t) to move from
x(t1) to x(t1 + � + t2).

Proof: See Appendix.
To specify a local stability regionR�, we need the following lemma

as well.
Lemma 3.4: Given a positive integerp, suppose thatAi, �ij 2

Rn�n (i = 1; 2; . . . ; p; j = 1; 2; . . .) and�(A1A2 � � �Ap) < 1. Then,
there exists�0 > 0 such that for all�ij satisfyingk�ij � Aik � �0,
it holdsk k

j=1(�1j�2j � � ��pj)k ! 0 ask ! 1.
Proof: Since�(A1A2 � � �Ap) < 1, there is a scalar� > 0

such that for all�i 2 Rn�n satisfying k�ik � �, it holds
k k

j=1(A1A2 � � �Ap + �j)k ! 0 ask ! 1. For this� > 0,
there exists�0 > 0 such that ifk�ij � Aik � �0, then the matrix
�1j�2j � � ��pj is expressed as

�1j�2j � � ��pj = A1A2 � � �Ap +
j

where
j satisfiesk
jk � �. This proves the lemma.
With the above lemmas in hands, we are now in a position to present

the main result.
Theorem 3.1:The limit cyclex� in Form 1 is locally stable if

�(W1W2) < 1 (18)

where

W1 = I �
An (Ax�� + bu�)c

cAn (Ax�� + bu�)
eA(�+h )

W2 = I �
An (Ax�� + bu�)c

cAn (Ax�� + bu�)
eA(�+h ): (19)

Here,n� andn� are even integers as given in Lemma 3.1.
Proof: See Appendix.

Theorem 3.1 presents a criterion to check the local stability of the
limit cyclex�. The idea is to find a scalar� > 0 such that any trajectory
starting fromR� of the form (8) will tend asymptotically tox�(t) and
make the relay switch consecutively. Since�(W2W1) = �(W1W2),
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then�(W2W1) < 1 is an alternative sufficient condition. This can be
verified by lettingt0 = 0 correspond to a time instant when the relay
switches fromu� to u�.

Remark 3.1: We should make it clear that our results in this brief
are for the case� > 0. If � = 0, the technique developed here is
not applicable due to possible occurrence of multiple trajectories at
traversing instant. For� = 0, if n� = n� = 0, then Theorem 3.1 still
works. Indeed,n� = n� = 0 implies that the limit cycle is nontangent
with the switching planes at traversing instant, like the case considered
in [1], [8], [10]. However, the methods used in [1], [8], and [10] are not
applicable to deal with the local stability of limit cycles in Form 1.

IV. EXTENSION

In this section, we give an extension result for the local stability of
limit cycles with2q(q � 1) switchings a period. The limit cycle con-
sidered is as follows.

Form 2: The limit cyclex� makes the relay switch2q times a period
with traversing pointsx��i 2 S� andx��i 2 S� (i = 1; 2; . . . ; q). The
period is q

i=1(� + h�i + � + h�i) with h�i > 0 andh�i > 0 (i =
1; 2; . . . ; q), where� +h�i (respectively,� +h�i) is the time duration
for x� to move fromx��i to x��i (respectively, fromx��i to x��(i+1)).
Note thatx��(q+1) = x��1.

Similar to Lemma 3.1, there exist2q even integersn�l; n�l 2 N ,
l = 1; 2; . . . ; q, such that the following holds for alll = 1; 2; . . . ; q:

cA
i+1

x
�

�l + cA
i
bu� =0; i = 0; 1; . . . ; n�l � 1;

cA
n +1

x
�

�l + cA
n

bu� <0

cA
i+1

x
�

�l + cA
i
bu� =0; i = 0; 1; . . . ; n�l � 1;

cA
n +1

x
�

�l + cA
n

bu� >0: (20)

The extended stability result in this section is as follows.
Theorem 4.1: The limit cycle in Form 2 is locally stable if for some

k 2 f1; 2; . . . ; 2qg, it holds

�(WkWk�1 � � �W1W2qW2q�1 � � �Wk+1) < 1 (21)

where, forl = 1; 2; . . . ; q

W2l�1 = I �
An (Ax��l + bu�)c

cAn (Ax��l + bu�)
e
A(�+h )

W2l = I �
An (Ax��l + bu�)c

cAn (Ax��l + bu�)
e
A(�+h )

: (22)

Here,h�0 = h�q.
Proof: The proof follows a similar line to that of Theorem 3.1

and, thus, is omitted here.
Finally, we give a numerical example to illustrate the use of our re-

sults.
Example 4.1: Consider system� with

A =

1 0 0

�1 �2 1

1 0 �1

b =

1

1

1

c = [ 1 0 0 ]

� =0:1

� =� 0:1

� =0:2

u� =2

u� =� 1:

(a)

(b)

Fig. 2. (a) The control u(t); (b) The trajectories of
x (t) = [ x (t) x (t) x (t) ] (x (t) solid, x (t) dash-dot,x (t)
dashed).

We check thatA is not Hurwitz, but the system has a limit cycle as
shown in Fig. 2. The limit cycle meets Form 2 withq = 2. The period
and the four traversing points are computed to be

h�1 =0:25

h�2 =0:25

h�1 =0:65

h�2 =1:05

x�1 =

�0:1

�0:5

�0:43

x�2 =

�0:1

�0:39

�0:3

x�1 =

0:2

0:23

0:3

x�2 =

0:2

0:3

0:44

:

It is easy to obtain from (20) thatn�1 = n�2 = n�1 = n�2 = 0.
We further compute from (22) that�(W4W3W2W1) =
f0; 0:0055;0:0743g, giving �(W4W3W2W1) < 1. Hence, we
conclude from Theorem 4.1 that the limit cycle is locally stable.

V. CONCLUSION

This brief studies the local stability of limit cycles for time-delay
relay-feedback systems. The considered limit cycle is not confined to
be symmetric, and its trajectory is not required to be nontangent with
the switching planes at the traversing instants. Sufficient conditions
are established based on the state-space method. It is noted that the
stability analysis in this brief is based on a small starting regionR�.
How to verify the stability within a large starting region (or even the
whole space) deserves a study. The extensions of our results to MIMO
systems is also very important for future research work.
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APPENDIX

Proof of Lemma 3.1

We take the proof of (12) for example. For (11), the proof is similar.
Let the instantt = t� correspond tox�(t�) = x�� . For a sufficiently

small� > 0, we have the following expansion ofx�(t) in t 2 [t� �
�; t� + �]

x
�(t) = x

�(t�) +

n

i=0

1

(i+ 1)!
A
i(Ax�� + bu�)(t� t�)

i+1

+O(t� t�)
n +2

wheren� � 0 is an integer such that

cA
i+1

x
�

� + cA
i
bu� =0; i = 0; 1; . . . ; n� � 1

cA
n +1

x
�

� + cA
n
bu� 6=0:

From the Cayley–Hamilton Theorem, it is easy to get thatn� 2 N .
Sincecx�� = �, cx�(t) > � for t 2 (t� ; t� + �] andcx�(t) < � for
t 2 [t� � �; t�), we have

1

(n� + 1)!
cA

n (Ax�� + bu�)(t� t�)
n +1

+ cO(t� t�)
n +2

> 0; t 2 (t� ; t� + �]

1

(n� + 1)!
cA

n (Ax�� + bu�)(t� t�)
n +1

+ cO(t� t�)
n +2

< 0; t 2 [t� � �; t�):

Letting t ! t� from both sides, we see thatn� must be even and the
following holds:

cA
n +1

x
�

� + cA
n
bu� > 0:

This proves the lemma.

Proof of Lemma 3.2

Firstly, consider the trajectory ofx(t) evolving from traversing
points inS�. The trajectory ofx�(t) is governed by

x
�(t) =eAtx�� +

t

0

e
A(t�s)

bu�ds 8 t 2 [0; � ]

x
�(t) =eAtx�� +

�

0

e
A(t�s)

bu�ds

+
t��

0

e
A(t���s)

bu�ds 8 t 2 [�; � + h�]:

For some�1, satisfying0 < �1 < minfh�; �; �0g, it holds that

cx
�(t) <� 8 t 2 [0; � + h�)

cx
�(t) >� 8 t 2 (� + h�; � + h� + �1];

cx
�(� + h�) =�:

The trajectory ofx(t) evolving fromx�� +� 2 S� with smallk�k is
governed by

x(t) =eAt(x�� +�) +
t

0

e
A(t�s)

bu�ds 8 t 2 [0; � ]

x(t) =eAt(x�� +�) +
�

0

e
A(t�s)

bu�ds

+
t��

0

e
A(t���s)

bu�ds 8 t 2 [�; � + �2]

cx(t) <� 8 t 2 [0; � + �2];

where�2 > 0 is a sufficiently small scalar. By continuity, it can be
shown that there exists�� 1 such that the trajectory ofx(t) evolving

from x�� +� 2 S(� ;x ) will traverseS� . Moreover, the traversing
instant�+ttrav satisfiesjttrav�h�j < �1, and thus,jttrav�h�j < �0.

Next, consider traversing points inS� . Similarly, for the given
�0 > 0, there exists�� 2 such that any trajectory evolving from
S(� ;x ) will traverse S�, and the traversing instant� + ttrav

satisfiesjttrav � h� j < �0. The result follows immediately by letting
�� = minf�� 1; �� 2g.

Proof of Lemma 3.3

If k�1k is small, the trajectory ofx(t) evolving fromx(t1) = �1+
x�� 2 S� will traverseS� , and the time duration� + t2 can be made
approaching� +h�. Thus, there exists�2 satisfying0 < �2 � �1 such
that the trajectory ofx(t) starting fromR� will make the time duration
� + t2 satisfyjt2 � h�j < rmin. Sincecx�� = cx(t1 + � + t2) = �,
where

x
�

� =eA(�+h )
x
�

� +
�

0

e
A(�+h �s)

bu�ds

+
h

0

e
A(h �s)

bu�ds

x(t1 + � + t2) =e
A(�+t )

x(t1) +
�

0

e
A(�+t �s)

bu�ds

+
t

0

e
A(t �s)

bu�ds (23)

after some manipulations, we have

ce
A(�+t )(x(t1)� x

�

�) + f�(t2 � h�) = 0:

Noting that(t2�h�)n +1f�1� (t2�h�) is well-defined forjt2�h�j �
rmin, we arrive at

(t2 � h�)
n +1 = �

(t2 � h�)
n +1ceA(�+t )

f�(t2 � h�)
(x(t1)� x

�

�): (24)

Using (23), we obtain

x(t1 + � + t2)� x
�

� =eA(�+t )(x(t1)� x
�

�)

+ (eA(t �h ) � I)x��

+
t �h

0

e
As
bu�ds

=eA(�+t )(x(t1)� x
�

�)

+
F�(t2 � h�)

(t2 � h�)n +1 (t2 � h�)
n +1

= I �
F�(t2 � h�)c

f�(t2 � h�)

� e
A(�+t )(x(t1)� x

�

�):

This completes the proof.

Proof of Theorem 3.1

Suppose�(W1W2) < 1. By virtue of Lemma 3.4, there exists a
scalar�0 > 0 such that for all�ij 2 Rn�n (i = 1; 2; j = 1; 2; . . .)
satisfyingk�ij � Wik � �0, it holds k k

j=1(�1j�2j)k ! 0 as
k !1. In other words, there is a positive integerN0 such that for all
�ij 2 Rn�n satisfyingk�ij �Wik � �0, it holds that

N +k

j=1

(�1j�2j) < 1 8 k = 0; 1; 2; . . . : (25)

For j = 1; 2; . . ., let

W (�1j ; x
�

�) = I �
F�(�1j)c

f�(�1j)
e
A(�+h +� )

W (�2j ; x
�

�) = I �
F�(�2j)c

f�(�2j)
e
A(�+h +� ) (26)
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where �1j ; �2j 2 . It is seen thatW (�1j ; x
�

�) ! W1 and
W (�2j ; x

�

�) ! W2 as�ij ! 0 for i = 1; 2, andj = 1; 2; . . .. Thus,
for the above�0 > 0, there exists�0 > 0 such that

kW (�1j ; x
�

�)�W1k ��0;

8 j�1j j ��0; j = 1; 2; . . .

kW (�2j ; x
�

�)�W2k ��0

8 j�2j j ��0; j = 1; 2; . . . : (27)

Let�min = minf�0; rmingwherermin is as in (14). For this,�min > 0,
and by Lemma 3.2, there exists a fixed scalar�min > 0 such that any
trajectory evolving from traversing points inS(� ;x ) (orS(� ;x ))
will traverseS� (or S�) by spending time duration� + ttrav, where
ttrav satisfiesjttrav � h�j < �min (or jttrav � h� j < �min).

Now, let

w =maxfkW1k; kW2kg

��min =min �min;
�min

(w+ �0)2N
: (28)

Then, there exists a scalar� 2 (0; �1] such that any trajectory starting
fromx0 2 R� will traverseS�, and moreover, the first traversing point
x1 satisfieskx1 � x��k � ��min � �min. We show next that with this
� > 0, R� is a locally stable region. This is two folded, i.e., any tra-
jectory starting fromR� will make the relay switch consecutively, and
converge asymptotically to the limit cyclex�. In what follows, if the
ith (i � 2) traversing occurs, we then denote the traversing point by
xi and the time duration for the trajectory to move fromxi�1 to xi by
� + ti.

Sincekx1 � x��k � ��min � �min, the second traversing will occur
atS� . By virtue of Lemma 3.3 and the above analysis,x2 and� + t2

satisfy the following: [see (17)]

jt2 � h�j ��min (29)

x2 � x
�

� = I �
F�(t2 � h�)c

f�(t2 � h�)
e
A(�+t )(x1 � x

�

�)

=W (t2 � h�; x
�

�)(x1 � x
�

�): (30)

From (29), we see that (27) holds, yieldingkW (t2�h�; x
�

�)k � w+
�0. Thus, (30) gives

kx2 � x
�

�k � (w+ �0)��min � �min (31)

which implies that the third traversing will occur atS�. Continue the
process. At the(2N0 + 1)th traversing point, there holds

jt2N +1 � h� j ��min

x2N +1 � x
�

� = I �
F�(t2N +1 � h�)c

f�(t2N +1 � h�)

� e
A(�+t )(x2N � x

�

�)

=W (t2N +1 � h� ; x
�

�)(x2N � x
�

�);

kx2N +1 � x
�

�k �(w+ �0)
2N ��min � �min:

This implies that the(2N0+2)th traversing will occur atS� , and thus

jt2N +2 � h�j ��min

x2N +2 � x
�

� =W (t2N +2 � h�; x
�

�)(x2N +1 � x
�

�)

=W (t2N +2 � h�; x
�

�)

�

N

j=1

W (t2j+1 � h� ; x
�

�)

�W (t2j � h�; x
�

�) (x1 � x
�

�):

Taking into account (25), it is easy to see that

N

j=1

W (t2j+1 � h� ; x
�

�)W (t2j � h�; x
�

�) < 1

which leads to

x2N +2 � x
�

� � W (t2N +2 � h�; x
�

�) kx1 � x
�

�k

�(w+ �0)��min � �min:

This indicates that the(2N0+3)th traversing will occur atS�. Contin-
uing the process and noting (25) conclude that for any integerk � 1,
the(2N0 + 2k)th and the(2N0 + 2k + 1)th traversing will occur at
S� andS�, respectively. This shows that the relay will switch consec-
utively.

To the end of the proof, since

x2k+1�x
�

� =

k

j=1

W (t2j+1�h� ; x
�

�)W (t2j�h�; x
�

�) (x1�x
�

�)

kW (t2j � h�; x
�

�)�W2k ��0

kW (t2j+1 � h� ; x
�

�)�W1k ��0

using Lemma 3.4 again and from the statement in the very beginning
of the proof, we havekx2k+1 � x��k ! 0 ask !1. This completes
the proof of the theorem.
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